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Abstract: The Decoupling Internal Model Control (DIMC) technique is modified to achieve triangular 

decoupling for a class of two-input, two-output systems with delays. The closed-loop transfer function 

matrix that guarantees stability and triangular decoupling within the IMC framework is mathematically 

developed, and the corresponding centralized decoupling internal model controller calculated for systems 

with delays and right-half-plane zeros. The shifting of inverse responses and interactions is achieved to a 

single least-desired output so that for non-minimum-phase (NMP) two-input, two-output (TITO) systems 

with delays, one output has some delay but has no interacting behaviour or inverse response behaviour, 

while the less-desired output has substantial interaction and inverse response behaviour, with asymptotic 

tracking of setpoints for both outputs. A simulation example shows the effectiveness of the proposed 

method. 
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1.  Introduction 

Internal Model Control (IMC) for open-loop-stable single-

input, single-output (SISO) systems provides attractive 

features of design simplicity, guarantees of closed-loop 

stabilty and zero steady-state offset, theoretical possibility 

of perfect control and a transparent technique of robust 

control (Garcia and Morari, 1982). Extensions of linear 

SISO IMC have been actualized to a wide range of systems 

(Morari and Zafiriou, 1989). Extensions to linear, square, 

open-loop-stable multivariable systems have been 

substantially explored (Garcia and Morari, 1985; Holt and 

Morari, 1985). 

 

For control of open-loop-stable systems, the extension of 

linear SISO IMC to linear, square, minimum-phase delay-

free, multivariable systems is trivial, requiring simple 

transfer-function-matrix inversion and diagonal filter-

matrix augmentation. The extension to linear, square, non-

minimum-phase delay-free, multivariable systems is 

however non-trivial, because of the presence of RHP 

transmission zeros and the infinitely-many possible matrix 

factorization techniques. The consideration of optimality in 

factorization of matrices for multivariable IMC leads to the 

complicated solution of Frank (1974), while the limiting 

cases are the factorization procedure achieving dynamic 

decoupling, on one hand, and triangular decoupling, on the 

other (Holt and Morari, 1985). The Inner-Outer 

Factorization technique achieves more closeness to 

optimality than the decoupling techniques and has been 

successfully applied to multivariable delay-free IMC of 

systems, although it involves a lengthier design process that 

involves the conversion to state space and the solution to an 

Algebraic Riccati Equation (Morari and Zafiriou, 1989). 

 

The triangular decoupling control problem has been solved 

using a variety of techniques over the past five decades. The 

existence of RHP zeros imposes bandwidth limitations on 

all channels in dynamic decoupling and the option of 

restricting these limitations to a single, least-desired 

channel is an attractive alternative, with the relaxing of the 

decoupling objective on the least desired output (Goodwin 

et al., 2000). Several authors have provided solutions to the 

triangular decoupling problem in different ways and for 

different systems (Morse and Wonham, 1970; Descusse and 

Lizarzaburu, 1979; Nijmeijer, 1984; Koumboulis and 

Skarpetis, 2000; Wang, 2007; Koumboulis and 

Panagiotakis, 2008; Nguyen and Su, 2009; Shen and Wei, 

2015; Li, Jia and Liu, 2017; Koumboulis and Kouvakas, 

2018). 

 

The extension of the aforementioned multivariable IMC 

designs to linear, square, open-loop-stable, multivariable 

systems with delays is appealing but has not been directly 

possible because of the irrationality of the inverse of a 

transfer function matrix with delays. Over the last two 

decades, the use of dynamic decoupling concepts has made 

IMC implementations possible for multivariable systems 

with delays (Wang et al., 2002; Liu et al., 2006; Garrido et 

al., 2014). However, the use of the triangular decoupling 

concept to achieve controller design for delayed systems 

using the IMC concept has not been explored in literature. 

In this study, the decoupling IMC configuration is used to 
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develop centralized triangular decoupling controllers for 

linear, square, open-loop-stable multivariable systems. The 

triangular closed-loop transfer function matrix that 

guarantees triangular decoupling for a system with a single 

RHP transmission zero is derived and the centralized 

multivariable IMC controller achieving it is calculated and 

approximated using appropriate model-reduction 

techniques. A simulation example using the Quadruple-

Tank Process with Dead Times will show the effectiveness 

of the designs. 

2.  Assumptions for Analytical Triangular 

Decoupling   IMC 

The centralized MIMO IMC for a 2 x 2 multivariable 

system is shown in Figure 1. 

The output transform 𝒀(𝒔) is related to the input transform 

𝑹(𝒔) by  

𝒀(𝒔) = 𝑮𝑪(𝑰 + [𝑮 − �̂�]𝑪)
−𝟏

𝑹               

+{𝑰 − �̂�𝑪}(𝑰 + [𝑮 − �̂�]𝑪)
−𝟏

𝑫    (1) 

where 𝑫, �̂�, 𝑪, 𝑹 and 𝑮 respectively represent the Laplace 

transforms of the output disturbance vector, model of plant, 

centralized internal model controller, command signal 

vector and plant transfer function, and 𝑰 is the 𝟐 𝐱 𝟐 identity 

matrix. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Centralized Internal Model Control Structure for 

TITO Systems 

 

With the assumption of the absence of output disturbance, 

the closed-loop transfer function matrix 𝑯(𝒔) becomes 

𝑯(𝒔) = 𝑮𝑪(𝑰 + [𝑮 − �̂�]𝑪)
−𝟏

       (2) 

With the assumption of perfect model-process match, the 

system becomes effectively open-loop, with the closed-loop 

transfer function matrix becoming 

𝑯(𝒔) = 𝑮(𝒔)𝑪(𝒔)                                (3) 

In addition to the aforementioned assumptions, the 

assumptions of non-singularity of the matrices 𝑮(𝒔) and 

𝑪(𝒔) at 𝑠 = 0 and the absence of coupling in the tuning of 

the columns of the controller matrix 𝑪(𝒔) are made 

according to the preconditions specified by Liu and co-

workers (2006). 

 

3. Development of Desired Triangular Closed-Loop 

Transfer Function Matrix 
If the plant and controller transfer function matrices of 

rational elements plus delays are respectively given by 

𝑮(𝒔) = [
𝑮𝟏𝟏(𝒔) 𝑮𝟏𝟐(𝒔)
𝑮𝟐𝟏(𝒔) 𝑮𝟐𝟐(𝒔)

]                            (4) 

𝑪(𝒔) = [
𝑪𝟏𝟏(𝒔) 𝑪𝟏𝟐(𝒔)
𝑪𝟐𝟏(𝒔) 𝑪𝟐𝟐(𝒔)

]                             (5), 

where 

     𝑮𝒊𝒋(𝒔) = 𝑮𝒊𝒋𝒓𝒆
−𝜽𝒈𝒊𝒋𝒔; 𝒊 = 𝟏, 𝟐; 𝒋 = 𝟏, 𝟐; 𝜽𝒈𝒊𝒋 ≥ 𝟎    (6) 

     𝑪𝒊𝒋(𝒔) = 𝑪𝒊𝒋𝒓𝒆
−𝜽𝒄𝒊𝒋𝒔; 𝒊 = 𝟏, 𝟐; 𝒋 = 𝟏, 𝟐; 𝜽𝒄𝒊𝒋 ≥ 𝟎    (7) 

(with 𝑮𝒊𝒋𝒓 and 𝑪𝒊𝒋𝒓 being rational open-loop-stable transfer 

functions), then for plant inputs being 𝒖𝟏, 𝒖𝟐 and plant 

outputs being 𝒚𝟏, 𝒚𝟐, triangular decoupling is achieved such 

that interactions and inverse responses are shifted to 𝒚𝟐, 

with output 𝒚𝟏 being non-interacting and without inverse 

response behaviour, the desired closed-loop transfer 

function matrix 𝑯(𝒔), with the assumption of the presence 

of a single RHP transmission zero at 𝒔 = 𝒛 for the system, 

can be obtained using a modification of the technique of 

Holt and Morari (1985) to yield the matrix of eqn. (8) i.e. 

𝑯 = [
𝑯𝟏𝟏 𝟎
𝑯𝟐𝟏 𝑯𝟐𝟐

] = [

𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏
𝟎

𝒛𝜷𝟏𝒔

𝒔+𝒛
.
𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏

𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏
(
−𝒔+𝒛

𝒔+𝒛
)
]           (8), 

where 𝜷𝟏 is a constant to be determined.  

The centralized controller becomes 

      𝑪(𝒔) = 𝑮−𝟏(𝒔)𝑯(𝒔)                                  (9) 

and if the inverse of the transfer function matrix of the plant 

is given by 

 𝑮−𝟏(𝒔) =
𝑷(𝒔)

(−𝒔+𝒛)𝑴(𝒔)
[
�̂�𝟏𝟏(𝒔) �̂�𝟏𝟐(𝒔)

�̂�𝟐𝟏(𝒔) �̂�𝟐𝟐(𝒔)
]                (10), 

where 𝑷(𝒔) is the pole polynomial of the system, 

(−𝒔 + 𝒛)𝑴(𝒔) is the zero polynomial of the system, with 

𝑴(𝒔) having only negative roots, and �̂�𝑖𝑗 is the (𝒊, 𝒋)th 

element of the adjoint of the plant’s transfer function matrix, 

then the centralized controller 𝑪(𝒔) becomes 

  𝑪 =
𝑷(𝒔)

(−𝒔+𝒛)𝑴(𝒔)
[
(�̂�𝟏𝟏 + �̂�𝟏𝟐

𝒛𝜷𝟏𝒔

𝒔+𝒛
)

𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏
�̂�𝟏𝟐 (

−𝒔+𝒛

𝒔+𝒛
)

𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏

(�̂�𝟐𝟏 + �̂�𝟐𝟐
𝒛𝜷𝟏𝒔

𝒔+𝒛
) .

𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏
�̂�𝟐𝟐 (

−𝒔+𝒛

𝒔+𝒛
)

𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏

] 

                (11) 

Equation 11 will only be stable only if each of 

(�̂�𝒊𝟏 + �̂�𝒊𝟐
𝒛𝜷𝟏𝒔

𝒔+𝒛
) ,  𝒊 = 𝟏, 𝟐, has the expression (−𝒔 + 𝒛) as 

one of its factors. 

 

Theorem: For an open-loop-stable two-input, two-output 

system with delays and with a single RHP transmission zero 

at 𝑠 = 𝑧, the expression  

    𝒗𝒊 = �̂�𝒊𝟏 + �̂�𝒊𝟐
𝒛𝜷𝟏𝒔

𝒔+𝒛
, 𝒊 = 𝟏, 𝟐                    (12) 

has the expression (−𝒔 + 𝒛) as one of its factors if and only 

if 

   𝜷𝟏 = −
𝟐�̂�𝒋𝟏(𝒛)

𝒛�̂�𝒋𝟐(𝒛)
                     (13) 

for an arbitrary 𝒋. 
 

Proof: 

For 𝜷𝟏 to make 𝒗𝒊 to have a factor (−𝒔 + 𝒛), then 

    𝒗𝒊|𝒔=𝒛 = [�̂�𝒊𝟏 + �̂�𝒊𝟐
𝒛𝜷𝟏𝒔

𝒔+𝒛
]  |𝒔=𝒛 = 𝟎                           (14), 

meaning that  

    [�̂�𝒊𝟏(𝒔 + 𝒛) + �̂�𝒊𝟐𝒛𝜷𝟏𝒔]|𝒔=𝒛 = 𝟎                              (15) 

or 

    𝟐𝒛�̂�𝒊𝟏 + 𝒛𝟐�̂�𝒊𝟐𝜷𝟏 = 𝟎                   (16) 

leading to 

    𝜷𝟏 = −
𝟐𝒛�̂�𝒋𝟏(𝒛)

𝒛𝟐�̂�𝒋𝟐(𝒛)
= −

𝟐�̂�𝒋𝟏(𝒛)

𝒛�̂�𝒋𝟐(𝒛)
                  (17) 

𝐷 

𝑐11 𝑐12
𝑐21 𝑐22

 
𝐺11 𝐺12

𝐺21 𝐺22
 

 𝐺 11 𝐺 12
𝐺 21 𝐺 22

 

𝑌 𝑅 𝑈 

𝐶 𝐺 

𝐺  
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Using the Theorem in eqn. (11), the Centralized IMC 

Controller achieving Triangular Decoupling is therefore 

𝑪 =
𝑷(𝒔)

(−𝒔+𝒛)𝑴(𝒔)
[
((−𝒔 + 𝒛)𝑴𝟐(𝒔))

𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏
−𝑮𝟏𝟐 (

−𝒔+𝒛

𝒔+𝒛
)

𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏

(−𝒔 + 𝒛)𝑴𝟑(𝒔).
𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏
𝑮𝟏𝟏 (

−𝒔+𝒛

𝒔+𝒛
)

𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏

] 

                    (18) 

where 𝑴, 𝑴𝟐 and 𝑴𝟑 are expressions without RHP roots, 

leading to centralized Analytical Triangular Decoupling 

IMC controller achieving “perfect 𝑦1 with delay” as 

  [
𝑪𝟏𝟏 𝑪𝟏𝟐

𝑪𝟐𝟏 𝑪𝟐𝟐
] = [

𝑷(𝒔)𝑴𝟐(𝒔)𝒆
−𝜽𝟏𝒔

𝑴(𝒔)(𝝉𝟏𝒔+𝟏)

−𝑷(𝒔)𝑮𝟏𝟐(𝒔)𝒆
−𝜽𝟐𝒔

(𝒔+𝒛)(𝝉𝟐𝒔+𝟏)𝑴(𝒔)

𝑷(𝒔)𝑴𝟑(𝒔)𝒆
−𝜽𝟏𝒔

𝑴(𝒔)(𝝉𝟏𝒔+𝟏)

𝑷(𝒔)𝑮𝟏𝟏(𝒔)𝒆
−𝜽𝟐𝒔

(𝒔+𝒛)(𝝉𝟐𝒔+𝟏)𝑴(𝒔)

]            (19) 

Similarly, if the “non-interacting, minimum-phase output 

with delay” is 𝑦2 i.e. the less-desired output is 𝑦1, then eqn. 

(3) becomes 

𝑮𝑪 = [
𝑯𝟏𝟏 𝑯𝟏𝟐

𝟎 𝑯𝟐𝟐
] = [

(
−𝒔+𝒛

𝒔+𝒛
) (

𝒆−𝜽𝟏𝒔

𝝉𝟏𝒔+𝟏
)

𝒛𝜷𝒓𝒆,𝟐𝒔

𝒔+𝒛
.
𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏

𝟎
𝒆−𝜽𝟐𝒔

𝝉𝟐𝒔+𝟏

]      (20) 

where 𝜷𝒓𝒆,𝟐 is to be determined. 

If we define the rearranged transfer function matrix of plant 

as 

𝑮𝒓𝒆𝒂𝒓𝒓 = [
𝑮𝟐𝟐 𝑮𝟐𝟏

𝑮𝟏𝟐 𝑮𝟏𝟏
]                                (21) 

and the adjoint of the matrix as 

 𝒂𝒅𝒋(𝑮𝒓𝒆𝒂𝒓𝒓) = [
�̂�𝒓𝒆,𝟏𝟏 �̂�𝒓𝒆,𝟏𝟐

�̂�𝒓𝒆,𝟐𝟏 �̂�𝒓𝒆,𝟐𝟐
] = [

𝑮𝟏𝟏 −𝑮𝟐𝟏

−𝑮𝟏𝟐 𝑮𝟐𝟐
]  (22), 

then, the closed-loop transfer function matrix becomes 

lower-triangular as in eqn. (8) and repetition of the 

procedure that led to eqn. (19) yields the centralized 

Analytical Triangular Decoupling IMC controller achieving 

"perfect 𝑦2 with delay" of eqn. (23): 

[
𝑪𝟏𝟏 𝑪𝟏𝟐

𝑪𝟐𝟏 𝑪𝟐𝟐
] = [

𝑷(𝒔)𝑮𝟐𝟐(𝒔)𝒆
−𝜽𝟏𝒔

(𝒔+𝒛)(𝝉𝟏𝒔+𝟏)𝑴(𝒔)

𝑷(𝒔)𝑴𝟒(𝒔)𝒆
−𝜽𝟐𝒔

(𝝉𝟐𝒔+𝟏)𝑴(𝒔)

−𝑷(𝒔)𝑮𝟐𝟏(𝒔)𝒆
−𝜽𝟏𝒔

(𝒔+𝒛)(𝝉𝟏𝒔+𝟏)𝑴(𝒔)

𝑷(𝒔)𝑴𝟓(𝒔)𝒆
−𝜽𝟐𝒔

(𝝉𝟐𝒔+𝟏)𝑴(𝒔)

]          (23) 

where 𝑴𝟒 and 𝑴𝟓 are expressions without RHP roots, and 

𝑷(𝒔) and 𝑴(𝒔) are as defined for eqn. (18). 

4. Generalized Analytical Triangular DIMC for Square 

MIMO NMP Systems with Delays  

For an 𝒏 𝐱 𝒏 open-loop-stable system 𝑮(𝒔) with delays and 

a single RHP zero at 𝒔 = 𝒛, represented by the transfer 

function matrix 

𝑮(𝒔) = [
𝑮𝟏𝟏(𝒔) … 𝑮𝟏𝒏(𝒔)

⋮ ⋱ ⋮
𝑮𝒏𝟏(𝒔) … 𝑮𝒏𝒏(𝒔)

],                 (24), 

it can be shown that the 𝒏 𝐱 𝒏, analytically-derived 

triangularly decoupling internal model controller that shifts 

the inverse response behaviour and control-loop 

interactions to the least desired output 𝒚𝒏 is given by 

𝑪(𝒔) = [
𝑪𝟏𝟏(𝒔) … 𝑪𝟏𝒏(𝒔)

⋮ ⋱ ⋮
𝑪𝒏𝟏(𝒔) … 𝑪𝒏𝒏(𝒔)

] =

[
 
 
 
 
𝑷(𝒔)𝑴𝟏𝟏(𝒔)𝒆

−𝜽𝟏𝒔

𝑴(𝒔)(𝝉𝟏𝒔+𝟏)
…

𝑷(𝒔)𝑴𝟏,𝒏−𝟏(𝒔)𝒆
−𝜽𝒏−𝟏𝒔

𝑴(𝒔)(𝝉𝒏−𝟏𝒔+𝟏)

𝑷(𝒔)�̂�𝟏𝒏(𝒔)𝒆−𝜽𝒏𝒔

(𝒔+𝒛)(𝝉𝒏𝒔+𝟏)𝑴(𝒔)

⋮ ⋱ ⋮                                ⋮
𝑷(𝒔)𝑴𝒏𝟏(𝒔)𝒆

−𝜽𝟏𝒔

𝑴(𝒔)(𝝉𝟏𝒔+𝟏)
…

𝑷(𝒔)𝑴𝒏,𝒏−𝟏(𝒔)𝒆
−𝜽𝒏−𝟏𝒔

𝑴(𝒔)(𝝉𝒏−𝟏𝒔+𝟏)

𝑷(𝒔)�̂�𝒏𝒏(𝒔)𝒆−𝜽𝒏𝒔

(𝒔+𝒛)(𝝉𝒏𝒔+𝟏)𝑴(𝒔)]
 
 
 
 

 

      (25) 

where 𝑷(𝒔), 𝑴(𝒔) and �̂�𝒊𝒋 are as defined in eqn. (10), 

𝑴𝒊𝒋 (𝒋 = 𝟏,… , 𝒏 − 𝟏; 𝒋 = 𝟏,… , 𝒏 − 𝟏) is the (𝒊, 𝒋)th 

expression without RHP roots determined after the 

calculation of 𝜷𝒊 (𝒊 = 𝟏,… , 𝒏 − 𝟏), the constant that 

ensures the presence of the term (−𝒔 + 𝒛) as a factor of 

(�̂�𝒊𝒋 + �̂�𝒊𝒏
𝒛𝜷𝒋𝒔

𝒔+𝒛
) , 𝒊 = 𝟏,… , 𝒏 − 𝟏; 𝒋 = 𝟏,… , 𝒏 − 𝟏, and 𝜽𝒊 and 

𝝉𝒊 (𝒊 = 𝟏,… , 𝒏) are the closed-loop time delay and tuning 

parameter respectively. Due to space economy, the details 

will be presented in subsequent publications. 

 

5. Approximation of Plant Transfer Function Matrix 

Determinants 
In the paper by Liu and co-workers (2006), the procedure 

for calculating the dynamic decoupling internal model 

controller involved representing a TITO system by the 

transfer function matrix of first-order-plus-delay elements: 

𝑮(𝒔) = [

𝑲𝟏𝟏𝒆
−𝜽𝟏𝟏𝒔

𝝉𝟏𝟏𝒔+𝟏

𝑲𝟏𝟐𝒆
−𝜽𝟏𝟐𝒔

𝝉𝟏𝟐𝒔+𝟏

𝑲𝟐𝟏𝒆
−𝜽𝟐𝟏𝒔

𝝉𝟐𝟏𝒔+𝟏

𝑲𝟐𝟐𝒆
−𝜽𝟐𝟐𝒔

𝝉𝟐𝟐𝒔+𝟏

]                          (26) 

and the calculation of the controller 𝑪(𝒔) as 
𝑪(𝒔) =  

       
𝟏

𝟏−𝑮𝟎𝒆−∆𝜽.𝒔 *      

[

(𝝉𝟏𝟏𝒔+𝟏)𝒆𝜽𝟏𝟏𝒔𝑯𝟏

𝑲𝟏𝟏

−𝑲𝟏𝟐(𝝉𝟏𝟏𝒔+𝟏)(𝝉𝟐𝟐𝒔+𝟏)𝒆(𝜽𝟏𝟏+𝜽𝟐𝟐−𝜽𝟏𝟐)𝒔

𝑲𝟏𝟏𝑲𝟐𝟐(𝝉𝟏𝟐𝒔+𝟏)

−𝑲𝟐𝟏(𝝉𝟏𝟏𝒔+𝟏)(𝝉𝟐𝟐𝒔+𝟏)𝒆(𝜽𝟏𝟏+𝜽𝟐𝟐−𝜽𝟐𝟏)𝒔

𝑲𝟏𝟏𝑲𝟐𝟐(𝝉𝟐𝟏𝒔+𝟏)

(𝝉𝟐𝟐𝒔+𝟏)𝒆𝜽𝟐𝟐𝒔𝑯𝟐

𝑲𝟐𝟐

]    

                     (27) 

 

where  

     𝑭(𝒔) =
𝟏

𝟏−𝑮𝟎𝒆−∆𝜽.𝒔                    (28) 

     𝑮𝟎(𝒔) =
𝑲𝟏𝟐𝑲𝟐𝟏(𝝉𝟏𝟏𝒔+𝟏)(𝝉𝟐𝟐𝒔+𝟏) 

𝑲𝟏𝟏𝑲𝟐𝟐(𝝉𝟏𝟐𝒔+𝟏)(𝝉𝟐𝟏𝒔+𝟏)
                          (29) 

     ∆𝜽 = |𝜽𝟏𝟏 + 𝜽𝟐𝟐 − 𝜽𝟏𝟐 − 𝜽𝟐𝟏|                          (30) 

      𝑯𝒊(𝒔) =
𝟏

𝝉𝒊𝒔+𝟏
𝒆−𝜽𝒊𝒔 ∏

−𝒔+𝒛𝒋

𝒔+𝒛𝒋

𝒗
𝒋=𝟏  (𝒊 = 𝟏, 𝟐)               (31) 

The expression 𝑭(𝒔) in eqn. (28) was then approximated 

using moment matching and then multiplied into the matrix 

expression of eqn. (27), with the tuning parameters 𝝉𝒊 (𝒊 =
𝟏, 𝟐) characteristic of IMC implementations retained in the 

computations.  

The procedure above is modified into the Analytical 

Triangular Decoupling IMC procedure without reduction of 

any of the elements of the original transfer function matrix. 

The terms 𝑭, 𝑮𝟎 and ∆𝜽 are determined according to eqns. 

(28), (29) and (30) respectively, while eqn. (31) is replaced 

with eqn. (8) (perfect 𝒚𝟏 with delays) and eqn. (20) (perfect 

𝒚𝟐 with delays). 

 

6. Robustness Analysis of Designed Control Systems 

For the robustness analysis of the closed-loop systems using 

the designed controllers, 𝜇-analysis was performed. The 

uncertainty weight was represented as a diagonal 

multiplicative input uncertainty.  

𝑾𝑰 = 𝐝𝐢𝐚𝐠 (𝒘𝒊, 𝒘𝒊);  𝒘𝒊 =
𝒔+𝟎.𝟐

𝟎.𝟓𝒔+𝟏
   (32) 

The chosen uncertainty weight indicates an uncertainty of 

20% in the process inputs, in the low frequency range, and 

an uncertainty of 200% in the process inputs, in the high 

frequency range; attaining 100% uncertainty at 1 rad/sec.  
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The performance weight was also chosen to be: 

𝑾𝑷 = 𝒅𝒊𝒂𝒈 (𝒘𝒑, 𝒘𝒑);      𝒘𝒑 =
𝒔

𝟐.𝟑
+𝟎.𝟎𝟎𝟐

𝒔
  (33) 

This weight specifies an integral action (zero steady state 

error), peak sensitivity, 𝑴𝒔=2.3 (with an implication that 

Gain Margin 𝑮𝑴 ≥ 𝟏. 𝟕𝟕 and Phase Margin 𝑷𝑴 ≥
 𝟐𝟓. 𝟏𝟏𝟎), and bandwidth frequency=0.002 rad/sec. The 

structured singular value of robust stability (µ𝑹𝑺), and 

robust performance (µ𝑹𝑷) must be less than unity 

(Skogestad and Postlethwaite, 2005), as expressed below:  

µ𝑹𝑺 = µ[−𝑾𝑰(𝒔)𝑻𝑰(𝒔)] < 𝟏      ∀𝛚     (34) 

µ𝑹𝑷 = µ [
−𝑾𝑰(𝒔)𝑻𝑰(𝒔) −𝑾𝑰(𝒔)𝑲(𝒔)𝑺(𝒔)

𝑾𝑷(𝒔)𝑺(𝒔)𝑮(𝒔) 𝑾𝑷(𝒔)𝑺(𝒔)
] < 𝟏  ∀𝛚       

 (35) 

where µ is the structured singular value, 𝑲 is the centralized 

feedback controller, 𝑺(𝒔) and 𝑻𝑰(𝒔) are the sensitivity 

function and complementary sensitivity function 

respectively. 

Because of the conventional feedback form with which the 

uncertainties were formulated, each controller 𝑪(𝒔) in the 

IMC configuration was converted to the equivalent 

conventional feedback controller 𝑲(𝒔) using the formula.   

𝑲(𝒔) = 𝑪(𝒔)[𝑰 − 𝑮(𝒔)𝑪(𝒔)]−𝟏   (36) 

 

7. Simulation Example: NMP Quadruple-Tank 

Process with Dead Times 

 

The transfer function matrix of the non-minimum-phase 

configuration of the Quadruple-Tank Process with Dead 

Times (QTPwDTs) was presented by Shneidermann and 

Palmor (2010) as 

     𝑮(𝒔) = [

𝟎.𝟖𝟑𝟒

𝟔.𝟓𝟕𝒔+𝟏
𝒆−𝟓𝒔 𝟏.𝟑𝟗

(𝟏𝟎.𝟐𝟑𝟏𝒔+𝟏)(𝟔.𝟓𝟕𝒔+𝟏)
𝒆−𝟕𝒔

𝟏.𝟐𝟕𝟏

(𝟏𝟒.𝟎𝟓𝒔+𝟏)(𝟏𝟏.𝟐𝟗𝒔+𝟏)
𝒆−𝟗𝒔 𝟎.𝟕𝟓𝟕

𝟏𝟏.𝟐𝟗𝒔+𝟏
𝒆−𝟔𝒔

]       

                  (37) 

The system has an RHP transmission zero at 0.0419. 

 

For shifting of inverse response behaviour to 𝒚𝟐, 𝜷𝟏 was 

determined to be 33.5288 and 𝑭(𝒔), written as 𝑭𝒖𝒚𝟏(𝒔) in 

eqn. (38), was calculated to be 

     𝑭𝒖𝒚𝟏(𝒔) =
−𝒔+𝟎.𝟎𝟒𝟏𝟖𝟓𝟓𝟖

(𝟏 −
𝟐.𝟕𝟗𝟔𝟏𝟑 𝒆−𝟓 𝒔

(𝟏𝟎.𝟐𝟑𝟏 𝒔+𝟏)(𝟏𝟒.𝟎𝟓 𝒔+𝟏)
)
                   (38) 

and this was approximated using moment matching to 

𝑭𝒂𝒑𝒑𝟏, where 

 

𝑭𝒂𝒑𝒑𝟏(𝒔) =
− 𝟑.𝟑𝟔𝟔𝟗𝟒 𝒔𝟐− 𝟎.𝟓𝟔𝟔𝟖𝟗𝟗 𝒔 −𝟎.𝟎𝟐𝟑𝟑𝟎𝟑𝟒 

𝟏.𝟎𝟑𝟏𝟖 𝒔𝟐+ 𝟐.𝟔𝟑𝟓𝟏 𝒔+𝟏
                (39) 

 

After appropriate substitutions, the eventual controller 

achieving shifting of inverse response behaviour and 

interactions to 𝒚𝟐 calculated as 

𝑪𝒖𝒏𝒓_𝒑𝒆𝒓𝒇𝒚𝟏(𝒔) = [
𝑪𝒖𝒚𝟏−𝟏𝟏(𝒔) 𝑪𝒖𝒚𝟏−𝟏𝟐(𝒔)

𝑪𝒖𝒚𝟏−𝟐𝟏(𝒔) 𝑪𝒖𝒚𝟏−𝟐𝟐(𝒔)
]               (40) 

 

where 

𝑪𝒖𝒚𝟏−𝟏𝟏(𝒔) =

(− 𝟎.𝟏𝟔𝟔𝒔𝟔− 𝟎.𝟓𝟓𝟓 𝒔𝟓 − 𝟎.𝟔𝟎𝟒𝒔𝟒− 𝟎.𝟏𝟗𝟐 𝒔𝟑

− 𝟎.𝟎𝟐𝟔 𝒔𝟐− 𝟎.𝟎𝟎𝟏𝟓𝟗𝟗 𝒔−𝟎.𝟎𝟎𝟎𝟎𝟑𝟕 
)𝒆−𝟑.𝟏𝟑𝒔

( 𝟏.𝟎𝟑𝒔
𝟔+ 𝟑.𝟎𝟑 𝒔𝟓+ 𝟐.𝟎𝟓𝟓𝒔𝟒+ 𝟎.𝟓𝟏𝟖𝒔𝟑

+ 𝟎.𝟎𝟓𝟗 𝒔𝟐+ 𝟎.𝟎𝟎𝟑𝒔+𝟎.𝟎𝟎𝟎𝟎𝟓𝟓 
)(𝝉𝟏𝒔+𝟏)

                (41) 

𝑪𝒖𝒚𝟏−𝟏𝟐(𝒔) =
( 𝟖𝟑.𝟔𝟗𝟐𝒔𝟑+ 𝟐𝟏.𝟓𝟎𝟒 𝒔𝟐+ 𝟏.𝟖𝟑 𝒔 +𝟎.𝟎𝟓𝟏 )𝒆−𝟕 𝒔

( 𝟏𝟎.𝟓𝟔 𝒔𝟒+ 𝟐𝟖.𝟒𝟑 𝒔𝟑+ 𝟏𝟒.𝟎𝟒 𝒔𝟐 + 𝟏.𝟓𝟒 𝒔 +𝟎.𝟎𝟒𝟐)(𝝉𝟐𝒔+𝟏)
     (42) 

𝑪𝒖𝒚𝟏−𝟐𝟏(𝒔) =

(𝟑𝟔.𝟐𝟗 𝒔
𝟔+ 𝟐𝟗.𝟔 𝒔𝟓+ 𝟖.𝟕𝟑 𝒔𝟒+ 𝟏.𝟐𝟒 𝒔𝟑+ 𝟎.𝟎𝟗𝟏 𝒔𝟐

+ 𝟎.𝟎𝟎𝟑𝟑 𝒔 +𝟎.𝟎𝟎𝟎𝟎𝟒𝟓  
)𝒆−𝟐.𝟎𝟗𝟑 𝒔

(𝟏.𝟎𝟑𝒔
𝟔+ 𝟑 𝒔𝟓 + + 𝟏.𝟗𝟕𝟕𝒔𝟒+ 𝟎.𝟒𝟕𝟏𝒔𝟑+ 𝟎.𝟎𝟓𝒔𝟐

+ 𝟎.𝟎𝟎𝟐𝟑𝟓𝒔+ 𝟎.𝟎𝟎𝟎𝟎𝟒 
)(𝝉𝟏𝒔+𝟏)

    (43) 

𝑪𝒖𝒚𝟏−𝟐𝟐(𝒔) =
(− 𝟓𝟎.𝟐𝟏𝟓𝟏 𝒔𝟑− 𝟏𝟐.𝟗𝟎𝟐𝟓 𝒔𝟐 − 𝟏.𝟎𝟗𝟔𝟒𝟑 𝒔 −𝟎.𝟎𝟑𝟎𝟕𝟖𝟒)𝒆−𝟓 𝒔

( 𝟏.𝟎𝟑𝟏𝟖 𝒔𝟑+ 𝟐.𝟔𝟕𝟖𝟐𝟗 𝒔𝟐+ 𝟏.𝟏𝟏𝟎𝟐𝟗 𝒔 +𝟎.𝟎𝟒𝟏𝟖𝟓𝟔 )(𝝉𝟐𝒔+𝟏)
    (44) 

 

For shifting of inverse response behaviour to 𝒚𝟏, 𝜷𝒓𝒆,𝟐 was 

determined to be 67.9539 and 𝑭(𝒔), written as 𝑭𝒖𝒚𝟐(𝒔) in 

eqn. (45), was calculated to be 

𝑭𝒖𝒚𝟐(𝒔) =
−𝒔+𝟎.𝟎𝟒𝟏𝟖𝟓𝟓𝟖 

(𝟏 −
𝟐.𝟕𝟗𝟔𝟏𝟑 𝒆−𝟓 𝒔

(𝟏𝟎.𝟐𝟑𝟏 𝒔+𝟏)(𝟏𝟒.𝟎𝟓 𝒔+𝟏)
)
                   (45) 

and this was approximated using moment matching to 

𝑭𝒂𝒑𝒑𝟐, where 

𝑭𝒂𝒑𝒑𝟐 =
− 𝟑.𝟑𝟔𝟔𝟗𝟒 𝒔𝟐 − 𝟎.𝟓𝟔𝟔𝟖𝟗𝟗 𝒔 −𝟎.𝟎𝟐𝟑𝟑𝟎𝟑𝟒

 𝟏.𝟎𝟑𝟏𝟖 𝒔𝟐 + 𝟐.𝟔𝟑𝟓𝟏 𝒔 +𝟏
                 (46) 

 

After appropriate substitutions, the eventual controller 

achieving shifting of inverse response behaviour and 

interactions to 𝒚𝟏 calculated as 

𝑪𝒖𝒏𝒓_𝒑𝒆𝒓𝒇𝒚𝟐(𝒔) = [
𝑪𝒖𝒚𝟐−𝟏𝟏(𝒔) 𝑪𝒖𝒚𝟐−𝟏𝟐(𝒔)

𝑪𝒖𝒚𝟐−𝟐𝟏(𝒔) 𝑪𝒖𝒚𝟐−𝟐𝟐(𝒔)
]  (47) 

where 

𝑪𝒖𝒚𝟐−𝟏𝟏(𝒔) =
(− 𝟐𝟔.𝟓𝟐 𝒔𝟑−𝟖.𝟓𝟎𝟑𝒔𝟐−𝟎.𝟖𝟔𝟑𝒔−𝟎.𝟎𝟐𝟖)𝒆−𝟓 𝒔

(𝟏.𝟎𝟑𝟏𝟖 𝒔𝟑 + 𝟐.𝟔𝟕𝟖𝟐𝟗 𝒔𝟐+ 𝟏.𝟏𝟏𝟎𝟐𝟗 𝒔+𝟎.𝟎𝟒𝟏𝟖𝟓𝟓𝟖)(𝝉𝟏𝒔+𝟏)
   (48) 

𝑪𝒖𝒚𝟐−𝟏𝟐(𝒔) =

(𝟏𝟗.𝟎𝟏𝟎𝟓 𝒔
𝟔+ 𝟐𝟐.𝟕𝟖 𝒔𝟓 + 𝟖.𝟎𝟐 𝒔𝟒+ 𝟏.𝟐𝟖𝟓𝟓 𝒔𝟑+ 𝟎.𝟏𝟎𝟓 𝒔𝟐

 + 𝟎.𝟎𝟎𝟒𝟐𝟓𝒔+ 𝟎.𝟎𝟎𝟎𝟎𝟔𝟖
)𝒆−𝟐.𝟖𝟑𝒔

(𝟏.𝟎𝟑𝟏𝟖 𝒔
𝟔 + 𝟑.𝟎𝟐𝟕𝟓𝟖 𝒔𝟓+ 𝟐.𝟎𝟓𝟓𝒔𝟒 + 𝟎.𝟓𝟏𝟖𝒔𝟑+ 𝟎.𝟎𝟓𝟖𝟖𝒔𝟐

+ 𝟎.𝟎𝟎𝟑𝒔+ 𝟎.𝟎𝟎𝟎𝟎𝟓𝟓
)(𝝉𝟐𝒔+𝟏)

   (49) 

𝑪𝒖𝒚𝟐−𝟐𝟏(𝒔) =
(𝟒𝟒.𝟒𝟗𝟖𝟑 𝒔𝟑+ 𝟏𝟒.𝟐𝟔𝟓𝟐 𝒔𝟐+ 𝟏.𝟒𝟒𝟖𝟑𝟔 𝒔 + 𝟎.𝟎𝟒𝟔𝟖𝟕𝟕𝟏 )𝒆−𝟖 𝒔

(𝟏𝟒.𝟒𝟗𝟔𝟕 𝒔𝟒 + 𝟑𝟖.𝟔𝟔𝟏𝟖 𝒔𝟑+ 𝟏𝟖.𝟐𝟕𝟕𝟗 𝒔𝟐+ 𝟏.𝟔𝟗𝟖𝟑𝟕 𝒔 + 𝟎.𝟎𝟒𝟏𝟖𝟓𝟓𝟖)(𝝉𝟏𝒔+𝟏)
  

                    (50) 

𝑪𝒖𝒚𝟐−𝟐𝟐(𝒔) =

(− 𝟎.𝟏𝟗𝟐𝟏𝟎𝟑 𝒔𝟔 − 𝟎.𝟐𝟗𝟒𝟕𝟒 𝒔𝟓 − 𝟎.𝟒𝟏𝟔𝟕𝟎𝟖 𝒔𝟒− 𝟎.𝟏𝟒𝟑𝟒𝟓𝟐 𝒔𝟑

− 𝟎.𝟎𝟐𝟎𝟏𝟔𝟏𝟒 𝒔𝟐− 𝟎.𝟎𝟎𝟏𝟐𝟔𝟔𝟑 𝒔−𝟎.𝟎𝟎𝟎𝟎𝟐𝟗𝟓𝟑𝟖𝟒
)𝒆−𝟔.𝟕𝟗𝒔

(𝟏.𝟎𝟑𝒔
𝟔+ 𝟑𝒔𝟓 + 𝟏.𝟗𝟖 𝒔𝟒+ 𝟎.𝟒𝟕𝟏𝒔𝟑+ 𝟎.𝟎𝟓𝒔𝟐 
+ 𝟎.𝟎𝟎𝟐𝟑𝟓𝒔+ 𝟎.𝟎𝟎𝟎𝟎𝟒𝟎𝟏𝟔𝟐𝟒

)(𝝉𝟐𝒔+𝟏)
   (51) 

With tuning parameters set as 𝝉𝟏 = 𝟑𝟏, 𝝉𝟐 = 𝟑𝟏, the two 

controllers are reduced using moment matching to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑪𝒓_𝒑𝒆𝒓𝒇𝒚𝟏 =

[

(𝟗.𝟏𝟓𝟒𝟔𝟐 𝒔𝟐−𝟖.𝟐𝟑𝟐𝟔𝟖 𝒔−𝟎.𝟔𝟔𝟕𝟓𝟕)𝒆−𝟑.𝟏𝟑𝒔

𝟕𝟐𝟖.𝟎𝟕 𝒔𝟐+𝟓𝟒.𝟓𝟐𝟗𝟕 𝒔+𝟏

(𝟏𝟑𝟖.𝟐𝟖𝟐 𝒔𝟐 +𝟑𝟖.𝟏𝟒𝟓 𝒔+𝟏.𝟐𝟐𝟓𝟕𝟗)𝒆−𝟕𝒔

𝟏𝟎𝟐𝟑.𝟗𝟔 𝒔𝟐+𝟔𝟑.𝟐𝟓𝟗𝟐 𝒔+𝟏

(𝟐𝟕𝟑.𝟏𝟔𝟗 𝒔𝟐+𝟑𝟖.𝟓𝟎𝟓𝟕 𝒔+𝟏.𝟏𝟏𝟗𝟗𝟕)𝒆−𝟐.𝟎𝟗𝒔

𝟔𝟑𝟐.𝟎𝟓𝟕 𝒔𝟐+𝟓𝟏.𝟎𝟐𝟐𝟗 𝒔+𝟏

(−𝟏𝟒𝟗.𝟒𝟓𝟐 𝒔𝟐−𝟏𝟓.𝟗𝟕 𝒔−𝟎.𝟕𝟑𝟓𝟒𝟖)𝒆−𝟓𝒔

𝟑𝟔𝟓.𝟕𝟗𝟓 𝒔𝟐+𝟒𝟑.𝟔𝟐𝟒𝟒 𝒔+𝟏

]   

   (52) 
𝑪𝒓_𝒑𝒆𝒓𝒇𝒚𝟐 =

[

(−𝟏𝟐𝟔.𝟎𝟏𝟒 𝒔𝟐−𝟏𝟓.𝟎𝟑𝟏 𝒔−𝟎.𝟔𝟔𝟕𝟓𝟕𝟏)𝒆−𝟓𝒔

𝟓𝟒𝟕.𝟓𝟖𝟓 𝒔𝟐+𝟒𝟗.𝟏𝟒𝟓𝟔 𝒔+𝟏

(𝟑𝟖𝟓𝟒.𝟐𝟑 𝒔𝟐 +𝟒𝟎𝟒.𝟖𝟎𝟔 𝒔+𝟏.𝟐𝟐𝟔)𝒆−𝟐.𝟖𝟑𝒔

𝟏𝟎𝟒𝟐𝟔.𝟖 𝒔𝟐+𝟑𝟓𝟐.𝟗𝟔𝟖 𝒔+𝟏

(𝟐𝟔.𝟔𝟑𝟒𝟏 𝒔𝟐+𝟏𝟔.𝟗𝟕𝟎𝟓 𝒔+𝟏.𝟏𝟏𝟗𝟗𝟕)𝒆−𝟖𝒔

𝟕𝟕𝟑.𝟓𝟔𝟐 𝒔𝟐+𝟓𝟓.𝟖𝟑𝟐𝟒 𝒔+𝟏

(𝟗.𝟏𝟓𝟖𝟐 𝒔𝟐−𝟓.𝟗𝟑𝟓𝟑𝟏 𝒔−𝟎.𝟕𝟑𝟓𝟓)𝒆−𝟔.𝟕𝟗𝒔

𝟕𝟑𝟏.𝟓𝟖𝟔 𝒔𝟐+𝟓𝟒.𝟔𝟑𝟕𝟐 𝒔+𝟏

]   

   (53) 
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For comparison, the analytically-derived DIMC scheme 

was designed for the system using the method of Liu and 

co-workers (2006). Also, a decentralized IMC-PI scheme 

was also designed for the system using the IMC-PI tuning 

rules of Chien and Fruehauf (1990). Because of space 

economy, the details of the designs are not presented. Figure 

2 shows the comparison of the plots of the manipulated and 

controlled variables for the two unreduced triangular DIMC 

designs, the two reduced triangular DIMC designs, the 

dynamic DIMC design of Liu and co-workers, and the 

decentralized IMC-PI design on the linear NMP plant. In 

each implementation, 𝝉𝟏 = 𝟑𝟏, 𝝉𝟐 = 𝟑𝟏. Table 1 shows a 

comparison of the performance indices (output IAE, input 

TV, 𝝁𝑹𝑺 and 𝝁𝑹𝑷) and presentation of advantages and 

disadvantages of the decentralized, dynamic decoupling 

IMC and triangular decoupling IMC implementations. As 

seen in the plots, the unreduced triangular decoupling IMC 

methods successfully transfer inverse response behaviour 

and interactions to the least desired output while still 

achieving output IAE and input TV values that compare 

favourably with those obtained using the dynamic DIMC 

technique of Liu and co-workers (2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Triangular DIMC method, as explained in Table 1, has 

the advantage of absence of bandwidth restrictions imposed 

by NMP behaviour on the system for all but one of the 

outputs of the system, an advantage that is valuable in 

multivariable situations where some outputs are preferred to 

others (for example, the Sugar Mill situation of Goodwin et 

al. (2000)). Also, this advantage becomes more pronounced 

as the number of outputs of the system increases. The output 

IAE value of the unreduced controllers achieving perfect 𝒚𝟏 

is lower than that of dynamic DIMC of Liu and co-workers, 

while the input TV values for both unreduced controllers 

achieving triangular decoupling are lower than those of Liu 

and co-workers. The reduced triangular DIMC controllers 

have marginally worse values of output IAE and input TV 

than the unreduced ones because of the marginal 

imperfections occasioned by the reductions. The 

decentralized IMC-PI controllers performed marginally 

below the other controllers because of the interactions that 

are not catered for, but has the simplest structure of all the 

6 control systems. All designs satisfied the conditions for 

the existence of robust stability and robust performance. 

 

 
Figure 2: Plant Output and Input Responses of Triangular DIMC, Dynamic DIMC and Decentralized IMC-PI 

Schemes on NMP QTPwDTs. Step Commands are of Sizes 5cm each, introduced at 0s and 1000s respectively 

 

Table 1: Comparison of Performance Indices, on One Hand, and Advantages and Disadvantages, on the Other 

Hand, of the Triangular DIMC Methods with Dynamic DIMC and Decentralized IMC-PI Methods 
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8. Conclusions 

In this study, a modification to the traditional dynamic 

decoupling internal model control scheme has been 

proposed to achieve triangular decoupling. The study 

formulated the desired closed-loop transfer function matrix 

and the corresponding centralized IMC controller that both 

achieve the shifting of interaction and inverse-response 

behaviours to each of the two outputs, while ensuring that 

the other output is without interaction behaviour and 

without inverse response behaviour. The formulation is 

implemented on the NMP Quadruple-Tank Process of 

Shneidermann and Palmor (2010) and shown to achieve the 

set objectives, as shown in Figure 2. 

As shown in Table 1, triangular DIMC is capable of 

yielding better output IAE and input TV values than the 

dynamic DIMC implementations of Liu and co-workers for 

square stable TITO systems with delays and RHP zeros, 

while also ensuring that bandwidth limitations due to NMP 

behaviour are restricted to a single output as opposed to the 

dynamic DIMC case where bandwidth limitations due to 

NMP behaviour affect both outputs. The extensions of the 

techniques of Frank (1974), on one hand, and Inner-Outer 

Factorization of Morari and Zafiriou (1989) to square 

multivariable systems with delays promise to achieve more 

optimal outcomes than the triangular decoupling IMC 

schemes in this paper and are therefore worth pursuing. 
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