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Abstract: We study the problem of self-coordination of a network of dynamical systems toward
a common state, which has a wide range of applications, such as studying the emergence of
collective behaviors in social, economical, and biological groups. Most of the literature on this
topic focuses on static networks, challenging our mathematical understanding of coordination
in temporal networks. Here, we expand the state of the art by studying consensus problems
over temporal networks, modeled as activity driven networks. Such a modeling framework
allows to include heterogeneity in the network, whereby some nodes are more involved in the
process of information sharing than others. Through stochastic stability theory and eigenvalue
perturbation techniques, we analyze the French-DeGroot consensus protocol over activity driven
networks. We derive closed-form expressions for the expected consensus state and the rate of
convergence in a mean-square sense, which points at a detrimental effect of moderate levels of
heterogeneity for large-scale networks. Finally, we discuss the scenario in which there is a set
of leaders that aim at steering the whole network to their state. Here, we demonstrate that
heterogeneity may be beneficial to their objective. Simulations are conducted to support and
illustrate our analytical findings.
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1. INTRODUCTION

The consensus problem consists of a network of dynamical
systems that coordinate toward a common state, executing
a distributed algorithm. In view of its broad range of
applications, encompassing opinion formation, distributed
estimation, and multi-vehicle coordination, the consensus
problem has received wide attention in the last decades;
see, for instance, Ren and Beard (2008), Olfati-Saber et al.
(2007), and Cao et al. (2013). However, most of the lit-
erature focuses on static networks, challenging our under-
standing of the emergence of coordination phenomena over
networks of interactions that are inherently time-varying,
such as those that characterizes most complex systems.
Results on consensus problem on time-varying topologies
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have been investigated, for instance, in Olfati-Saber and
Murray (2004) and Ren and Beard (2005).

Here, we expand the literature by studying the discrete-
time consensus problem over time-varying, stochastic net-
works, modeled through activity driven networks (ADNs).
In the framework of ADNs, introduced in Perra et al.
(2012), each node is characterized by a fixed parameter,
called activity potential, which encapsulates the node’s
propensity to communicate with its peers, thereby ex-
changing information with them. Briefly, the activity po-
tential measures the probability that a node is activated
in a time unit. Activated nodes generate a fixed number
of ephemeral interactions, consistently with numerosity-
constraints often observed in real-world complex net-
works (Dunbar, 1992; Tegeder and Krause, 1995). The
distribution of the activity potentials across nodes mod-
els heterogeneity in individuals’ behavior. ADNs are a
powerful tool to study dynamical systems over complex
networks. In fact, i) they allow for representing networks
with a desired level of heterogeneity in the nodes’ propen-
sity to generate connections, in contrast with existing
models of time-varying, stochastic networks (Abaid and
Porfiri, 2011), and ii) they beget mathematical models
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that are analytically tractable and amenable to fast simu-
lations (Perra et al., 2012).

Some preliminary endeavors toward a mathematical treat-
ment of consensus problems over ADNs can be found
in Buscarino et al. (2018) and in Ogura et al. (2018).
Therein, results are mostly based on numerical simulations
and on the assumption of a time-scale separation between
the evolution of the network and the nodes’ dynamics.
Here, we build on these first endeavors toward a rigorous
treatment of consensus over ADNs by leveraging stochastic
stability theory and eigenvalue perturbation techniques.
Through the derivation of a closed-form expression for
the rate of convergence to consensus, we unveil the role
of heterogeneity in the emergence of collective behaviors.
Specifically, we prove that its effect is always detrimental
for large-scale systems. Then, the explicit characterization
of the expected consensus state allows to understand how
nodes contribute to the collective behavior depending on
their activity, pointing out that low-activity nodes have
a preponderant role. Finally, we present the scenario in
which some nodes act as leaders, with the purpose of
steering the whole network to their state. In this case, our
analysis concludes that leaders may benefit from the pres-
ence of heterogeneity in the network. Part of the technical
proofs of the results presented in this extended abstract
can be found in Zino et al. (2019) and in Hasanyan et al.
(2020).

Notation

We gather here the notational convention used throughout
the extended abstract. We denote as R and Z+ the sets of
real and nonnegative integer numbers, respectively. The
vector of all ones is denoted as 1. Given a vector x,
xT denotes its transpose and ||x|| its Euclidean norm.
I is the identity matrix. Matrices and vectors’ dimen-
sions are omitted when not necessary. Expected values of
random variables are denoted as E[·]. We use Landau’s
symbol O(xk) to denote a generic function f(x) such that
lim supx→0 |f(x)/xk| <∞.

2. ACTIVITY DRIVEN NETWORKS

We consider a set of n nodes connected through a temporal
directed graph that evolves along a discrete-time index
k ∈ Z+. Each node has activity potential ai ∈ (0, 1].
The graph Gk is generated according to the following
procedure, from k = 0, as illustrated in Fig. 1.

(1) At each unit time-step, every node i is activated with
probability equal to ai, independent of the others and
of the past history of the process.

(2) If node i is activated at time k, then it generates
m ≤ n − 1 directed links, connecting it with an m-
tuple of nodes, selected uniformly at random among
the remaining n − 1 nodes. Links are oriented from
the activated node toward the selected nodes.

(3) The time index is increased by 1, all connections are
deleted, and the whole process resumes to step (1).

We define the average activity potential and the standard
deviation of the activity potential as
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Fig. 1. Exemplary evolution of 3 time-steps of an ADN.
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n
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(ai − ā)2. (1)

The standard deviation σ measures the heterogeneity in
the nodes’ activity potentials. When σ = 0, the ADN re-
duces to the model of conspecific agents proposed in Abaid
et al. (2012). An alternative way of describing such a
heterogeneity consists of separating the average activity,
as follows:

ai = ā+ σhi, (2)

where h ∈ Rn measures the deviation of each node from
the average. Note that, by definition, 1Th = 0 and ||h|| =√
n.

For any discrete time k ∈ Z+, we define the adjacency
matrix of the time-varying network as Ak ∈ {0, 1}n×n,
where (Ak)ij = 1 ⇐⇒ (i, j) ∈ Ek, and the Laplacian
matrix as Lk := diag(Ak1)−Ak.

3. CONSENSUS OVER ADNS

Each node i has a continuous state xi(k) ∈ R, which
evolves according to a discrete-time consensus protocol
starting from an initial condition x0 ∈ Rn. At each time-
step, every node updates its state by averaging with the
nodes with which it is temporarily connected, yielding the
following time-varying linear system:

x(k + 1) = (I − εLk)x(k) := Pkx(k), (3)

where the parameter ε > 0 is used to capture the nodes’
tendency to compromise: the larger is ε, the more a node
will favor the average state of the neighbors against its own
during the updating process. We say that the consensus
protocol converges to a consensus state x̄ if limk→∞ x(k) =
x̄1, that is, all nodes asymptotically attain the same state.
The symbol 1 denotes the n-dimensional all-1 vector.
Given that (3) is a stochastic system, convergence must
be defined in a stochastic sense. Specifically, defining
the disagreement vector as the difference between each
network state and the average state of the network, that
is, ξ(k) := x(k) − 1

n1
Tx(k)1, we quantify the speed of

convergence of the protocol toward consensus by means
of the asymptotic convergence factor of the disagreement
dynamics (Zhou and Wang, 2009), that is,

r := sup||ξ0||6=0 lim
k→∞

(
E[||ξ(k)||2]

||ξ0||2

)1/k

. (4)

The smaller r, the faster the convergence of the dynamics
is. In Costa and Fragoso (2004), it is proved that r < 1
is a necessary and sufficient condition for convergence to
consensus in a mean-square sense.

Building on the claims in Abaid and Porfiri (2011), in
which the asymptotic convergence factor is written as
the spectral radius of a n2 × n2 matrix constructed from
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Fig. 2. Variation of the convergence factor with respect to
the homogeneous case (∆r), for increasing values of σ,
for two different choices of the model parameters with
increasing network sizes. The numerical estimations
performed over 100 independent runs (red circles)
confirm our analytical prediction (blue curve). The
average activity is equal to ā = 0.1 and vector
h is generated uniformly at randomly under the
constraints 1Th = 0 and ||h|| =

√
n. Consequently,

the activity potential of node i is ai = 0.1 + σhi.

the Laplacian of the ADNs Lk, we use a second-order
eigenvalue perturbation argument to derive closed-form
results for the rate of convergence to consensus as a
function of the model parameters. The details of the
analytical derivation and the explicit expression of r can
be found in Zino et al. (2019). The derivation of a closed-
form expression for r finds particular interest in large-scale
applications, for which the numerical computation of the
spectral radius of a n2×n2 matrix becomes unfeasible. For
n→∞, our result reduces to

r = 1− 2εām+ ε2ām(m+ 1)

+σ2m(2− ε(m+ 1))(2− εm)

ā
+O(σ3).

(5)

Since the coefficient of σ2 is strictly positive for any choice
of parameters for which r < 1 + O(σ3), (5) establishes
that the convergence factor increases with the square
of the standard deviation of the activity distribution,
suggesting that the speed of convergence is hindered by the
heterogeneity of the nodes’ activities, at least for moderate
levels of heterogeneity. Figure 2 illustrates the results of
a campaign of Monte Carlo numerical simulations, which
confirms our analytical predictions 1 .

Then, we use stochastic stability theory to characterize
the expected value of the consensus state reached by
the network nodes. Different from homogeneous systems,
where the expected consensus state coincides with the
average of the initial conditions, our analytical findings
lead us to conclude that the consensus state is dominated
by low-activity nodes. Specifically, we establish that the
expected consensus state is equal to

E[x̄] = πTx0, with πi =
a−1i∑n
j=1 a

−1
j

. (6)

Figure 3 shows numerical simulations of the evolution
of a network of 50 dynamical systems, supporting our
analytical results.

1 The simulations presented in Figs. 2 and 4, where our analytical
result is compared with numerical computations, are performed
on small to medium systems, due to the numerical complexity of
performing the numerical computations of the n×n matrix on large-
scale systems.
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Fig. 3. Numerical simulations of the consensus dynamics
over a heterogeneous network with 50 nodes. Panel
(a) compares a sample path of the process with the
predicted consensus state (red dashed line). Panel (b)
illustrates the empirical distribution of the consensus
values for set of Monte Carlo simulations over 50, 000
independent runs from the same initial condition of
the state variables, which is centered about the ana-
lytical prediction (red line) computed using (6). Initial
conditions and activities are sampled independently
one from the others from a uniform distribution over
[0, 1].

4. LEADER-FOLLOWER CONSENSUS OVER ADNS

Finally, we introduce a leader-follower dynamics in the
collective behavior, which is typical of many human and
animal collective phenomena (Dyer et al., 2009). We parti-
tion the network nodes into two sets, where ` ≥ 1 of them
act as leaders: they are initialized with a common initial
condition s ∈ R and never update it when interacting with
other nodes. Leaders’ goal is to steer the state of the whole
network to their own state. The state of the followers,
instead, evolves as the standard consensus dynamics in (3).

The literature on leader-follower consensus problems is
vast, although the majority of existing studies assumes
that the communication network among agents is fixed, or
that it evolves according to a deterministic process (Cao
et al., 2015; Hong et al., 2006). Here, we investigate on
time-varying stochastic networks by studying the asymp-
totic behavior of leader-follower consensus over ADNs.

Following a procedure similar to the one adopted in the
analysis of the standard consensus, we study convergence
in a mean-square sense by utilizing a first-order eigenvalue
perturbation argument. Despite the slightly different defi-
nition of the error dynamics, which is here defined as the
difference of nodes’ state with respect leaders’ states as
ξ(k) = x(k) − s1, also for the leader-follower consensus
it is possible to characterize its asymptotic convergence
factor in (4) in terms of the spectral radius of a matrix,
which depends on the Laplacian of the ADNs. Through
its explicit study, performed in Hasanyan et al. (2020),
we demonstrate that, in the presence of leaders, moderate
level of heterogeneity among nodes could be beneficial to
group decision-making, speeding up the convergence of the
whole network to the leaders’ state. Figure 4 validates our
analytical predictions.

In the limit of large scale networks, that is n → ∞, the
asymptotic convergence factor r approaches

r = (1− εmā(1− κ))2, (7)

if
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Fig. 4. Comparison between the analytical prediction of
the asymptotic convergence factor (blue solid line)
and its (exact) numerical computation (red stars),
for different levels of heterogeneity and parameters
settings. The average activity is equal to ā = 0.1 and
vector h is generated uniformly at randomly under the
constraints 1Th = 0 and ||h|| =

√
n. Consequently,

the activity potential of node i is ai = 0.1 + σhi.

ε ≤ 2κ

κ+m−mā(1− κ)2
, (8)

and

r = 1−2εmā+ ε2mā(m+κ)−2σαε2m2ā
(1− κ)2(2− κ)

κ
,

(9)
otherwise, where κ = `/n is the fraction of leaders in
the network. This result shows that the effect of the
heterogeneity is nonnegligible when ε is sufficiently large.
Moreover, if the parameter α, (which measures the overall
followers’ deviations from the average activity) is positive,
then the heterogeneity becomes beneficial to the conver-
gence process. Predictably, we observe that the favorable
effect of heterogeneity increases as the number of leaders
in the group and the average activity increase.
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