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Abstract: Fast Model Predictive Control (Fast MPC) is a set of techniques which aim at
reducing the complexity of solving receding horizon control optimization problems. One method
consists in exploiting the structure induced by the system dynamics. This drastically reduces
the complexity of the problem from cubic to linear dependence on the horizon length. Such
approach is possible for the multi-stage MPC formulation which is characterized by having
an almost separable structure, i.e. coupling occurs only between consecutive stages. This
paper proposes a novel technique that efficiently solves general linear-quadratic optimal control
problems and hence does not require a multi-stage formulation. The method also provides other
advantages including: higher solution accuracy, warm starting, and approximate solutions by
early termination. This is achieved by embedding the Riccati recursion in a Projected Conjugate
Gradient (PCG) method.
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1. INTRODUCTION

Many nonlinear optimization algorithms reduce the origi-
nal problem to a sequence of equality constrained quadratic
programs. The solution of these problems can thus be re-
garded as the fundamental step of these algorithms. Since
often this is also the most computationally demanding
step, it is paramount to provide an efficient solution to it.
Over the years both active set and interior point methods
emerged as the standard choice to solve optimization prob-
lems arising in MPC (Borrelli, 2003). In these methods the
resulting base step is the minimization of a quadratic cost
function subject to the dynamics of the system. An effi-
cient solution can be found when the cost function is sepa-
rable across the stages, and hence the only coupling occurs
in the system dynamics. To ensure this structure, the MPC
problem should be formulated as multi-stage finite horizon
optimal control problem (Domahidi et al., 2012). Problems
with rate constraints or rate penalty weights can be readily
recast into this form by conveniently introducing integra-
tor dynamics. The resulting base problem is known as
the extended linear-quadratic control problem (Jørgensen
et al., 2012) and several efficient solutions have been
proposed in the literature (Frison and Jørgensen, 2013b).
These can be classified into three groups: i) state vari-
able elimination, ii) Sparse Schur complement (Wang and
Boyd, 2009; Domahidi et al., 2012), and iii) Riccati recur-
sion (Rao et al., 1998; Frison and Jørgensen, 2013a). In the
first category the problem is reformulated to include only
the system input as optimization variables. This results in
a dense problem with fewer variables but cubic complexity
on the horizon length. The latter two categories use both

state and input as decision variables, however, they differ
in how the optimality conditions are handled. In ii) primal
and dual optimality conditions are separately grouped and
the Schur complement method is then applied to obtain a
block-tridiagonal system. In iii) the variables are reordered
to get a particular banded structure which can be solved
using the Riccati recursion. In both cases the complexity
is reduced to be linear in the horizon length. There exists
also a mixed approach (Axehill and Morari, 2012) which
exploits the structure in the dense formulation and results
in a quadratic complexity.

However, these efficient methods can only be employed
under a multi-stage separable structure assumption. There
are many applications whose requirements impair this
structure and induce coupling among different stages other
than the system dynamics. Requirements such as rate con-
straints, minimum rise time, or trajectory monotonicity
are all practical examples where the multi-stage formula-
tion cannot be enforced. A survey of these constraints can
be found in (Camacho and Bordons Alba, 2007, chap. 7).
In some cases, as already mentioned, it is possible to
augment the state of the system by adding additional in-
tegrator dynamics in order to transform consecutive stage
constraints into simple stage constraints (Rawlings and
Mayne, 2009, sec. 1.2.5). The drawback of this approach
is a larger number of decision variables which increases
linearly with the horizon length. Furthermore, constraints
that couple all stages together cannot be practically han-
dled with this approach. A simple example is to relax
a stage constraint on some input or state variable and
considering instead a constraint on its average value over
the horizon length.
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This paper proposes a new efficient approach for dense
convex quadratic cost functions subject to the system
dynamics. The proposed method is based on the Projected
Gradient Method (Coleman, 1994; Gould et al., 2001).
It will be shown that, under a suitable structured pre-
conditioning, the projection step can be efficiently solved
with the Riccati recursion or any other of the above
mentioned techniques. For multi-stage formulations the
proposed method can also be used to improve the accuracy
of the solution or to provide an approximate solution by
early termination. Finally this approach can take advan-
tage from the fact that a sequence of similar problems
needs to be solved and warm starting can be used.

The reminder of this paper is organized as follows. Sec-
tion 2 gives an introduction on the problem formulation,
including the multi-stage MPC and its efficient solution via
the Riccati recursion. The multi-stage assumption is then
removed in Section 3 where the proposed method for the
solution of a general linear-quadratic control problem is
described. Finally, simulation results are given in Section 4
and conclusions are drawn in Section 5.

2. PRELIMINARIES

2.1 Problem Formulation

Consider the following control optimization problem

min

N−1∑
k=0

lk(xk, uk) + lN (xN ) (1a)

s.t. xk+1 = Akxk +Bkuk, x0 = x̄ (1b)

γk(xk, uk) ≤ 0, γN (xN ) ≤ 0 (1c)

where xk ∈ Rn and uk ∈ Rm are the optimization variables
at stage k = 0 . . . N over the prediction horizon N . As
usual the variables represent the state and input of the
discrete time-varying linear system in (1b). The current
state of the system x̄ is assumed to be known either
through measurement or observation.

The cost function and the inequality constraint at stage
k = 0 . . . N − 1 are

lk(xk, uk) =
1

2

[
xk
uk

]>[
Qk S

>
k

Sk Rk

] [
xk
uk

]
+

[
qk
rk

]>[
xk
uk

]
(2a)

γk(xk, uk) =

{
xk ∈ Rn
uk ∈ Rm :

[
Gxk
Guk

]>[
xk
uk

]
≤ gk

}
, (2b)

and at the terminal stage

lN (xN ) =
1

2
x>NQN xN + q>NxN (3a)

γN (xN ) = {xN ∈ Rn : GxNxN ≤ gxN} . (3b)

It is assumed that the functions lk for k = 0 . . . N are
strictly convex. This assumption is actually stronger than
what required for existence of the solution but it allows
faster computations.

The optimization problem here described is a typical
multi-stage linear MPC instance and it can be solved
with several optimization algorithms. As mentioned in
the introduction, the solution process typically reduces
to a sequence of highly structured quadratic programs
with equality constraints. In conformity with Frison and
Jørgensen (2013b) this special problem is called Extended

Linear-Quadratic Control Problem. Such step will be also
referred to as inner optimization to distinguish it from the
original problem which is referred to as outer optimization.

The problem is stated in the following form 1

min

N−1∑
k=0

l̃k(xk, uk) + l̃N (xN ) (4a)

s.t. xk+1 = Akxk +Bkuk + x̄k+1, x0 = x̄0 (4b)

where the stage and terminal cost are quadratic forms with
similar structure as the original ones. The new data in the
cost function is obtained according to the algorithm being
used. For instance the affine step in interior point methods
produces the following new stage data at each iteration[

Q̃k S̃
>
k

S̃k R̃k

]
=

[
Qk S

>
k

Sk Rk

]
+

[
Gxk
Guk

]
∆k

[
Gxk
Guk

]>
(5)[

q̃k
r̃k

]
=

[
q̄k
r̄k

]
−
[
Gxk
Guk

]
∆k ḡk . (6)

The vectors x̄k, q̄k, r̄k, ḡk are the current iteration residuals
and the diagonal matrix ∆k is constructed from the
Lagrange multipliers and the slack variables associated
with the corresponding inequality. A similar definition
holds for the new terminal cost l̃N .

2.2 Optimality Conditions and Riccati Recursion

The efficient solution of the inner optimization problem
involves exploiting the multi-stage structure in both the
cost function and the dynamic constraint. As mentioned
this could be done in several ways, however, numerical
experience indicates the Riccati recursion to be the best
choice for the present framework. Since it serves as basis
for the proposed algorithm, in what follows this approach
is briefly reviewed. For a detailed discussion see Rao et al.
(1998) and the references therein.

The Riccati recursion can be obtained either by using
dynamic programming or by imposing the optimality
conditions for the whole problem. Here the latter approach
is presented. The dynamic constraint in problem (4) is
relaxed by introducing for each stage a Lagrange multiplier
λk and forming then the Lagrangian function

L =

N−1∑
k=0

l̃k(xk, uk) + λ>k+1(Akxk +Bkuk + x̄k+1 − xk+1) +

+ λ>0(x̄0 − x0) + l̃N (xN ).

The solution of problem (4) is retrieved by imposing
the first-order optimality condition ∇L = 0 for each
optimization variable. This leads to

−x0 = −x̄0
...

−λk + Q̃kxk + S̃>k uk +A>kλk+1 = −q̃k (7a)

S̃kxk + R̃kuk +B>k λk+1 = −r̃k (7b)

Akxk +Bkuk − xk+1 = −x̄k+1 (7c)

...

−λN + Q̃NxN = −q̃N .
1 Many algorithms actually seek optimal directions δxk and δuk
in the inner optimization. To avoid cluttering the notation the same
optimization variables xk and uk as in the original problem are used.
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Note that the resulting linear system of equations has a
special block structure

. . . −I
−I Q̃k S̃>k A>k

S̃k R̃>k B>k
Ak Bk 0 −I

−I
. . .





...
λk
xk
uk
λk+1

xk+1

...


= −



...
x̄k
q̃k
r̃k
x̄k+1

q̃k+1

...


. (8)

It can be shown that it holds in general for stage k

λk = Pkxk + pk (9a)

uk = Fkxk + fk (9b)

xk+1 = Axk +Buk + x̄k+1. (9c)

Equation (9c) is simply the dynamics of the system. Note
that, at the last stage, equation (9a) is readily verified
by imposing PN = QN and pN = qn. Assume now that at
stage k+1 it holds λk+1 = Pk+1xk+1+pk+1. By eliminating
the state xk+1 using (7c)

λk+1 = Pk+1xk+1 + pk+1

= Pk+1Akxk + Pk+1Bkuk + Pk+1x̄k+1 + pk+1

and substituting the result in (7a) and (7b), one obtains

−λk + Q̌kxk + Š>k uk = −q̌k (10a)

Škxk + Řkuk = −řk (10b)

with

Q̌k = Q̃k +A>kPk+1Ak
Šk = S̃k +B>k Pk+1Ak
Řk = R̃k +B>k Pk+1Bk

p̌k+1 = pk+1 + Pk+1x̄k+1

q̌k = q̃k +A>k p̌k+1

řk = r̃k +B>k p̌k+1.

The affine state feedback law (9b) is then obtained
from (10b) by left-multiplying by R−1k and setting

Fk = −Ř−1k Šk fk = −Ř−1k řk.

On the other hand, the multiplier λk in (9a) is recovered
from (10a) by using the new expression for uk and setting

Pk = Q̌k + Š>k Fk pk = q̌k + Š>k fk.

The problem solution is finally obtained by starting from
x0 = x̄0 and alternatively computing uk and xk+1 us-
ing (9b) and (9c). In the process, λk can also be computed
with (9a) if required. In some optimization algorithms, for
instance in Predictor-Corrector Interior Point methods, it
might be necessary to find several solutions to (9) where
only the right hand side differs. Therefore it might be
reasonable to reorganize the recursion scheme in two steps.
During the first, matrices Pk and Fk are computed by
backward recursion. The solution is retrieved in the second
step by performing a backward recursion to find pk and fk
followed by a forward recursion to find xk, uk and possibly
λk. These are summarized in the following implementation
scheme which exploits the symmetry of the problem.

1: Factorization Step

init: PN = Qn,

/* backward */
for k = N − 1 . . . 0
V = chol(Pk+1)
Vx = V Ak
Vu = V Bk
Q = Q̃k + V >x Vx
S = S̃k + V >x Vu
R = R̃k + V >u Vu
Uk = chol(R)
F̌ = solve(U>k , Sk)
Pk = Q̌k − F̌>F̌
Fk = solve(Uk,−F̌ )

end

2: Solve Step

init: pN = qn

/* backward */
for k = N − 1 . . . 0
v = Pk+1x̄k+1 + pk+1

q = q̃k +A>k v

r = r̃k +B>k v

pk = qk + F>k r
f = solve(U>k , řk)
fk = solve(Uk,−f)

end

/* forward */
init: x0 = x̄0
for k = 1 . . . N − 1
λk = Pkxk + pk
uk = Fkxk + fk
xk+1 =Akxk+Bkuk+x̄k+1

end
λN = PNxN + pN

Note that only variables with iteration index k as subscript
are actually stored. For a positive definite matrix X � 0,
the notation Z = chol(X) stands for an upper Cholesky
factorization step which yields X = Z>Z with Z upper
triangular. For matrices X and Y , the notation Z =
solve(X,Y ) stands for a linear solve step which yields Z
satisfying the equation XZ = Y . The latter notation also
holds when the right hand side matrix Y is replaced by the
vector y. For a more efficient implementation the reader is
refered to Frison and Jørgensen (2013a).

The solution obtained through these steps is highly effi-
cient and depends only linearly on the horizon N . However
this algorithm is based on the fundamental assumption
that there is only a single dependence between consecutive
stages (due to the dynamics). If this assumption is removed
then the special block structure in (8) is lost.

3. EFFICIENT PROJECTED CONJUGATE
GRADIENT METHOD

In this section, an efficient algorithm scheme is proposed
which does not require the multi-stage structure in (4).
Here the General Linear-Quadratic Control Problem is
proposed

min
1

2
z>Hz + c>z

s.t. Az = b
(11)

with possibly dense Hessian H � 0. The decision variable
is composed of each stage variable

z>= [x>0 , u
>
0 , . . . , x

>
N−1, u

>
N−1, x>N ] ∈ Rl

and the dynamics of the system is recast in matrix form

A =


−I 0
A0 B0 −I 0
0 0 A1 B1 −I 0
...

...
...

. . .
. . .

. . .
. . .

0 0 0 0 0 0 AN−1 BN−1 −I

, b = −


x̄0
x̄1
x̄2
...
x̄N

.
It is remarked that no assumption is made on the cost
function structure.
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To solve problem (11), a tailored projected conjugate
gradient method (PCG) is employed

Projected Conjugate Gradient Method 2

input z(0) s.t. Az(0) = b

init ρ(0) = −(Hz(0) + c)

for ν = 0 . . . νmax

γ(ν) = ΠA[ρ(ν)] /* projection onto null space of A */

τ (ν) = 〈ρ(ν), γ(ν)〉
if τ ≤ ε2 stop

φ(ν) =

 γ(ν) if ν = 0

γ(ν) +
τ (ν)

τ (ν−1)
ρ(ν) if ν > 0

α(ν) = τν
〈φ(ν), Hφ(ν)〉

z(ν+1) = z(ν) + α(ν)φ(ν)

ρ(ν+1) = ρ(ν) − α(ν)Hφ(ν)

end

A good introduction to the PCG method for equality
constrained quadratic programming is given in Gould et al.
(2001). The conjugate gradient method, being an indirect
method, requires several iterations before an accurate
solution can be found. This is in contrast to the direct
method used in the previous section. The idea of using
indirect methods to solve MPC problems is far from being
new, see for instance (Shahzad et al., 2010a,b). More
recently, a structure-aware indirect method for MPC has
been proposed in Malyshev et al. (2018) which exploits
the condensing method in Frison and Jørgensen (2013b).
In these references, different Krylov subspaces methods
are used as indirect solver and several preconditioners are
also suggested. The method proposed in this paper differs
from these approaches in that the projection operation
γ = ΠA[ρ] is used to induce a stage separable strucure
also in the presence of a dense Hessian H. As a result,
the projection operation can be solved efficiently under
structured preconditioners.

There are several advantages in using indirect methods: i)
higher solution accuracy can be reached, ii) it is possible
to provide an initial guess, iii) it can be stopped early to
get an approximate solution. Since this method is used
to solve a sequence of similar problems it makes sense to
use the previous optimal solution to warm start the next
computation. Approximate solution can be used within
an Inexact Interior Point method as proposed in Shahzad
et al. (2010b). The main disadvantage of indirect methods
is that they may require longer to converge, especially
when the problem is ill-conditioned. This point can be mit-
igated by using a suitable preconditioner. Several choices
are proposed and discussed later on.

In the Projected Gradient Method the search direction ρ,
which points opposite to the gradient of the cost function
Hz + c, is projected onto the null space of A by means of
the projector ΠA[·]. This ensures that if the initial guess
satisfies the equality constraint then all successive iterates

2 To avoid cluttering the notation with double superscript, the scalar
product is here denoted by 〈v, w〉 instead of v>w

lie within the affine space {z ∈ Rl : Az = b}. Note that by
construction the conjugate direction φ, which is actually
used for updating z, also satisfies Aφ = 0. In addition the
projector needs to satisfy

〈ρ, ΠA[ρ]〉 > 0 ∀ρ ∈ Rl \ {0} (12)

in order to ensure that γ = ΠA[ρ] is a descent direction.
Condition (12) basically requires that the negative gra-
dient and the search direction form an acute angle and
therefore there exists a small step in this direction which
decreases the cost function.

To be able to fully exploit the structure in the equality
constraint, the following projector is considered

γ = ΠA[ρ] : argmin
γ

1

2
γ>Mγ − ρ>γ

s.t. Aγ = 0.
(13)

The matrix M � 0 works here as a preconditioner and it
is chosen to have a block-diagonal structure with blocks

Mk =

[
Mxx
k Mux

k
>

Mux
k Muu

k

]
� 0. (14)

This leads to

argmin
γ

1

2

N∑
k=0

[
γxk
γuk

]>[
Mxx
k Mux

k
>

Mux
k Muu

k

][
γxk
γuk

]
−
[
ρxk
ρuk

]> [
γxk
γuk

]
s.t. γxk+1 = Akγ

x
k +Bkγ

u
k γx0 = 0

(15)
with the partitions

ρ>=
[
ρx0
>, ρu0

>, ρx1
>, ρu1

>, · · · , ρxN−1>, ρuN−1>, ρxN>
]

γ>=
[
γx0
>, γu0

>, γx1
>, γu1

>, · · · , γxN−1>, γuN−1>, γxN>
]
.

The chosen projection problem has essentially the same
structure as the problem in the previous section and there-
fore the same efficient Riccati recursion can be employed.
Note that (12) is satisfied for any choice of M � 0. To see
this, assume γ? is the optimal solution to the projection
problem and λ? its associated Lagrange multiplier. The
solution pair satisfies the first order optimality condition[

M A>

A 0

] [
γ?

λ?

]
=

[
ρ
0

]
.

Therefore ρ = Mγ? +A>λ? and

〈γ?, ρ〉 = 〈γ?, Mγ?〉+ 〈γ?, A>λ?〉
= 〈γ?, Mγ?〉+ 〈Aγ?, λ?〉
= 〈γ?, Mγ?〉 > 0

where feasibility of the solution Aγ? = 0 was used. Note
also that a less strict condition for (12) only requires M
to be positive definite on the null space of A. However,
as mentioned, condition (14) brings some computational
advantage. An important property of solving the projec-
tion problem using the Riccati recursion is that Aγ? = 0 is
delivered with a very high accuracy thanks to the forward
solution step. Therefore the proposed algorithm is not
affected by the problem arising in Gould et al. (2001)
where several projection steps per iteration are required
to reduce the residual to an acceptable level.

Regarding the implementation scheme, since the precon-
ditioner Mk does not change throughout the iterations of
PCG, it suffices to factor the matrices only once at the first
iteration. Afterwards, only solution steps with different
right hand sides are computed. It is also remarked that
the equality constraint equation for the preconditioner has
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no right hand side. This leads to further simplify some
operations during the solve step of the Riccati recursion.

Now let (z~, λ~) be the optimal solution pair to prob-
lem (11). It can be shown that the Lagrange multiplier λ?

for the projection problem converges to λ~ independently
from which M is chosen. This follows directly from the
projection optimality condition

Mγ? +A>λ? = ρ

and the fact that γ? → 0 and ρ→ −(Hz~ + c). Therefore
computation of λ? in the forward Riccati recursion is not
required at each iteration step of PCG but only when
the method converges. This reduces further the number
of required operations.

In summary the proposed method combines the efficiency
of the solution obtained by direct methods with the ad-
vantages that indirect methods bring. Furthermore the
structure of the system dynamics can be exploited also in
the case of a general positive definite Hessian H. However
the effectiveness of the method still depends on the prob-
lem conditioning. For instance this is particularly critical
during the last iterations of Interior Point Methods, where
some of the elements of ∆k goes to zero while other grows
to infinity. In this case preconditioning can drastically
decrease the number of iterations required for convergence.

3.1 Preconditioning

In this section three standard preconditioning techniques
are initially presented. First consider the simple choice
M = I. This has the advantage that the factorization step
can be calculated offline since it only involves matrices Ak
and Bk. Overall this choice is rather effective when the
problem is well-conditioned. However an accurate solution
may still require many iterations. The second choice is to
select M as the diagonal of H. In this case the factorization
should be run each time H changes, for instance at the
beginning of each interior point iteration. This choice
leads to a better behaviour of the proposed method but
requires some additional computations. Finally the best
performance is obtained by selecting M to be the block-
diagonal of H ignoring any stage coupling. When the
latter is block-diagonal then PCG can be terminated
at the first iteration since this is exactly the solution
obtained using the standard Riccati recursion. If required,
a better solution can be obtained by additional iterations.
This is particularly useful for ill-conditioned problems. If
H is a dense matrix then the approximation provided
by the block-diagonal still leads to an effective solution
with PCG. Note that in this case the standard Riccati
recursion cannot be used. Before concluding this section,
another special class of preconditioners is introduced. The
following block-diagonal structure is considered

Mk =

[
0 0
0 Muu

k

]
with Muu

k � 0. The advantage in using this type of
preconditioners is that no factorization step is required
at all. This can be seen from the optimality conditons (7)
adapted to this special preconditioner problem.

Backward Forward

λN = ρxN γx0 = 0

λk = A>kλk+1 + ρxk γuk = (Muu
k )−1(B>k λk + ρuk)

γxk+1 = Akγ
x
k +Bkγ

u
k

It is evident that this algorithm results in a consider-
ably reduced amount of matrix operations. Regarding the
choice of Muu

k , both I and R̃k have been tested. Although
computationally appealing, in practice these precondition-
ers appear to be advantageous only for single input sys-
tems. A deeper investigation will be carried out in future
work.

4. SIMULATION

The proposed algorithm is run on the following test system
with n = m

x1,k+1 = −2x1,k + u1,k

x2,k+1 = −2x2,k + x1,k + u2,k
...

...

xi,k+1 = −2xi,k + xi−1,k + ui,k
...

...

xn,k+1 = −2xn,k + xn−1,k + un,k

where xi,k ∈ R and ui,k ∈ R are the i-th state and input
at time step k. The initial condition is xi,0 = 1 for all
states and the cost function for the MPC formulation is
parametrized by

Sk = In Qk = 5In Rk = 10In QN = 100In,

where In is the n-dimensional identity matrix. Box con-
straints are considered on the state and input variables as
stage inequalities

−5 ≤ xi,k ≤ 5 − 10 ≤ ui,k ≤ 10.

So far the problem presents the multi-stage formulation.
The structure is however compromised by introducing for
instance a dynamic inequality constraint. For the test
configuration the following constraint is introduced

−2 ≤ 1

N + 1

N∑
k=0

xi,k ≤ 2 i = 1 . . . n (16)

which limits the average value over the horizon of each
state variable xi. Note that this constraint couples all
stages together.

In what follows, z is the problem optimization variable
constructed as in Section 3. The full problem Hessian
1
2z
>Hz is constructed from stage matrices Qk, Sk and Rk

and all inequality constraints are stacked in G>z ≤ g,
including the complicating constraint (16). To keep the
analysis simple and possibly consider many different cases,
the proposed PCG method is embedded in a random
instance of the Interior Point method. Accordingly, the
Hessian is modified by H̄ = H + G∆G> [cf. (5) (6)]
where the diagonal matrix ∆ is constructed by randomly
selecting its elements. In order to favour possibly ill-
conditioned problems, the values are chosen with a very
large variance. As stopping criterion for the PCG method
the residual

√
ρ>γ is checked. Due to rounding errors

at later iterations, it is possible that ρ>γ < 0. If that
happens, the method is also stopped. A summary of the
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n N res iter [ms]

dense schur 10 50 3.44×10−14 1 52.92
PCG M = I 10 50 1.11×10−13 20 146.71
PCG M = H̄1 10 50 2.75×10−14 16 118.48
PCG M = H̄2 10 50 4.48×10−14 18 129.73

dense schur 10 100 3.43×10−14 1 285.12
PCG M = I 10 100 2.09×10−13 34 658.62
PCG M = H̄1 10 100 1.19×10−13 19 364.28
PCG M = H̄2 10 100 4.48×10−14 14 276.20

dense schur 10 150 2.69×10−14 1 821.58
PCG M = I 10 150 4.25×10−12 23 681.04
PCG M = H̄1 10 150 8.05×10−14 20 593.31
PCG M = H̄2 10 150 3.66×10−14 13 381.52

dense schur 30 50 5.03×10−14 1 885.25
PCG M = I 30 50 1.04×10−13 24 384.18
PCG M = H̄1 30 50 6.02×10−14 19 314.44
PCG M = H̄2 30 50 5.35×10−14 14 254.32

dense schur 50 50 6.16×10−14 1 3097.16
PCG M = I 50 50 1.53×10−13 25 708.18
PCG M = H̄1 50 50 9.07×10−14 15 427.53
PCG M = H̄2 50 50 7.30×10−14 14 395.03

Table 1. Simulation results
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Fig. 1. Number of PCG iterations across outer IPM
iterations until convergence

obtained results is reported in Table I. Here H̄1 and
H̄2 are the diagonal and block-diagonal approximation
of H̄ respectively. It is noted that the PCG algorithm
is implemented in MATLAB and therefore computation
times are subject to function call overhead, dimension
checking and unoptimized loops. In contrast, the dense
Schur complement solution uses the internal optimized
factorization and solve functions. So it is expected that
computation times for PCG will be much lower with a low-
level implementation. Anyway it is clear from Table 1 that
using the structure in the preconditioners leads to a great
advantage over the dense solution. Finally in Figure 1 it
is shown for a simple case N = 10 and n = m = 10 the
entire run of a real (not randomly generated) interior point
method until the solution is found. The preconditioner
used is M = I which shows that it is quite effective in
practice and does not require online factorization.

5. CONCLUSION

In the present paper a general linear-quadratic control
problem is studied and an efficient solution has been
proposed. These problems arise in many applications due
to coupling between the stages induced by dynamic con-
straints and weights. For this class of problems the efficient
Riccati recursion cannot be directly used since it needs a
multi-stage structure in the cost function. In this paper it
has been shown how to extend the Riccati recursion for
these general problems by taking advantage of a struc-
tured projection step in the projected conjugate gradient

method. The method has shown promising results and
a deeper computational study with a low-level algorithm
implementation will be conducted as future work.
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