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Abstract: We study the distributed average consensus problem in multi-agent systems with directed
communication links that are subject to quantized information �ow. �e goal of distributed average
consensus is for the agents, each associated with some initial value, to obtain the average (or some
value close to the average) of these initial values. In this paper, we present and analyze a distributed
averaging algorithm which operates exclusively with quantized values (speci�cally, the information
stored, processed and exchanged between neighboring agents is subject to deterministic uniform
quantization) and relies on event-driven updates (e.g., to reduce energy consumption, communication
bandwidth, network congestion, and/or processor usage). We characterize the properties of the pro-
posed distributed averaging protocol and show that its execution, on any time-invariant and strongly
connected digraph, will allow all agents to reach, in �nite time, a common consensus value that is equal
to the quantized average. We conclude with comparisons against existing quantized average consensus
algorithms that illustrate the performance and potential advantages of the proposed algorithm.

Keywords: �antized average consensus, event-triggered, distributed algorithms, quantization,
digraphs, multi-agent systems

1. INTRODUCTION

In recent years, there has been a growing interest for control
and coordination of networks consisting of multiple agents,
like groups of sensors Xiao et al. (2005) or mobile autonomous
agents Olfati-Saber and Murray (2004). A problem of particular
interest in distributed control is the consensus problem where
the objective is to develop distributed algorithms that can
be used by a group of agents in order to reach agreement
to a common decision. �e agents start with di�erent initial
values/information and are allowed to communicate locally via
inter-agent information exchange under some constraints on
connectivity. Consensus processes play an important role in
many problems, such as leader election Lynch (1996), motion
coordination of multi-vehicle systems Blondel et al. (2005);
Olfati-Saber and Murray (2004), and clock synchronization
Schenato and Gamba (2007).

One special case of the consensus problem is the distributed
averaging problem, where each agent (initially endowed with
a numerical value) can send/receive information to/from other
agents in its neighborhood and update its value iteratively,
so that eventually, all agents compute the average of the ini-
tial values. Average consensus is an important problem and
has been studied extensively, primarily in se�ings where each
agent processes and transmits real-valued states with in�nite
precision Hadjicostis et al. (2018); Blondel et al. (2005); Sun-
daram and Hadjicostis (2008); Charalambous et al. (2013); Liu
et al. (2011).

Most existing average consensus algorithms are able to guar-
antee asymptotic convergence, implying that they cannot be
readily applied to real-world distributed control and coordina-
tion applications. Furthermore, constraints on the bandwidth
of communication links and the capacity of physical memories
require both communication and computation to be performed
assuming �nite precision. For these reasons, researchers have
also studied the case where network links can only allow mes-
sages of limited length to be transmi�ed between agents, e�ec-
tively extending techniques for average consensus towards the
direction of quantized average consensus. Various distributed
strategies have been proposed in this context Aysal et al.
(2007); Lavaei and Murray (2012); Kashyap et al. (2007); Carli
et al. (2008); Garcia et al. (2013); Chamie et al. (2016); Cai and
Ishii (2011). Apart from Chamie et al. (2016) (which converges
in a deterministic manner under a directed communication
topology but requires the availability of a set of weights that
form a doubly stochastic matrix), these existing strategies typ-
ically rely on randomized transmissions, which imply that all
agents reach quantized average consensus in some probabilis-
tic sense (e.g., with probability one). In addition, there has been
an increasing interest for novel event-triggered algorithms for
distributed quantized average consensus (and, more generally,
distributed control), in order to achieve more e�cient usage of
network resources Seyboth et al. (2013); Nowzari and Cortés
(2016); Liu et al. (2012).

In this paper, we present a novel distributed average consen-
sus algorithm that combines both of the features mentioned
above. More speci�cally, the proposed algorithm assumes that
the processing, storing, and exchange of information between
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neighboring agents is “event-driven” and subject to uniform
quantization. Following the approach in Kashyap et al. (2007)
and Cai and Ishii (2011), we assume that states are integer-
valued (which comprises a class of quantization e�ects). We
note that most work dealing with quantization has concen-
trated on the scenario where the agents have real-valued states
but can only transmit quantized values through limited rate
channels (see, e.g., Carli et al. (2008); Chamie et al. (2016)).
By contrast, our assumption is also suited to the case where
the states are stored in digital memories of �nite capacity
(as in Nedic et al. (2009); Kashyap et al. (2007); Cai and Ishii
(2011)) and the control actuation of each node is event-based,
which enables more e�cient use of available resources. �e
main contribution of this paper is to propose an algorithm that
allows all agents to reach quantized consensus in �nite time
and whose operation is substantially di�erent from the algo-
rithms presented in our previous work in Rikos and Hadjicostis
(2018), allowing the nodes to address important issues such
as memory over�ow. �e operation of the proposed algorithm
signi�cantly outperforms (in terms of convergence speed) the
algorithms presented in Rikos and Hadjicostis (2018) and other
state-of-the-art distributed algorithms for average consensus
under quantized communication on directed communication
topologies. �e performance of the scheme is illustrated and
compared against existing schemes in a simulation study in-
cluded at the end of the paper.

2. PRELIMINARIES

2.1 Graph Notation

�e sets of real, rational, integer and natural numbers are de-
noted by R,Q,Z and N, respectively. �e symbol Z+ denotes
the set of nonnegative integers and the symbol N0 denotes the
positive natural numbers. For any real number a ∈ R, the �oor
bac denotes the greatest integer less than or equal to a while
the ceiling dae denotes the least integer greater than or equal
to a.

�e communication topology is a network of n (n ≥ 2)
agents communicating only with their immediate neighbors
and can be captured by a directed graph (digraph), called
communication digraph. A digraph is de�ned as Gd = (V, E),
where V = {v1, v2, . . . , vn} is the set of nodes (representing
the agents of the multi-agent system) and E ⊆ V × V −
{(vj , vj) | vj ∈ V} is the set of edges (self-edges excluded).
A directed edge from node vi to node vj is denoted by mji ,
(vj , vi) ∈ E , and captures the fact that node vj can receive
information from node vi (but not the other way around).
We adopt the common assumptions that the given digraph
Gd = (V, E) is static 1 (i.e., it does not change over time)
and strongly connected (i.e., for each pair of nodes vj , vi ∈ V ,
vj 6= vi, there exists a directed path from vi to vj ). �e
subset of nodes that can directly transmit information to node
vj is called the set of in-neighbors of vj and is represented
by N−j = {vi ∈ V | (vj , vi) ∈ E}, while the subset of
nodes that can directly receive information from node vj is
called the set of out-neighbors of vj and is represented by
1 In this paper we assume that the given digraph is static, however the
operation of the proposed protocol can also be extended for jointly strongly
connected dynamic topologies (i.e., digraphs whose structure changes over
time but their union graphs over large enough consecutive time intervals
remain strongly connected).

N+
j = {vl ∈ V | (vl, vj) ∈ E}. �e cardinality ofN−j is called

the in-degree of vj and is denoted by D−j (i.e., D−j = |N−j |),
while the cardinality of N+

j is called the out-degree of vj and
is denoted by D+

j (i.e., D+
j = |N+

j |).

2.2 Agent Operation

With respect to quantization of information �ow, we have that
each node vj ∈ V , at time step k, maintains 5 +D+

j variables,
as follows:
(i) �e mass variables yj [k], zj [k] where yj [k] ∈ Z and zj [k] ∈
N, which are used for processing and calculating the average
of the initial values.
(ii) �e state variables ysj [k], zsj [k], qsj [k], where ysj [k] ∈ Z,
zsj [k] ∈ N0 and qsj [k] ∈ Z (with qsj [k] = b

ysj [k]

zs
j
[k]c or qsj [k] =

dy
s
j [k]

zs
j
[k]e), which are used for storing the values of the received

mass variables and for calculating the state variable qsj , which
is the variable that becomes equal to the quantized average of
the initial values.
(iii) �e transmission variables cylj [k] and czlj [k] for each vl ∈
N+
j [k], where cylj [k] ∈ Z and czlj [k] ∈ N, which are used for

transmi�ing vj ’s mass variables towards its out-neighbors in
a possibly combined fashion.

�e aggregate states of the mass and state variables are
denoted by ys[k] = [ys1[k] ... y

s
n[k]]

T ∈ Zn, zs[k] =
[zs1[k] ... z

s
n[k]]

T ∈ Nn0 , and qs[k] = [qs1[k] ... q
s
n[k]]

T ∈ Zn,
y[k] = [y1[k] ... yn[k]]

T ∈ Zn, z[k] = [z1[k] ... zn[k]]
T ∈ Nn

respectively.

In order to randomly determine which out-neighbor to trans-
mit to, each node vj assigns a nonzero probability blj to each
of its outgoing edgesmlj (including a virtual self-edge), where
vl ∈ N+

j ∪{vj}. �is probability assignment for all nodes can
be captured by a n × n column stochastic matrix B = [blj ].
A very simple choice would be to set these probabilities to be
equal, i.e.,

blj =


1

1 +D+
j

, if vl ∈ N+
j ∪ {vj},

0, otherwise.

3. PROBLEM FORMULATION

Consider a strongly connected digraph Gd = (V, E), where
each node vj ∈ V has an initial (i.e., for k = 0) quantized
value yj [0] (for simplicity, we take yj [0] ∈ Z). In this paper, we
develop a distributed algorithm that allows nodes (while pro-
cessing and transmi�ing quantized information via available
communication links between nodes) to eventually obtain, af-
ter a �nite number of steps, a quantized value qs which is equal
to the ceiling or the �oor of the actual average q of the initial
values, where

q =

∑n
l=1 yl[0]

n
. (1)

Note that q will in general be a real (rational) number.
Remark 1. Following Kashyap et al. (2007); Cai and Ishii
(2011) we assume that the state variables maintained at each
node are integer valued. �is abstraction subsumes a class of
quantization e�ects (e.g., uniform quantization).
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�e quantized average qs is de�ned as the ceiling qs = dqe or
the �oor qs = bqc of the true average q of the initial values.
Let S , 1Ty[0], where 1 = [1 ... 1]T is the vector of all ones,
and let y[0] = [y1[0] ... yn[0]]

T be the vector of the quantized
initial values. We can write S uniquely as S = nL+R where
L and R are both integers and 0 ≤ R < n. �us, we have that
either L or L+ 1 may be viewed as an integer approximation
of the average of the initial values q = S/n (which may not be
integer in general).

Following the execution of the proposed distributed algorithm,
we argue that there exists k0 so that

qsj [k] ∈ { bqc , dqe }, where k ≥ k0, and vj ∈ V, (2)
where q, from (1), is the actual average of the initial values. In
such case, we say that quantized average consensus has been
reached.

4. QUANTIZED AVERAGING ALGORITHM WITH MASS
SPLITTING

In this section we propose a probabilistic distributed informa-
tion exchange process in which the nodes transmit and receive
quantized messages so that they reach quantized average con-
sensus on their initial values a�er a �nite number of steps.
�is probabilistic quantized mass transfer process is detailed
as Algorithm 1 below (for the case when blj = 1/(1+D+

j ) for
vl ∈ N+

j ∪ {vj} and blj = 0 otherwise).

�e intuition behind the proposed algorithm is that, at each
time step k, each node vj checks its mass variable zj [k]. If
zj [k] > 0, it updates its state variables and then, it splits yj [k]
into zj [k] equal integer pieces (with the exception of some
pieces whose value might be greater than others by one). �en,
it transmits each piece to a randomly selected out-neighbor or
to itself 2 . Finally, it receives the transmi�ed messages from its
in-neighbors and repeats the operation.
Remark 2. Notice that the operation of Algorithm 1 is dif-
ferent from the algorithms presented in Rikos and Hadjicostis
(2018). Speci�cally, in Rikos and Hadjicostis (2018), the authors
presented two distributed algorithms (a probabilistic and a
deterministic algorithm) in which every node vj “merged” (i.e.,
added) the incoming mass variables sent by its in-neighbours.
No spli�ing was done and mass variables remained “merged”
during the algorithm execution. �e authors showed that ev-
ery node vj calculated, a�er a �nite number of time steps, a
quantized fraction which is equal to the actual average q of the
initial values of the nodes (i.e., there was zero quantization er-
ror), but due to strict accumulation of the values, the proposed
protocol required a signi�cant amount of time steps and could
also lead to a memory over�ow problem if the initial node
values are all close to the maximum representable value on the
quantized scale (in which case the sum of those values may not
be representable using a speci�c number of (�xed-point) bits).
By contrast, during the operation of Algorithm 1, every node
vj “merges” and then “splits” the incoming mass variables,
2 From the de�nition of B = [blj ] in Section 2, we have that bjj = 1

1+D+
j

,

∀vj ∈ V . �is represents the probability that a particular piece held by node
vj will not be transmi�ed to any of its out-neighbors vl ∈ N+

j (i.e., node vj
will keep this piece to itself). It is important to note here that se�ing bjj > 0,
for every vj ∈ V , means that the matrix B = [blj ] is primitive, which will
be shown to be a necessary and su�cient condition for convergence of the
proposed protocol to the desired result.

Algorithm1�antized Average Consensus via Mass Spli�ing
Input
1) A strongly connected digraph Gd = (V, E) with n = |V|
nodes and m = |E| edges.
2) For every vj we have yj [0] ∈ Z.
Initialization
Every node vj ∈ V :
1) Assigns a nonzero probability blj to each of its outgoing
edges mlj , where vl ∈ N+

j ∪ {vj}, as follows

blj =


1

1 +D+
j

, if l = j or vl ∈ N+
j ,

0, if l 6= j and vl /∈ N+
j .

2) Sets zj [0] = 1.
Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:
1) Event Trigger Condition: If zj [k] > 0, it goes to Step 2. Else,
if zj [k] = 0 it goes to Step 6.
2) It sets zsj [k] = zj [k], ysj [k] = yj [k], and

qsj [k] =
⌊ysj [k]
zsj [k]

⌋
.

3) It sets (i) masy[k] = yj [k] and masz[k] = zj [k]; (ii)
cylj [k] = 0 and czlj [k] = 0, for every vl ∈ N+

j ∪ {vj}; and (iii)
δ = bmasy[k]/masz[k]c, masrem[k] = yj [k]− δ masz[k].
4) While masz[k] > 0, it repeats steps (4a)-(4e):
4a) Chooses vl ∈ N+

j ∪ {vj} randomly according to blj ,
4b) Sets czlj [k] := czlj [k] + 1,
4c) Sets cylj [k] := cylj [k] + δ,
4d) Sets masz[k] := masz[k]− 1, masy[k] := masy[k]− δ,
4e) If masrem[k] > 0, sets cylj [k] := cylj [k] + 1 and
masrem[k] := masrem[k]− 1,
5) For every vl ∈ N+

j , if czlj [k] > 0 it transmits the set of
values cylj [k], c

z
lj [k] towards out-neighbor vl.

6) It receives cyji[k] and czji[k] from vi ∈ N−j and sets

yj [k + 1] = cyjj [k] +
∑

vi∈N−
j

wji[k] c
y
ji[k], (3)

and
zj [k + 1] = czjj [k] +

∑
vi∈N−

j

wji[k] c
z
ji[k], (4)

where wji[k] = 1 if node vj receives values cyji[k] and czji[k]
from vi ∈ N−j at iteration k (otherwise wji[k] = 0).
7) It repeats (increases k to k + 1 and goes back to Step 1).

sent by its in-neighbours; spli�ing of the mass variables allows
faster convergence and avoids a memory over�ow problem. As
we will see in the following sections, this modi�cation allows
Algorithm 1 to signi�cantly outperform (in terms of conver-
gence speed) the algorithms presented in Rikos and Hadjicostis
(2018) and other state-of-the-art algorithms in the available
literature.

5. CONVERGENCE OF MASS SPLITTING ALGORITHM

We are now ready to prove that, during the operation of
Algorithm 1, each agent vj reaches, a�er a �nite number of
time steps, a consensus value which is equal to the ceiling
or the �oor of the actual average q of the initial values of
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the nodes. We �rst consider the following setup and state
Lemma 1, which is necessary for our subsequent development.
Due to page constraints we do not provide the proof of our
lemma below. It will be available in an extended version of our
paper.

Setup: Consider a strongly connected digraph Gd = (V, E)
with n = |V| nodes and m = |E| edges. Suppose that
each node vj assigns a nonzero probability blj to each of its
outgoing edges mlj , where vl ∈ N+

j ∪ {vj}, as follows

blj =


1

1 +D+
j

, if l = j or vl ∈ N+
j ,

0, if l 6= j and vl /∈ N+
j .

At time step k = 0, node vj holds a “token” while all other
nodes vl ∈ V−{vj} do not. Each node vj transmits the “token”
(if it has it, otherwise it performs no transmission) according
to the nonzero probability blj it assigned to its outgoing edges
mlj .
Lemma 1. Consider the setup described above. �e probabil-
ity Pn−1Ti

that the token is at node vi a�er n − 1 time steps
satis�es

Pn−1Ti
≥ (1 +D+

max)
−(n−1),

where D+
max = maxvj∈V D+

j .

We are now ready to prove that during the operation of Al-
gorithm 1 there exists k0 so that for every k ≥ k0 we have
qsj [k] ∈ { bqc , dqe }, for every vj ∈ V , where q is the actual
average of the initial values in (1).
Theorem 1. Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes and m = |E| edges and zj [0] = 1
and yj [0] ∈ Z for every node vj ∈ V at time step k = 0.
Suppose that each node vj ∈ V follows the Initialization and
Iteration steps as described in Algorithm 1. With probability
one, there exists k0 ∈ Z+, so that for every k ≥ k0 we have

qsj [k] ∈ { bqc , dqe },
for every vj ∈ V (i.e., for k ≥ k0 every node vj has calculated
the ceiling or the �oor of the actual average q of the initial
values).

Proof. During the operation of Algorithm 1, the digraphGd =
(V, E) with associated transition matrix B = [blj ] (calculated
during Initialization Step 1) can be considered as a Markov
chain in which the nodes of the graph are equivalent to the
states of the Markov chain and the weight blj of matrix B
represents the probability of a transition from node vj towards
node vl.

It is important to notice that during Iteration Step 4, each
node vj calculates the transmission variables cylj [k] and czlj [k],
for every out-neighbor vl ∈ N+

j ∪ {vj}, by spli�ing the
received mass variables yj [k], zj [k] into zj [k] equal (or with
maximum di�erence equal to 1) pieces and then by assigning
each piece to the transmission variables cylj [k] and czlj [k] of a
randomly selected an out-neighbour vl ∈ N+

j ∪ {vj} . Each
piece is assigned to a randomly and independently selected
out-neighbor, according to the nonzero probabilities blj . �en,
if czlj [k] > 0, it transmits cylj [k] and czlj [k], towards the corre-
sponding out-neighbor vl ∈ N+

j ∪ {vj}.

�e operation of Algorithm 1 can be interpreted as the “ran-
dom walk” of n “tokens” in a Markov chain, where n = |V|,

and each token contains a pair of values y[k], z[k], for which
y[k] ∈ Z and z[k] = 1, during each time step k. Furthermore,
from Iteration Step 1, we have that if two “tokens” meet in the
same node (say vj ), during time step k, then their values y[k]
become equal (or with maximum di�erence equal to 1) and
the sum of the yj [k] values at any given k is equal to the initial
sum (i.e.,

∑n
j=1 yj [k] =

∑n
j=1 yj [0]). �us, for this proof, we

can focus on the scenario in which all n tokens meet at a
common node and obtain equal values y[k] (or with maximum
di�erence between them equal to 1).

From Lemma 1, we have that a�er n − 1 time steps, the
probability that one “token” is at node vi is

Pn−1Ti
≥ (1 +D+

max)
−(n−1). (5)

Considering that, during the operation of Algorithm 1, the n
“tokens” perform independent random walks we have, from (5),
that the probability that all n tokens meet at node vi a�er n−1
time steps is

Pn−1A Ti
≥ (1 +D+

max)
−n(n−1). (6)

Furthermore, since the events described in (5) and (6) are
mutually exclusive (i.e., they have a zero intersection) then we
have that the probability Pn−1A ATi

that all tokens meet at any
node vi ∈ V a�er n− 1 time steps is

Pn−1A ATi
≥

∑
vj∈V

(1 +D+
max)

−n(n−1) ⇒

Pn−1A ATi
≥ n(1 +D+

max)
−n(n−1). (7)

�is means that, from (7), the probability Pn−1NA ATi
for which

“not all tokens meet at any node a�er n− 1 time steps” can be
bounded by

Pn−1NA ATi
≤ 1− n(1 +D+

max)
−n(n−1). (8)

Note that Pn−1NA ATi
denotes the probability that no node will

receive all n tokens a�er n− 1 time steps.

By extending the above analysis we have that a�er λ(n −
1) time steps (i.e., λ windows, each one consisting of n − 1
time steps), we have that the probability PλNA ATi

that “not all
tokens meet at any node a�er λ time steps” is

PλNA ATi
≤ [Pn−1NA ATi

]λ. (9)

Since, from (8), we have that Pn−1NA ATi
< 1 this means that, by

executing Algorithm 1 for λ time windows, from (9) we have
that

lim
λ→∞

PλNA ATi
= 0. (10)

As a result, for arbitrarily small epsilon, we have that with
probability 1−ε, we have that ∃k′0 ∈ Z for which all n “tokens”
meet at node vj which means that |yi[k′0] − yj [k

′
0]| ≤ 1,

∀vi, vj ∈ V . Since
∑n
j=1 y[k

′
0] =

∑n
j=1 y[0] and we have that

yi[k
′
0] = {bqc, dqe}, ∀vi ∈ V .

Continuing the operation of Algorithm 1, we have that, for
time steps k > k′0, the n “tokens” will continue performing
random walks in the digraph Gd. �is means that, since Gd is
strongly connected, we have that ∃k0 ∈ N, where k0 > k′0,
for which every node vj ∈ V will receive (at least once) one
(or multiple) “tokens” during the time interval (k′0, k0]. From
Iteration Step 1, this means that the state variables qj [k0] of
every node vj ∈ V , will be equal to the ceiling or the �oor of
the actual average q (i.e., qj [k0] ∈ {bqc, dqe}, for every vj ∈ V)
which completes the proof of this theorem. It is also easy to see
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that once all “tokens” have y-values equal to the ceiling or the
�oor of the actual average q, their values cannot really change
(apart from renaming packets) as they merge and re-split at
various nodes. However, merging of packets can change the
quantized average at a particular node (from the ceiling to the
�oor of value q, and vice-versa).

6. SIMULATION RESULTS

In this section, we illustrate the behavior and the advantages
of the proposed distributed algorithm. We show the average
number of time steps needed for quantized average consen-
sus to be reached over 1000 randomly generated digraphs of
20 nodes each and compare the performance of our protocol
against existing state-of-the-art approaches. �e initial quan-
tized values of the nodes were randomly chosen between 1 and
50 (the choice was satisfying a uniform distribution i.e., for
each node the initial value was a randomly chosen quantized

value between 1 and 50 with probability
1

50
) with the average

of the initial values of the nodes turning out to be equal to

q =
651

20
= 32.55. Furthermore, for convenience, the initial

quantized value of each node remained the same for each one
of the 1000 randomly generated digraphs, which means that
the average of the nodes initial quantized values also remained

equal to q =
651

20
= 32.55. We compare the performance

of our proposed algorithm against four other algorithms: (a)
the quantized gossip algorithm presented in Kashyap et al.
(2007) in which, at each time step k, one edge 3 is selected at
random, independently from earlier instants, and the values of
the nodes that the selected edge is incident on are updated, (b)
the quantized asymmetric averaging algorithm presented in
Cai and Ishii (2011) in which, at each time step k, one edge, say
edge (vl, vj), is selected at random and, node vj sends its state
information and surplus to node vl, which performs updates
over its own state and surplus values, (c) the distributed aver-
aging algorithm with quantized communication presented in
Chamie et al. (2016) in which, at each time step k, each agent vj
broadcasts a quantized version of its own state value towards
its out-neighbors, (d) the distributed averaging algorithm with
quantized communication presented in Rikos and Hadjicostis
(2018) in which, at each time step k, each agent sends its
mass variables towards a randomly chosen out-neighbor in
the form of a quantized fraction. Figure 1 shows the average
number of time steps needed for quantized average consensus
to be reached over 1000 randomly generated digraphs of 20
nodes each, in which the average of the nodes initial values

is equal to q =
651

20
= 32.55. �e top of Figure 1 suggests

that the operation of Algorithm 1 outperforms the quantized
distributed algorithms in the available literature Kashyap et al.
(2007); Cai and Ishii (2011); Chamie et al. (2016); Rikos and
Hadjicostis (2018). One should keep in mind, however, that the
algorithms in Kashyap et al. (2007); Cai and Ishii (2011) only
perform one (pairwise) transmission at each iteration whereas
3 Note here that the algorithm presented in Kashyap et al. (2007) requires
the underlying graph to be undirected. For this reason, in Figure 1, for
the algorithm in Kashyap et al. (2007), we make the randomly generated
underlying digraphs undirected (by enforcing that if (vj , vi) ∈ E then
also (vi, vj) ∈ E while, for the algorithms in Cai and Ishii (2011); Chamie
et al. (2016); Rikos and Hadjicostis (2018) we allow the randomly generated
underlying graph to be directed.

the remaining algorithms perform multiple transmissions at
each iteration.

7. CONCLUSIONS

We have considered the quantized average consensus problem
and presented a randomized distributed averaging algorithm
in which the processing, storing and exchange of information
between neighboring agents is subject to uniform quantiza-
tion. We analyzed its operation, established that it will reach
quantized consensus a�er a �nite number of iterations, and
argued that its convergence speed appears to be the fastest in
the available literature. �e proposed algorithm allows conver-
gence to the quantized average of the initial values a�er a �nite
number of time steps, without any speci�c requirements re-
garding the network that describes the underlying communi-
cation topology, apart from strong connectedness (see Chamie
et al. (2016)).

In the future we plan to extend the operation of the proposed
algorithm to address communication problems, such as trans-
mission delays over the communication links and the presence
of unreliable links over the network.
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Fig. 1. Comparison between Algorithm 1, the distributed averaging algorithm with quantized communication in Rikos and
Hadjicostis (2018), the quantized gossip algorithm presented in Kashyap et al. (2007), the quantized asymmetric averaging
algorithm presented in Cai and Ishii (2011), and the distributed averaging algorithm with quantized communication
presented in Chamie et al. (2016), averaged over 1000 randomly generated (strongly connected) digraphs of 20 nodes each.
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