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Abstract: This paper investigates a novel finite-time saturated deployment control approach
for the tethered satellite system in the presence of uncertain dynamics and space perturbations,
as well as state constraints. First, an integral Lyapunov function is constructed to remove the
hard state constraints characterized by a finite-time convergent performance function. Then, a
backstepping finite-time deployment controller is devised via using an extended state observer
(ESO) to approach the unknown dynamics, perturbations and saturation deviation. Compared
with the existing finite-time control methods, the prominent advantage of the proposed one
is that the finite-time saturated deployment control is achieved without violating the state
constraints and using fractional state feedback. Finally, an illustrative example is organized to
validate the effectiveness of the proposed approach.

Keywords: Finite-time control, tethered satellite system, saturated control, extended state
observer.

1. INTRODUCTION

Space tethered satellite system (TSS) has attracted exten-
sive attention in recent years owing to its potential advan-
tages in debris removal, Earth observation, malfunctioning
satellite capture as presented in Misra (2008); He et al.
(2011); Yu et al. (2016); Lim and Chung (2018), to just
name a few. To guarantee the practical applications, effec-
tive deployment control scheme, as a prerequisite, plays
a vital role. Thus, various deployment control schemes
have sprung up in the existing works. For example, Shi
et al. (2017) investigated a sliding mode prediction model
control strategy for a three-body TSS consisting of a main
satellite and two subsatellites. Zhang and Huang (2019)
proposed a novel underactuated controller of the TSS
for both on-oribit deployment and retrieval missions. To
alleviate the negative effects brought by control saturation,
Ma et al. (2017) proposed a dynamic adaptive saturated
sliding mode control scheme (SSMC) for a TSS containing
a mother satellite and a subsatellite. Moreover, Yu et al.
(2017) proposed an analytical tether length rate control
law for a flexible TSS via using a simplified elastic rod
model with consideration of various space perturbations.

However, there exist two limitations in the aforementioned
works. Namely, the first one is that the finite-time conver-
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gence rate and tracking accuracy for the TSS cannot be
preassigned a priori simultaneously. The second one is that
the hard state constraints of the TSS such as the tether
tension and length cannot be characterized quantitatively
without violation. For the first limitation, in the reported
works, sliding mode control (SMC) technique has been
widely used to accelerate the deployment convergence rate
of the TSS, e.g., see [Kang et al. (2017); Wang and Zhang
(2019)] and references therein. Although the finite-time
convergence rate can be guaranteed, there are two draw-
backs for the SMC-based deployment control schemes. The
first one is the complex state-based fractional controller,
which is not easily achieved in practice. The second one
is the symbolic functions used in the developed controller,
which easily renders the control laws discontinuous [Song
et al. (2019); Wei et al. (2020)]. To overcome this lim-
itation, in our previous work [Wei et al. (2018b); Yin
et al. (2019)], finite-time leader-following consensus control
was achieved just via an adjustable time-dependent per-
formance function. Wherein, the finite-time convergence
rate and tracking accuracy are guaranteed simultaneously
without using fractional state feedback and symbolic func-
tion. However, the hard state constraints of the controlled
systems are not considered. For the second limitation, the
common hard state constraints are easily handled in the
constrained optimal control methods like MPC in Mayne
(2014). However, deterministic dynamic model is required
in the optimization procedure for these control methods.
This is not practically effective for the TSS in the presence
of uncertain dynamics and complex space perturbations.
Thus, it is worth investing how to develop an effective
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deployment control law for the TSS with consideration of
uncertain dynamics and perturbations.

Based on the foregoing observations, this paper investi-
gates a novel finite-time deployment control approach for
the TSS subject to uncertain dynamics and perturbations,
as well as hard state constraints. Compared with the ex-
isting works, twofold contributions are listed as follows: 1)
The finite-time convergence rate for the TSS is achieved by
removing the hard state constraints based on an integral
Lyapunov function. 2) An extended state observer (ESO)
is used to compensate the negative effects induced by
the uncertain dynamics and perturbations, as well as the
control saturation.

The rest of this paper is organized as follows. The dynamic
model of the TSS is presented in Section 2. Section 3 shows
the detailed design process of the ESO-based saturated
deployment controller for the TSS. An illustrative example
is organized in Section 4. Some conclusions are drawn in
Section 5.

1.1 Notations

T, | • | are the vector transpose and the absolute value
of a real number, respectively. Rn, Rn+ represent the set
of n-dimensional real numbers and n-dimensional positive
real numbers, respectively.

2. DYNAMIC MODEL OF THE TETHERED
SATELLITE DEPLOYMENT SYSTEM

According to Ma et al. (2017); Wei et al. (2018a), the
tethered satellite deployment system can be described by
the following equations, i.e.,

ml̈ −ml
((
ψ̇2 +

(
θ̇ + ω

)2
cos2

(
ψ
))

+ ω2
(
3cos2ψcos2θ − 1

))
= −ut + dt

ml2cos2ψθ̈ + 2m
(
θ̇ + ω

)
l2cos2ψ

(
l̇/l − ψ̇ tanψ

)
+

3mω2l2 sin θ cos θcos2ψ = uθ + dθ

ml2ψ̈ + 2mmψ̇l̇l +ml2 sinψ cosψ

((
θ̇ + ω

)2
+ 3ω2cos2θ

)
= uψ + dψ,

(1)
where m1 and m2 are the masses of the mother satellite
and subsatellite, respectively. The total mass of the TSS
is defined as m = m1 +m2. θ, ψ are, respectively, the roll
and pitch angles. The tether length is denoted as l. The in-
plane and out-of-plane thruster torques are defined as uθ
and uψ, respectively. ut is the tether tension. The unknown
space perturbations are bounded, which are represented
by dt, dθ, dψ, respectively. The orbit angular velocity is
defined as ω with m = m1m2/m.

Due to the dimensional differences among the parameters
involved in (1), the following transformation is often used
to obtain the corresponding dimensionless parameters.
Namely, they are

λ = l/L, d (·) /dt = ωd (·) /d$,
τt = −ut/

(
m̄ω2L

)
, τθ = uθ/

(
m̄ω2L2

)
,

τψ = uψ/
(
m̄ω2L2

)
, d∗t = dt/

(
m̄ω2L

)
,

d∗θ = dθ/
(
m̄ω2L2

)
, d∗ψ = dψ/

(
m̄ω2L2

)
,

(2)

where $ and L are the true anomaly and reference
tethered length, respectively. Then, the dimensionless pa-
rameters l, ut, uθ, uψ, dt, dθ, dψ are described as
λ, τt, τθ, τψ, dt, dθ, dψ. Accordingly, a Euler-Lagrange
form for the dimensionless system (1) can be obtained as

M (p) p̈+ C (p, ṗ) ṗ+ G (p) = τ + d∗, (3)

where p = [λ, θ, ψ]
T ∈ R3, τ = [τ1, τ2, τ3]

T
=

[τt, τθ, τψ]
T ∈ R3, d∗ =

[
d∗t , d

∗
θ, d
∗
ψ

]T
∈ R3. M (p),

C (p, ṗ) and G (p) are, respectively

M (p) =

 1 0 0
0 λ2cos2ψ 0
0 0 λ2

 ,G (p) =

−λcos2ψ + λ− 3λcos2θcos2ψ
3λ2 cos θ sin θcos2ψ(

1 + 3cos2θ
)
λ2 sinψ cosψ



C (p, ṗ) =

 0 −(λθ̇ + 2λ)cos2ψ −λψ̇
(2λ+ λθ̇)cos2ψ λλ̇cos2ψ − λ2ψ̇ sinψ cosψ −(θ̇ + 2)λ2 sinψ cosψ

λψ̇ λ2(θ̇ + 2) sinψ cosψ λλ̇

 .
Remark 1. As presented in (3), one can find that the
coriolis and centripetal torque C (p, ṗ) and gravity gra-
dient vector G (p) are very complex and difficult to obtain
precisely in the corresponding controller design. Thus, it
is practically useful when an approximation is developed
for such complex nonlinear functions.

In practice, to prevent the collision between the mother
satellite and subsatellite, the tether length should satisfy
λ ≥ λmin > 0 with λmin being a small constant. Moreover,
λ ≤ λmax is to prevent the fracture of the tether with λmax

being the maximum tether length ratio. In the meanwhile,
the actuator saturation is often encountered. Then, the
actuator output Sat(•) of the TSS is expressed by

Sat(τi) =


τi,max, τi > τi,max

τi, otherwise

τi,min, τi < τi,max

, (4)

where τi,min, τi,max are the relevant lower and upper
limitations of τi.

For system (3), the control objective of this work is
twofold:

(1). The desired reference command for the TSS can be
tracked with guaranteed prescribed performance un-
der the devised controller in the presence of unknown
space perturbations.

(2). The actuator saturation and asymmetrical tether
constraints can be handled well.

3. ESO-BASED SATURATED DEPLOYMENT
CONTROLLER DESIGN OF TETHERED SATELLITE

SYSTEM

3.1 Performance constraint for the tracking error

To facilitate the corresponding controller design, by defin-
ing q1 = p, q2 = ṗ, an equivalent strict-feedback form of
system (3) is obtained as{

q̇1 = q2
q̇2 = f1 (q1, q2) + M−1 (q1) Sat (τ ) + d

, (5)

where f1 (q1, q2) = −M−1 (q1) [C (q1, q2) q2 + G (q1)].
To achieve the control objective, we define the desired
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reference command as qr. Then, the tracking error vector

for system (5) is expressed by e1 = [e1,1, e1,2, e1,3]
T

=
q1 − qr. To handle the physical state constraints (like the
tether length constraint) and quantitatively characterize
the tracking performance, based on the work done by
Bechlioulis and Rovithakis (2008), the following unsym-
metrical constraint is imposed on the tracking error vector,
i.e.,

−δ1,iρi (t) < e1,i < δ2,iρi (t) (i = 1, 2, 3), (6)
where δ1,i, δ2,i are non-negative constants. ρi (t) is the per-
formance function, which satisfies ρi (t) > 0. To simplify
the relevant design procedure, all the performance function
is devised as a same one. In this case, the subscript of
ρ (t) can be removed for brevity, namely, ρ (t) = ρi (t).
The performance function ρ (t) is derived by the following
differential equation

ρ̇ (t) =

{
−`0(ρ (t)− ρ∞)

ϑ
, if t ≤ tf

0, otherwise
, (7)

where the initial state ρ(0) satisfies ρ(0) = ρ0 > ρ∞ >
0 with ρ0, ρ∞ being positive constants. tf is the ap-
pointed convergent time. The rest parameters in (7) are
design constants, which are defined as ϑ ∈ (0, 1) , `0 =(

(ρ0 − ρ∞)
1−ϑ
)
/ ((1− ϑ) tf ). For performance function

ρ(t), the following lemma is derived.

Lemma 1. Performance function ρ(t) will converge to
ρ∞ at the appointed time T . When t ≥ T , performance
function ρ(t) will keep invariable, i.e., ρ(t) = ρ∞ Proof.
To prove Lemma 1, based on the authors’ previous work
in Wei et al. (2018b), the following Lyapunov function Vρ
is devised

Vρ =
1

2
(ρ (t)− ρ∞)

2
. (8)

Based on (7), the derivative of Vρ is

V̇ρ = (ρ (t)− ρ∞) ρ̇ (t)

= −`0(ρ (t)− ρ∞)
ϑ+1

= −2
ϑ+1
2 `0V

ϑ+1
2

ρ .

(9)

According to Wei et al. (2018b), the relevant convergence
time for ρ(t)− ρ∞ satisfies

t ≤ 1

2
ϑ+1
2 `0

(
1− ϑ+1

2

)V 1−ϑ+1
2

ρ (0)

=
1

2
ϑ+1
2

(ρ0−ρ∞)1−ϑ

(1−ϑ)T (1− ϑ)
2

ϑ+1
2 (ρ0 − ρ∞)

1−ϑ

= tf .

(10)

Accordingly, one can obtain that ρ(t)−ρ∞ will converge to
zero at the appointed time tf . Namely, ρ(t) will converge to
ρ∞ within the appointed time tf . As presented in (7), when
t ≥ tf , ρ(t) will keep constant, i.e., ρ(t) = ρ∞ ∀t ≥ tf .
Then, the proof of Lemma 1 is finished. �

Remark 2. As the proof of Lemma 1 shows, when param-
eter ρ∞ → zero, one can find that the tracking error
will converge to zero around the appointed time tf . In
the meanwhile, the transient and steady-state tracking
performance can be preassigned by the designed perfor-
mance function ρ(t). In this sense, the finite-time or fixed-
time convergence rate and tracking performance can be
guaranteed simultaneously. This is different from the tra-
ditional finite-time control methods like in Yu and Long

(2015); Wang and Zhang (2019), wherein, only the finite-
time convergence rate can be guaranteed.

3.2 ESO-based saturated deployment controller design

Based on the foregoing analysis, the ESO-based saturated
deployment controller is devised as follows. In this part,
according to Freeman and Kokotović (1993), baskstepping
technique is used to facilitate the relevant controller design
for system (5), wherein, two steps are involved. Without
inducing ambiguity, (t) in the performance function ρ(t) is
removed for brevity henceforth.

Step 1. To guarantee the predefined tracking performance,
the following integral function is designed

V1 =

3∑
i=1

[
(1− % (e1,i))

∫ e1,i

0

xδ21,iρ
2

δ21,iρ
2 − x2

dx+

% (e1,i)

∫ e1,i

0

xδ22,iρ
2

δ22,iρ
2 − x2

dx

]
,

(11)

where % (•) =

{
1, if • ≥ 0
0, otherwise

. For the involved terms of

(11), one can obtain that
∫ e1,i
0

xδ2j,iρ
2

δ2
j,i
ρ2−x2 dx =

− 1
2 ln

(
δ2j,iρ

2 − x2
)∣∣e1,i

0
= 1

2 ln
δ2j,iρ

2

δ2
j,i
ρ2−e2

1,i

≥ 0 in the pres-

ence of −δ1,iρ < e1,i < δ2,iρ (j = 1, 2, i = 1, 2, 3).
Moreover, function V1 is derivable. So V1 in (11) can be
chosen as a Lyapunov function. Taking the time-derivative
of V1 yields

V̇1 =

3∑
i=1

[
(1− % (e1,i))

δ21,iρ
2e1,i

δ21,iρ
2 − e21,i

ė1,i

− (1− % (e1,i))

∫ e1,i

0

2x3δ21,iρρ̇(
δ21,iρ

2 − x2
)2 dx

+% (e1,i)
δ22,iρ

2e1,i

δ22,iρ
2 − e21,i

ė1,i

−% (e1,i)

∫ e1,i

0

2x3δ22,iρρ̇(
δ22,iρ

2 − x2
)2 dx

]

=

3∑
i=1

(γiė1,i + ηi),

(12)

where γi = (1− % (e1,i))
δ21,iρ

2e1,i

δ2
1,i
ρ2−e2

1,i

+ % (e1,i)
δ22,iρ

2e1,i

δ2
2,i
ρ2−e2

1,i

,

ηi = − (1− % (e1,i))
∫ e1,i
0

2x3δ21,iρρ̇

(δ21,iρ2−x2)
2 dx

−% (e1,i)
∫ e1,i
0

2x3δ22,iρρ̇

(δ22,iρ2−x2)
2 dx. Based on the tracking error

vector e1 of the TSS defined in (6), one can obtain that
ė1,i = q̇1,i − q̇r,i = q2,i − q̇r,i (i = 1, 2, 3). To develop the
relevant controller, the second tracking error vector e2 is

defined, i.e., e2 = q2 − χ1 with χ1 = [χ1,1, χ1,2, χ1,3]
T

being the output of a first-order filter. Wherein, the first-
order filter is used to avoid taking the complex time
derivative of the virtual controller. In detail, the ith
element of χ1 is obtained as

ε0,iχ̇1,i = α1,i − χ1,i, χ1,i (0) = α1,i (0) , (13)

where α1,i is the ith element of virtual controller α1, which
is devised later. Then, we define the filter error ς0,i as
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ς0,i = α1,i − χ1,i. Accordingly, q2,i = e2,i + α1,i − ς0,i.
Substituting q2,i into (12) leads to

V̇1 =

3∑
i=1

(γiė1,i + ηi) =

3∑
i=1

(γi (e2,i + α1,i − ς0,i) + ηi).

(14)

With consideration of γi = (1− % (e1,i))
δ21,iρ

2e1,i

δ2
1,i
ρ2−e2

1,i

+

% (e1,i)
δ22,iρ

2e1,i

δ2
2,i
ρ2−e2

1,i

, applying the Young’s inequality yields

γie2,i ≤ (1− % (e1,i))
δ41,iρ

4e21,i(
δ21,iρ

2 − e21,i
)2

+ % (e1,i)
δ42,iρ

4e21,i(
δ22,iρ

2 − e21,i
)2 +

1

2
e22,i

−γiς0,i ≤ (1− % (e1,i))
δ41,iρ

4e21,i(
δ21,iρ

2 − e21,i
)2

+ % (e1,i)
δ42,iρ

4e21,i(
δ22,iρ

2 − e21,i
)2 +

1

2
ς20,i.

(15)

Based on (15), one can obtain

γi (e2,i − ς0,i) ≤ (1− % (e1,i))
2δ41,iρ

4e21,i(
δ21,iρ

2 − e21,i
)2

+ % (e1,i)
2δ42,iρ

4e21,i(
δ22,iρ

2 − e21,i
)2 +

1

2

(
e22,i + ς20,i

)
.

(16)
Then, the first virtual controller α1,i (i = 1, 2, 3) is devised
as

α1,i =− k1,ie1,i + q̇r,i − (1− % (e1,i))
2δ21,iρ

2e1,i

δ21,iρ
2 − e21,i

− % (e1,i)
2δ22,iρ

2e1,i

δ22,iρ
2 − e21,i

− ηi
γi
,

(17)

where k1,i is a positive control gain. Note that for term
ηi
γi

, there exists lim
e1,i→0

ηi
γi

= 0 based on (12). Note that

the time-derivative of virtual controller α1,i is difficult to
calculate. Thus, the first-order filter in (13) is used to
approximate the time-derivative of the virtual controller,
which will be used in the actual controller design later.
Substituting (16) and (17) into (14) gets

V̇1 ≤−
3∑
i=1

k1,iρ
2e21,i

(
(1− % (e1,i))

δ21,i
δ21,iρ

2 − e21,i

−% (e1,i)
δ22,i

δ22,iρ
2 − e21,i

)
+

1

2

3∑
i=1

(
e22,i + ς20,i

)
.

(18)

Step 2. With consideration of e2 = q2 −χ1, based on (5),
the time-derivative of e2 is

ė2 = q̇2 − χ̇1

= f1 (q1, q2) + M−1 (q1) Sat (τ ) + d− χ̇1

= f1 (q1, q2) + M−1 (q1) (Sat (τ )− τ + τ ) + d− χ̇1

= f∗1
(
q1, q2,d

)
+ M−1 (q1) τ − χ̇1,

(19)
where f∗1

(
q1, q2,d

)
= f1 (q1, q2)+M−1 (q1) (Sat (τ )− τ)+

d is an unknown lumped nonlinear function, which is

estimated by a ESO. Namely, based on Yang et al. (2018),
its detailed form is expressed by{

ż1,i = z2,i − µ1,i (z1,i − e2,i) + τ̄i − χ̇1,i

ż2,i = −µ2,i|z1,i − e2,i|κisign (z1,i − e2,i)
, (20)

where τ = [τ1, τ2, τ3]T = M−1 (q1) τ , µ1,i, µ2,i > 0, κi ∈
(0, 1) (i = 1, 2, 3) are relevant design constants.

According to Huang and Han (2000), there exist ESO gains
µ1,i, µ2,i > 0, κi ∈ (0, 1) such as z1,i and z2,i converge to
e2,i and function f1,i∗. The detailed proof can be found
in Huang and Han (2000), which is omitted for brevity.
Based on the foregoing analysis, one important conclusion
is stated in the following theorem.

Theorem 1. The prescribed performance for the TSS in
(6) can be achieved within the appointed time tf under the
following devised actual controller.

τ = M (q1) (−k2e2 − e2 − z2 + χ̇1) , (21)

where k2 = diag {k2,1, k2,2, k2,3} is a diagonal positive-
definite control gain. In the meanwhile, all the involved
states are uniformly ultimately bounded.

Proof. To prove Theorem 1, the following Lyapunov func-
tion is chosen as

V2 = V1 +
1

2
eT2 e2. (22)

Based on (19), the time-derivative of V2 is

V̇2 = V̇1 + eT2 ė2 = eT2 (q̇2 − χ̇1)

= eT2
(
f∗1
(
q1, q2,d

)
+ M−1 (q1) τ − χ̇1

)
.

(23)

By substituting (18) and (21) into (23), one can obtain

V̇2 ≤−
3∑
i=1

k1,iρ
2e21,i

(
(1− % (e1,i))

δ21,i
δ21,iρ

2 − e21,i

−% (e1,i)
δ22,i

δ22,iρ
2 − e21,i

)
+

1

2

3∑
i=1

(
e22,i + ς20,i

)
− k2eT2 e2 − eT2 e2 + eT2

(
f∗1
(
q1, q2,d

)
− z2

)
.

(24)

Define the ESO-based approximation error ~0 =
[~0,1, ~0,2, ~0,3] = f∗1

(
q1, q2,d

)
− z2. According to Huang

and Han (2000), the approximation error ~0 can be made
sufficiently small. So it is bounded.

By using Young’s inequality, (24) becomes

V̇2 ≤−
3∑
i=1

k1,iρ
2e21,i

(
(1− % (e1,i))

δ21,i
δ21,iρ

2 − e21,i

−% (e1,i)
δ22,i

δ22,iρ
2 − e21,i

)
− k2eT2 e2 +

1

2

3∑
i=1

(
~20,i + ς20,i

)
.

(25)
In light of (25), one can find that the tracking errors e1 and
e2 of the TSS are uniformly ultimately bounded. Thus, the
preassigned tracking performance in (6) can be achieved
under the devised controller. This completes the proof of
Theorem 1. �

4. ILLUSTRATIVE SIMULATIONS

To demonstrate the effectiveness of the proposed control
approach, the following numerical example is organized.
Wherein, without loss of generality, the desired reference
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command qr is chosen as [1, 0, 0]T based on Wei et al.
(2018a). The relevant simulation parameters are listed in
Table 1. The initial states z1,i and z2,i of the ESO are
set as 0 (i = 1, 2, 3). The lower saturation bound for
the control torque is [−5,−5,−5]T . The saturation bound
is [0,−5, 5]T . The initial dimensionless state vectors q1
and q2 are set as [0.3,−0.5, 0.5]T and [0, 0, 0]T , respec-
tively. The lumped space perturbation vector d∗ is chosen
as the set as that in Wei et al. (2018a). To highlight
the advantages of our proposed control approach, simu-
lation results with the SSMC method and Proportional-
Differential (PD) control method work as the comparative
tests based on Ma et al. (2017) and Wei et al. (2018a). The
demonstrative simulation results are shown in Figs. 1–6.

Table 1. Values of the simulation parameters

Equations Values of the design parameters
(6) δ1,1 = δ1,2 = δ1,3 = 1

δ2,1 = 10−5, δ2,2 = δ2,3 = 1
(7) ϑ = 0.2, ρ0 = 1, ρ∞ = 0.05, tf = 3
(13) ε0,1 = 0.001, ε0,2 = ε0,3 = 0.002
(17) k1,1 = 1.7, k1,2 = 4, k1,3 = 2
(20) µ1,1 = µ1,2 = µ1,3 = 5

µ1,1 = µ1,2 = µ1,3 = 10
κ1 = κ2 = κ3 = 0.5

(21) k2,1 = 60, k1,2 = k1,3 = 5
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Fig. 2. Time responses of in-plane and out-of-plane angles

Portrayed from these figures, one can conclude that: 1)
Figure 1 presents that the physical hard constraint for the
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0 2 4 6 8 10

−3

−2

−1

0

 

 
proposed approach

0 2 4 6 8 10

−4

−2

0

T
et

he
r 

te
ns

io
n

 

 
SSMC

0 2 4 6 8 10

−4

−2

0

True anomaly (rad)

 

 
PD

Fig. 4. Time response of the tether tension

0 2 4 6 8 10

0

1

2

 

 
proposed approach

0 2 4 6 8 10
−5

0

5

In
−p

la
ne

 t
hr

us
te

r

 

 
SSMC

0 2 4 6 8 10

0

2

4

True anomaly (rad)

 

 
PD

Fig. 5. Time response of the in-plane thrust

tether length is not violated under the proposed approach.
However, under the SSMC and PD control methods, the
tether is easily fractured due to the fact that the longest
tether length is more than 1. In the meanwhile, the
convergent rate is fastest and the tracking accuracy is
the highest among the three control methods (as Figs.
1 and 2 illustrates). This is because that the finite-time
or appointed-time convergence rate can be prescribed a
priori. 2) Figure 3 shows that the transient and steady-
state tracking performance for the TSS can be guaranteed
in the whole time domain. 3) In Figs. 4–6, one can find that
there exists serious chattering phenomenon in the SSMC
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method, which is an inherent drawback of the SMC-based
control methods. This demonstrates that a compensation
control input (like the periodic jump of the control input
between zero and -5 in Fig. 4)is required for the time-
varying space perturbations as presented in [Wei et al.
(2018a)]

While, the control torque is comparative smooth under the
proposed controller and PD controller.

To be brief, the illustrative simulations show that the
proposed control approach has prominent advantages in
preassigning the convergence rate and tracking accuracy.

5. CONCLUSION

A saturated finite-time or appointed-time deployment con-
trol approach has been proposed for the tether satellite sys-
tem with consideration of space perturbations. Wherein,
an integral Lyapunov function is built to remove the hard
state constraints quantitatively characterized by a per-
formance function. Moreover, an extended state observer
is used to compensate the negative effects brought by
the uncertain dynamics and perturbations, as well as the
saturation. The illustrative example shows that faster con-
vergence rate and higher tracking accuracy can be achieved
without any violation for the hard state constraints com-
pared with the saturated sliding mode control and PD
control methods.
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