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Abstract: Adaptivity has become a promising concept in civil engineering to improve the load-bearing
behavior of buildings and to reduce material consumption. However, the integrated actuators and sensors
increase the complexity and adversely affect the reliability making a fault diagnosis for actuator and
sensor faults necessary. In this paper, the distributed fault diagnosis of an adaptive high-rise truss
structure, which is characterized by a modular design, is investigated. Based on local models and the
local measurement information of hydraulic actuators and strain gages, a distributed fault diagnosis
scheme is proposed for the diagnosis of actuator and sensor faults. Since the local models do not have
information about the interconnection to other modules, the model-based residual is uncertain and faults
in the other module can affect the local residual. For this reason, an effective online estimation of the
probability density function and the Kullback-Leibler divergence of the residual is presented for change
detection considering the stochastic uncertainties. Moreover, the selected sensor layout of the adaptive
structure allows the isolation of the investigated actuator faults such that fault propagation paths of the
distributed system are analyzed and sensor faults are isolated by communicating the detected changes in
the modules. The effectiveness of the approach is illustrated in a simulation study.

Keywords: Applications of FDI and FTC, Distributed Fault Diagnosis, Statistical methods/signal
analysis for FDI, Smart Structures, Building Automation

1. INTRODUCTION

According to recent studies of the OECD (2015), the building
sector is a major contributor to the world-wide energy demand,
material consumption and emissions. This is related to the state-
of-the-art design of buildings, which are designed to withstand
high, but rarely occurring loads. Adaptive structures are able
to react to external loads and represent a promising approach
in civil engineering to enhance the load-bearing behavior of
a structure, see Korkmaz (2011). Thus, the material and en-
ergy consumption is reduced significantly, since the embodied
energy is partially replaced by operational energy in case of
high loads, see Sobek and Teuffel (2001). However, integrating
actuators, sensors and controllers into the structure affects its
reliability and safety, which are highly relevant for civil struc-
tures. For this reason, the fault diagnosis of actuator and sensor
faults are an essential part of adaptive civil structures.
In this paper, the fault diagnosis for a high-rise adaptive truss
structure, which is illustrated in figure 1, is addressed. The steel
construction has a height of 36 meter and is accessible by a
stair tower. The structure has a modular design and consists
of four modules. The lower modules are equipped with strain
gages as well as hydraulic actuators in selected elements which
are controlled by a local computational unit in the module. The
actuator and sensor placement in adaptive-high rise structures
regarding controllability and observability are addressed by
Heidingsfeld et al. (2017) respectively Rapp et al. (2017).
The modular design, the distributed computational units as well
as the scale of the system motivate the application of a modular
? This work is part of the collaborative research center CRC 1244 “Adaptive
Envelopes and Structures for the Built Environment of the Future” project B03
funded by the German Research Foundation under grant SFB 1244/1 2017.

Fig. 1. Rendering of the high-rise adaptive truss structure with
access tower at the Campus of the University of Stuttgart,
Germany. Source: ILEK, University of Stuttgart

and distributed fault diagnosis algorithm, which is able to detect
faults in the strain gages and hydraulic actuators of each module
and only relies on a local model of the module. Therefore, the
modular fault diagnosis does not rely on a model of the overall
structure and the fault diagnosis within the modules can be
reused for arbitrary connections of the modules.

In the literature, a variety of model-based and data-based ap-
proaches for the centralized as well as distributed fault diagno-
sis exist. Model-based approaches require an accurate physical
model of the system, which is used for deriving residuals using
parity equations or observer schemes. Data-based approaches
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do not rely on a physical model but on a sufficient amount of
training data for applying methods like principal component
analysis (PCA), partial least squares or neural networks.
The research for distributed fault diagnosis techniques is grow-
ing due to the increasing complexity and scale of systems as
well as the scalability issues of centralized approaches, for ex-
ample in sensor networks, see Dong et al. (2014). Many model-
based distributed fault diagnosis algorithms have been devel-
oped for discrete-event systems, see e.g. Baroni et al. (1999)
but also many linear and nonlinear continuous-time systems,
see e.g. Ferrari et al. (2012), Boem et al. (2013), have been
proposed in the literature. The most common approach for the
definition of a set of lower order subsystems from the over-
all system dynamics is the application of decomposition tech-
niques based on the structural graph such that local observers
in each subsystem are realized. The different subsystems com-
municate by exchanging information like measurements, see
Shames et al. (2011), Ferrari et al. (2012), state estimates, see
Zhang and Zhang (2012) as well as fault signatures, see Daigle
et al. (2007). Data-based distributed methods comprise for ex-
ample multiblock analysis, see e.g. Qin et al. (2001), weighted-
least squares, see Marelli and Fu (2015), canonical correlation
analysis, see Jiang et al. (2017), or principal subspace estima-
tion, see Li et al. (2011).

For smart and adaptive structures, mainly centralized ap-
proaches have been investigated so far. Sharifi et al. (2010)
uses a PCA-based sensor fault isolation and detection method
for smart structures, which is applied to a three-story build-
ing structure equipped with a magnetorheological damper. For
adaptive shell structures with hydraulic actuation, Heidingsfeld
et al. (2014) investigated dedicated observer schemes for sensor
fault diagnosis in the strain gages. A centralized detection and
isolation of sensor and actuator faults in adaptive high-rise
structures, as investigated in this work, is presented in Gienger
et al. (2020b), where parity equations are combined with PCA
to consider unknown stochastic disturbances. In Gienger et al.
(2020a), deep convolutional neural networks are investigated
for centralized fault diagnosis as well as decentralized fault
diagnosis based on the different sensor systems for the inves-
tigated adaptive high-rise structure.

In this work, the subsystems are already predefined by the mod-
ules and local models of each module are available. Due to the
unknown interactions between the modules, the derived resid-
uals based on the local models are subject to uncertainties. For
this reason, an iterative data-based approach is applied to the
residuals to obtain an estimate of their probability density func-
tion and detect changes due to occurring faults by the Kullback-
Leibler divergence, which has been successfully applied for
fault detection tasks, see Youssef et al. (2016). Whereas the
investigated sensor layout of the adaptive structure enables the
isolation of specified actuator faults within the module, sensor
faults are isolated by communicating with the other modules
if a change in the Kullback-Leibler divergence is detected. By
communicating the detected changes, the fault propagation path
is analyzed by the proposed algorithm to isolate the faults.
The main contribution of the paper is an approach for an ef-
ficient, modular distributed fault diagnosis using local models
of each subsystem suitable for the distributed fault diagnosis of
sensor and actuator faults in an adaptive high-rise structure.
The paper is structured in the following way. In section 2, the
investigated system is presented and a mathematical formula-
tion of the distributed fault diagnosis problem is given. Section
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Fig. 2. Investigated high-rise truss structure with four mod-
ules and considered disturbances. Modules 1 and 2 are
equipped with hydraulic actuators and sensors.

3 presents the modeling of the adaptive structure including the
investigated actuator and sensor faults. In section 4, the residual
generation and evaluation are discussed and the proposed fault
diagnosis algorithm is presented. Afterwards in section 5, the
proposed fault diagnosis algorithm is evaluated in a simulation
study before in section 6 a brief summary is given.

2. SYSTEM AND PROBLEM DESCRIPTION

In this section, the investigated high-rise adaptive structure as
illustrated in figure 2 is introduced and the modular fault di-
agnosis problem including the assumptions are presented. Fur-
thermore, the challenges due to the interactions of the modules
are motivated.

The adaptive structure has a modular design and consists of 4
modules. Module 1 and 2 are equipped with hydraulic actuators
and strain gages as well as a computational unit for signal pro-
cessing and control. Hence, module 1 and 2 are investigated for
fault diagnosis based on the local model of the module in this
work. The states x of the adaptive structure and its modules are
given by the node displacements and velocities in the cartesian
coordinate system, the inputs u = [Fact,1, . . . , Fact,nact

]T by
the actuator forces Fact,i, the outputs y by the strain gage mea-
surements and the unknown disturbances v = [vw, αw,mi]

T

are the wind and surface loads depending on the height depen-
dent wind velocity vw, the wind direction αw as well as surface
loads on each level mi, i = 1, . . . , nlevel. The unknown dis-
turbance influence the system dynamics by the functions bv(v)
and dv(v) and the resulting state-space model of the structure
is given by

ẋ = Āx+ B̄uu+ B̄ff1 + bv(v), x(0) = x̄0 (1)
y = C̄x+ D̄uu+ D̄ff2 + dv(v).

The state-space model of the adaptive structure, which includes
the model of the mechanical structure as well as the impact of
the disturbances, is described in Gienger et al. (2020b). The
modules state xm, output ym and input um is a subsystem
of the complete system. Consequently, all remaining modules
have states xm̄, outputs ym̄ and inputs um̄ such that the overall
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Fig. 3. Control and fault diagnosis structure for two modules.

state-space model of the complete structure is divided into the
subsystem of the module and all remaining modules as follows[
ẋm

ẋm̄

]
=

[
Amm Amm̄

Am̄m Am̄m̄

] [
xm

xm̄

]
+

[
Bu,mm Bu,mm̄

Bu,m̄m Bu,m̄m̄

] [
um

um̄

]
+ . . .[

Bf,mm Bf,mm̄

Bf,m̄m Bf,m̄m̄

] [
fm

fm̄

]
+

[
bv,m(v)
bv,m̄(v)

]
, (2)[

ym

ym̄

]
=

[
Cmm Cmm̄

Cm̄m Cm̄m̄

] [
xm

xm̄

]
+

[
Du,mm Du,mm̄

Du,m̄m Du,m̄m̄

] [
um

um̄

]
+ . . .[

Df,mm Df,mm̄

Df,m̄m Df,m̄m̄

] [
fm

fm̄

]
+

[
dv,m(v)
dv,m̄(v)

]
. (3)

Hence, the state-space model of the module follows as
ẋm = Ammxm +Bu,mmum +Bf,mmfm + bv,m(v) + . . .

Amm̄xm̄ +Bu,mm̄um̄ +Bf,mm̄fm̄, (4)
ym = Cmmxm +Du,mmum +Df,mmfm + dv,m(v) + . . .

Cmm̄xm̄ +Du,mm̄um̄ +Df,mm̄fm̄. (5)
The equations illustrate, that the uncertainties for one module
are given by the vector νm = [vT , xTm̄, u

T
m̄, f

T
m̄]T which in-

cludes the disturbances, positions and velocities, input forces
between the modules and faults.

The control structure with actuator and sensor faults fact,i

respectively fsens,i for two modules i = {1, 2} is illustrated
in figure 3, which allows communication between the fault
diagnosis as well as the local controllers with set points xd,i.

The proposed fault diagnosis algorithm considering sensor and
actuator faults, presented in section 4, is based on the following
assumptions:

• The provided force of the actuators are observed, which
means that the pressure sensors in the actuators are always
healthy

• Actuator and sensor faults do not occur simultaneously
• The faults are detectable and distinguishable from the

disturbances in the residual

The observation of the actuator force enables the isolation of
actuator faults within the module, but the sensor measurements
and faults in one module still depend on the uncertainties νm.
Therefore, communication of the subsystems is necessary for
the isolation of the faults.

3. MODELING

This section presents the modeling of the module including the
actuator and sensor models with faults. These models are used
for residual generation in section 4.

3.1 Mechanical Model of Single Module

The mechanical model of a single module, which is used for the
modular fault diagnosis, is derived by finite elements methods
yielding the second order differential equation

Mmξ̈m +Dmξ̇m +Kmξm = Fu,mum (6)

with initial condition ξ̇m(0) = ξ̇m,0, ξm(0) = ξm,0. The vari-
ables ξm are the node displacements of the module in cartesian
coordinates, Mm is the mass matrix, Dm the damping matrix
and Km the stiffness matrix of the module. The matrix Fu,m

represents the impact of the actuator forces on the module. The
influence of the disturbances and couplings to other modules
are unknown. The elongations ζm of the struts in the module,
which are measured by the strain gages are given by

ζm = Lmξm, (7)
where the matrix Lm maps the node displacements to the
elongation of the struts.

3.2 Actuator Model

The hydraulic actuator model of the adaptive structure is pre-
sented in Gienger et al. (2020a) and summarized in the fol-
lowing. For shorter notation, the index i of the actuator will
be neglected in the following formulations. The nact actuators
in each module transform the signal of the controller to a force
on the structure. Herefore, the measurements of the chamber
pressures pA and pB are available. The provided force of the
actuator is given by

Fact = pAAA − pBAB, (8)
where AA and AB are the cross-section areas of the chambers.
With this equation, the force is reconstructed and internally
controlled by a P-controller towards the desired force u de-
manded by the controller by adjusting the inlet flows qin,A/B

and outlet flows qout,A/B by valves. The pressure dynamics in
chamber A respectively B are given by

ṗA/B =
β

VA/B

(
qin,A/B − qout,A/B + qil + qel,A/B

)
, (9)

where β is the compression module of the fluid and VA/B is
the volume of chamber A respectively B, which is assumed to
be independent of the displacement of the cylinder and thus
VA/B = const.

The fault scenarios of the actuator considered in this work is
internal leackage, external leackage in chamber A respectively
B as well as a hard-over failure resulting from a fully opened
valve in chamber A. The internal leakage flow between the
chambers is described by

qil = kil sign(pA − pB)

√
|2
ρ

(pA − pB)|, (10)

where the parameter kil determines the severity of the fault, see
e.g. An and Sepehri (2005). The external loss to the environ-
ment follows equivalently as

qel,A/B = kel,A/B sign(pA/B − p0)

√
|2
ρ

(pA/B − p0)|, (11)
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where kel,A/B describes the severity of leaking and p0 is the
ambient pressure.

3.3 Strain gages

Each module is equipped with nsens strain gages, which mea-
sure the elongation of the struts. The output equation of the
strain gages is given by

ysg,i = ksg,i(fsg,i)ζi + bsg,i(fsg,i) + εsg,i, (12)
where ζi is the elongation of the truss element i, ksg,i is a
scaling factor, bsg,i a bias of the sensor and εsg,i Gaussian
distributed sensor noise εsg,i ≈ N (0, σsg) with variance σsg.
The values of the parameters depend on the fault occurring in
the sensors and are given as follows.

• Bias fault: Parameter ksg,i = 1 and the bias bsg,i =
Unif(0, bmax

sg,i ) is sampled from a uniform distribution with
maximum value bmax

sg,i
• Random walk: Parameter ksg,i = 1 and the bias bsg,i is

given by a random walk process described by ḃrw = δsg
with δsg ≈ N (µsg,rw, σsg,rw) with mean value µsg,r and
variance σsg,rw

• Zero output: Parameter ksg,i = 0, bsg,i(fsg,i) = 0

4. DISTRIBUTED FAULT DIAGNOSIS

As stated in the problem description, the local models of the
single modules do not consider couplings to the other modules
such that the measurements of the modules include uncertain-
ties. Moreover, the local models are typically not a precise rep-
resentation of the real system yielding additional uncertainties
in the derived residual. The residuals are determined by the
difference in the measured and demanded input forces as well
as the deviations between the measurement and model output of
each sensor. Since the measurement of the chamber pressures
allows the determination of the actuator forces, the considered
actuator faults can be isolated within the module. Due to the
uncertainties and the stochastic realizations of the faults, the
residual is characterized by changes in the Kullback-Leibler
divergence determined from the probability density function of
each residual. Moreover, the proposed fault diagnosis algorithm
communicates the detected changes to other modules to isolate
the faults.

4.1 Residual Design

For the distributed fault diagnosis, the model-based residual of
each actuator and sensor is generated. The residuals of actuator
i at time step k is given by
r?act,k,i = uk,i − Fact,k,i (13)

= uk,i − (pA,k,i(fact,k,i)AA − pB,k,i(fact,k,i)AB)

The residual for each sensor i follows from the output equation
(12) by neglecting the unknown terms bsg,k,i(fsg,k,i) and εsg,i
such that

r?sens,k,i = ysg,k,i − ksg,k,i(fsg,k,i)ζk,i, (14)
where ζk,i follows from (7) with (6) by using the observed
actuator force as input um = Fact,m given by (8). The mo-
tivation for this residual selection is that the unknown, high
frequency forces on the structure due to wind turbulences are
filtered by the system dynamics such that the sensitivity of the
wind turbulence on the residual is decreased.

4.2 Residual Evaluation

Due to the system structure and selected sensors, the considered
deterministic and stochastic fault realizations are detectable and
thus change the stochastic properties of the residual. However,
it has to be distinguished between the uncertainties caused by
the couplings and faults.
The stochastic properties of a signal are described by its prob-
ability density function. For this reason, the residual is based
on changes in the probability density function over time, which
can be described by the Kullback-Leibler (KL) divergence. The
stochastic properties of the residual are determined over a win-
dow of length w such that for the actuator and sensor residual
follows

rk,i = [r?k−w+1,i, r
?
k−w+2,i, . . . , r

?
k,i]

T ∈ Rw, (15)
where r?k,i represents the model-based residual of either the
actuator r?act,k,i or sensor r?sens,k,i. For the sake of clarity and
shorter notation, the index i of the residual rk,i will be neglected
in the following formulations.
To allow an efficient, iterative online adaption of the stochastic
properties of the residual, they are approximated as a multi-
variate Gaussian distribution. The iterative online update of
the mean r̄k ∈ Rw and moment matrix Ck ∈ Rw×w of the
multivariate Gaussian distribution are given by

r̄k = r̄k−1 +
rk − r̄k−1

k
, (16)

Ck = Ck−1 + (rk − r̄k−1)T (rk − r̄k). (17)
Hence, it follows for the covariance matrix

Σk =
Ck

k − 1
∈ Rw×w. (18)

The KL divergence between the Gaussian distributions
Nk−l(r̄k−l,Σk−l) of time step k−l and the current distribution
Nk(r̄k,Σk) is given by

DKL(Nk−l ‖ Nk) =
1

2
(tr
(
Σ−1

k Σk−l

)
+ . . . (19)

+ (µk − µk−l)
TΣ−1

k (µk − µk−l)− . . .

d+ ln

(
det Σk

det Σk−l

)
).

Since the covariance matrix is updated in every time step, the
matrix inverse Σ−1 ∈ Rw×w needs to be calculated in each
time step as well. This is achieved in a computationally efficient
way by the Sherman-Morrison formula for the rank one matrix

C−1
k = (Ck−1 + rnr

T
n )−1 = C−1

k−1 −
C−1

k−1rnr
T
nA

−1

1 + rTnC
−1
k−1rn

(20)

such that the inverse covariance matrix is given by

Σ−1 = C−1
k−1 −

C−1
k−1(rk − r̄k−1)(rk − r̄k)TC−1

k−1

1 + (rk − r̄k)TC−1
k−1(rk − r̄k−1)

. (21)

Moreover, the iterative update is also possible for the determi-
nant according to the matrix determinant lemma such that the
determinant of the covariance matrix is given by det (Σk) =

(1/(k − 1))
d

det (Ck) and the determinant of the moment ma-
trix by

det (Ck) =
(
1 + (rk − r̄k−1)TC−1

k−1(rk − r̄k)
)

det (Ck−1) .

(22)
The deletion of points when considering only data of a specific
time interval due to fluctuating disturbances follows equiva-
lently.
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4.3 Distributed Fault Diagnosis Algorithm

The algorithm for the distributed fault diagnosis in each mod-
ule under the assumptions in section 2 is summarized in the
following:
Input: Residual windows ract,k,i and rsens,k,j , detection thresh-

olds γact,i and γsens,j for i = 1, . . . , nact and j =
1, . . . , nsens

Output: Diagnosed faults fd,act,k,i, i = 1, . . . , nact and
fd,sens,k,j , j = 1, . . . , nsens

1: for i = 1 to nact do
2: Iterative update of mean r̄k,i, covariance matrix Σk,i and

inverse covariance matrix Σ−1
k,i

3: Determine KL divergence DKL,i(Nk−l,i ‖ Nk,i)
4: if DKL,i ≥ γact,i or fd,act,k−1,i then
5: Fault in actuator fd,act,k,i = 1
6: else
7: No fault in actuator fd,act,k,i = 0
8: end if
9: end for

10: for j = 1 to nsens do
11: Iterative update of mean r̄k,j , covariance matrix Σk,j and

inverse covariance matrix Σ−1
k,j

12: Determine KL divergence DKL,j(Nk−l,j ‖ Nk,j)
13: if fd,sens,k−1,j == 1 then
14: Fault in sensor fd,sens,k,j = 1
15: else
16: if DKL,j ≥ γsens,j then
17: Check if actuator fault occurs in module fm,act,k

18: if fm,act,k == 1 then
19: No fault in sensor fd,sens,k,j = 0
20: else
21: Collect information about actuator fault in other

modules fm̄,act,k

22: if any(fm̄,act,k) == 1 then
23: No fault in sensor fd,sens,k,j = 0
24: else
25: Fault in sensor fd,sens,k,j = 1
26: end if
27: end if
28: end if
29: end if
30: end for
31: return fd,act,k,i, i = 1, . . . , nact and fd,sens,k,j , j =

1, . . . , nsens

The inputs of the algorithms are the residual windows of each
actuator ract,k,i and sensor rsens,k,j obtained by (15) at every
time step as well as the corresponding detection thresholds
γact,i respectively γsens,j . The thresholds can be derived by the
maximum change in the KL-divergence of the nominal system
data given by the disturbed but fault-free system operation.
The first step in the fault diagnosis algorithm is the iterative
update of the mean and covariance matrices for each actuator
and the calculation of the KL divergence with the residual
windows ract,k,i and rsens,k,j . If the KL divergence exceeds
a specified threshold γact,i, a fault fd,act,k,i in the actuator
is detected. Afterwards the same procedure is applied to the
different sensors. If the KL divergence of a sensor exceeds the
threshold γsens,j a change is detected and needs to be analyzed
using the causal paths of the system structure. In a first step,
it is ensured that there is no fault in the actuators of the same
module. This step is necessary if the controllers of each module

Table 1. Confusion matrix of 30 simulation scenar-
ios with different actuator and sensor faults.

f = 1 f = 0

fp = 1 0.2518 0
fp = 0 0.0122 0.7360

communicate or a centralized controller is used for control.
Afterwards, the module communicates to check if an actuator
fault fm̄,act,k in any other module occurred, which explains the
change detected in the sensor.

5. SIMULATION STUDY

The effectiveness of the approach is evaluated in a simulation
study considering different randomized fault parametrizations
as well as random wind and storey loads. For the simulation, a
centralized LQR controller and Kalman filter are used to damp
the oscillations of the structure. With the centralized controller
and observer, the interactions between the modules due to the
closed-loop are illustrated. For evaluating the overall perfor-
mance, 30 fault scenarios are generated using the simulation
model in Gienger et al. (2020a) and faults presented in section
3. The confusion matrix of the fault diagnosis results is given
in table 1 which is evaluated based on the time samples of each
scenario. The presented approach yields accurate prediction re-
sults with high true positive and true negative rates as presented
in table 1. There are no false positive alarms but a low number
of false negative cases, which result from a slightly delayed
detection of random walk faults in the strain gages.

Figure 4 illustrates the diagnosis results for a bias fault in
strain gage 1 and a random walk fault in strain gage 5 of the
first module. Due to the impact of the disturbances which are
not included in the residual generation model, the resulting
residual deviates from zero. However, these disturbances are
identified by the proposed algorithm and the random walk fault
occurring at 10.8s triggers the communication to module 2
and the detection of the fault after 0.018s as it can be seen
from the peaks in the KL Divergence. The bias fault in the
other sensor occurs at 11.1s and triggers the communication
immediately, which leads to a correct isolation of the sensor
fault. The time trajectories of the leakage fault in chamber A are
illustrated in figure 5. The external leakage occurring at 10.8 s
is easily detectable from both the derived residuals and the KL
divergence. Moreover, the KL divergence of the sensors in both
modules is not influenced and communication is not necessary.
In contrast, a hard-over failure occurring at 10.8s in actuator
3 of the first module yields to a significant change of the
provided force by the actuator and thus affect the measurements
of the strain gages of both modules as illustrated in figure 6.
The reason for the impact of the actuator fault on the sensor
residuals in module 1 is the centralized implementation of the
LQR controller and Kalman filter for the simulation study.
As it can be seen from the controllers output trajectories in
module 1, the actuator fault affects the other controller outputs
in the same but also the other module. Because the data-based
approach characterizes the uncertainties of the module which
also includes the actuator force trajectories of the other module,
the KL divergence of the sensors in the other module are
affected. However, the proposed algorithm yields an immediate
detection of the actuator fault, which is then used to explain
the changes in the sensors of both modules based on the
communicated actuator fault.
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Fig. 4. Measurements of the eight strain gages 1− 8 of module
1 (subfigure 1), corresponding residual (subfigure 2) and
KL divergence (subfigure 3) for a random-walk and bias
fault in sensors of module 1.

6. CONCLUSION

This paper investigated the distributed fault diagnosis in an
adaptive high-rise truss structure, which is characterized by a
modular design. Based on the local models of the modules,
a distributed fault diagnosis scheme is proposed for the diag-
nosis of actuator and sensor faults in two modules, which are
equipped with hydraulic actuators and strain gages. The pro-
posed approach takes into account the uncertainties resulting
from the couplings between the modules by approximating the
probability density function of their time trajectories as a mul-
tivariate Gaussian distribution and detect changes due to faults
by the Kullback-Leibler divergence. The available sensors in
the investigated adaptive structure and communication of the
algorithm enable the isolation of actuator and sensor faults. The
effectiveness of the approach was validated for different fault
scenarios showing excellent results.
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