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Abstract: Artificial neural networks (ANNs) are universal function approximators, therefore
suitable to be trained as predictors of oscillatory time series. Though several ANN architectures
have been tested to predict both synthetic and real-world time series, the universality of their
predictive power remained unexplored. Here we empirically test this universality across five well-
known chaotic oscillators, limiting the analysis to the simplest architecture, namely multi-layer
feed-forward ANN trained to predict one sampling step ahead. To compare different predictors,
data are sampled according to their frequency content and the ANN structure scales with the
characteristic dimensions of the oscillator. Moreover, the quality of recursive multi-step-ahead
predictions are compared in terms of the system’s (largest) Lyapunov exponent (LLE), i.e., the
predictive power is measured in terms of the number of Lyapunov times (LT, the LLE inverse)
predicted within a prescribed (relative) error. The results confirm the rather uniform predictive
power of the proposed ANN architecture.
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1. INTRODUCTION

The paradigm of deterministic chaos provides an effective
explanation for irregular oscillatory behaviours in real
systems which we do not consider inherently stochastic
(Kantz and Schreiber, 2003; Bradley and Kantz, 2015).
The boundary between short- and long-term predictability
and unpredictability is not clearly defined and depends on
the performances of the models used for the forecasting. In
the last few decades, many attempts to push this limit as
far as possible have been made, adopting a wide range of
predictive models. Early attempts were performed in the
1980s and 1990s (Farmer and Sidorowich, 1987; Casdagli,
1989; Verdes et al., 1998), but the topic became more
prominent in recent years, due to the development of
machine learning techniques, the most widely used are
artificial neural networks (ANN), in the field of time series
analysis and prediction.

The main distinction within ANN is between feed-forward,
i.e. memory-free networks and recurrent ones. Examples of
the first category are traditional multi-layer perceptrons
(Woolley et al., 2010; Covas and Benetos, 2019), radial
basis function networks (Leung et al., 2001; Van Truc and
Anh, 2018), and fuzzy neural networks (Maguire et al.,
1998). Recurrent neurons are endowed with an internal
state and are therefore more suited to process temporal
sequences. They have been used as predictors in Han et al.
(2004); Ma et al. (2007); Yu et al. (2017); Wan et al.
(2018). In the very last years, a particular class of recurrent
networks, reservoir computers, have been demonstrated
to be extremely effective in the prediction of chaotic
dynamics (Butcher et al., 2013; Pathak et al., 2017; Lu
et al., 2017, 2018; Pathak et al., 2018a; Antonik et al.,

2018; Weng et al., 2019). Some authors developed hybrid
forecasting schemes combining machine learning tools and
knowledge-based models (Pathak et al., 2018b; Vlachas
et al., 2018; Doan et al., 2019) or combining multiple
predictive models (Inoue et al., 2001; Okuno et al., 2019).

While pursuing the best predictive performance, none of
the previous studies specifically addressed the universality
of the predictive power of ANN-based predictors. This is
the aim of this preliminary work. For simplicity, we limit
our analyses to feed-forward ANN, fully connected, trained
to predict synthetic chaotic time series one sampling step
ahead; and we recursively use the obtained predictor over
multiple-steps. We scale the network structure to the
complexity of the time series and define an appropriate
metric to compare predictions of different datasets that is
readily applicable to real-world cases.

2. METHODS

2.1 Chaotic oscillators

To generate synthetic time series, we consider five well-
known Chaotic oscillators: the Logistic and Hénon maps,
the classical prototypes of chaos in non-reversible and
reversible discrete-time systems, respectively; the gener-
alized Hénon map, to include a case of hyperchaos; the
Lorenz system, the chaos prototype in continuous-time;
and the Liley model of neocortical activity (Liley et al.,
1999, 2002), to include a high-dimensional system with
close-to-real (EEG) dynamics.

The continuous-time systems are sampled at a constant
rate not excessively larger than twice the highest frequency
significantly present in the state variables’ power spectra

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1277



x1(k)

xn(k)

x1(k+1)

xn(k+1)

ceil(d) hidden layers

block of r ELU neurons

Fig. 1. ANN architecture. The resolution parameter r is
set to 10 in all experiments; n is the dimension of the
oscillator used as data generator; d the dimension of
the corresponding attractor.

(computed numerically on oversampled signals; Welch’s
method). The same has been checked for discrete-time
systems, for which the original time-unit turned out to be
the correct sampling time. Table 1 summarizes the relevant
features of the chaotic attractors, including sampling time,
the (largest) Lyapunov exponent (LLE) and the Lyapunov
time (LT, the LLE inverse), and the fractal dimension
d (approximated with the Kaplan-Yorke formula, except
for the Logistic for which box-counting and correlations
dimensions are around 0.5). The systems’ equations and
parameter values are reported in Appendix A.

System
dim. sampling attractor
n τ LLE LT=1/LLE d '

Logistic 1 1 0.354 2.825 0.50
Hénon 2 1 0.432 2.315 1.26
generalizedHénon 3 1 0.277 3.610 2.13
Lorenz 3 0.1 0.905 1.105 2.06
Liley 10 2ms 0.047ms−1 21.28ms 2.10

Table 1. Chaotic attractors

2.2 Neural architecture and training

As anticipated in the Introduction, we limit our analyses
to fully connected, feed-forward ANN, trained to predict
one sampling step ahead. To predict with a consistent
quality across different data generators, the proposed ANN
is structured as follows:

• The number of input and output neurons correspond
to the dimension n of the data generator. When
dealing with real-world time series, n can be replaced
by the embedding dimension of the reconstructed
dynamics in the space of delayed samples (Kantz and
Schreiber, 2003; Bradley and Kantz, 2015).
• A basic building block of r neurons (with exponential-

linear unit ELU activation) is defined, where r (set to
10 in all experiments) is a resolution parameter.
• Each network’s layers contains n blocks of r neurons,

because n are the functions to be identified, each
giving one output, and r neurons per-function are
used to resolve each of the independent dimensions
in state space over which the function need to be
identified.
• Because we only use regime data, the number of these

independent dimensions corresponds to the attrac-
tor’s dimension, a priori known in case of synthetic

data (see Tab. 1) or estimated on the reconstructed
attractor for real-world time series. For each dimen-
sion, up-rounding to the closest integer for fractal
dimensions, we place a layer.

The ANN architecture is illustrated in Fig. 1. Note that it
is technically deep when the attractor’s dimension is larger
than one.

We build the training dataset by means of a noise-free
numerical simulation of the oscillator’s model, starting
from an initial condition on (i.e., sufficiently close to)
the oscillator’s attractor. Let xi(k), k = 1, . . . , N , be
the ground truth samples of the oscillator’s i-th state
variable, i = 1, . . . , n, x(k) be the oscillator’s state vector,

and x̂
(h)
i (k) be the h-step-ahead prediction of xi(k) based

on the true state x(k − h), x(1 − h) being the initial
condition, at time t − h, used to generate the dataset.

Let also xi and x̂
(h)
i pack the ground truth samples and

predictions into N -dimensional vectors. The number N of
ground truth samples to be used for each oscillator must
be selected to grant a consistent quality across different
data generators. We therefore extend the dataset until we
reach a one-step-ahead (h=1) training loss-value within a
prescribed threshold. To this end, however, we cannot use
the standard mean-squared-error (MSE) loss function

MSE(h) =
1

n

n∑
i=1

MSE(xi, x̂
(h)
i ),

MSE(xi, x̂
(h)
i ) =

1

N

N∑
k=1

(
xi(k)− x̂(h)i (k)

)2
, (1)

because it assumes absolute, rather than relative values,
making impossible to set a meaningful threshold across
different systems.

For this reason, we introduce a relative loss function,
the R2-score (sometimes known as Nash-Sutcliffe model
efficiency coefficient and not to be confused with the
determination coefficient), defined by

R2(h) =
1

n

n∑
i=1

R2
(
xi, x̂

(h)
i

)
,

R2
(
xi, x̂

(h)
i

)
= 1−

MSE
(
xi, x̂

(h)
i

)
MSE

(
xi, x̄i

)
= 1−

∑N
k=1

(
xi(k)− x̂(h)i (k)

)2∑N
k=1

(
xi(k)− x̄i

)2 , (2)

where x̄i is the mean value of xi.

The R2-score measures the quality of the predictions

x̂
(h)
i (k) with respect to the trivial forecasting of the mean

value of the observed data (R2 = 0 for the trivial predic-
tion). This metric varies in the range (−∞, 1]: the upper
bound is obtained in case of a perfect forecasting. The R2-
score is widely used because it can be seen as a normalized
MSE, as MSE(xi, x̄i) at denominator in (2) is the data
variance.

As tradition in machine learning, we train the networks by
optimizing the MSE loss function (one-step ahead, using
Adam optimization algorithm), but we set the size N of
the dataset to get an R2-score (one-step ahead on the
dataset itself) of at least 0.9999 (almost perfect fitting of
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the training dataset; we start with N = 103 and ten-fold N
until we meet the threshold; 80% of the data are used for
training and 20% for validation). Following this criterion,
104 samples are enough for the three discrete maps and
for the Lorenz system; 106 samples are necessary for the
Liley system. We also tune the optimal combination of the
hyper-parameters (the learning rate and batch size of the
gradient descent), by adopting a traditional grid search
approach. The selected learning rates are 10−3 for the
discrete maps, and 10−4 for the Lorenz and Liley systems.
A batch size of 128 ensures a good compromise between
forecasting performance and training time.

2.3 Performance metrics

To quantify the predictive power of the trained ANN, we
build a test dataset by simulating the oscillator’s model
from a different initial condition with respect to the one
used for training. As discussed in the previous section, the
MSE metric is not designed to compare the quality of pre-
dictions on different systems, so we compute the R2-score
(defined in (2)) of multiple-step-ahead predictions (h>1)
over the test dataset (multiple-step-ahead predictions are
obtained recursively, by feeding the network outputs back
as inputs). However, even when measured by the R2-
score, the quality of predictions can still significantly vary
across different systems, and even within the attractor of a
system, because the quality is not normalized with respect
to the difficulty of the forecasting task. The universal way
to measure how challenging is the prediction of an oscillat-
ing time series is the (largest) Lyapunov exponent (LLE)
(Pathak et al., 2018a,b), the average exponential rate
of expansion/contraction (if positive/negative) of nearby
trajectories. We therefore define the predictive power of
our ANN architecture as the number of Lyapunov times
(LT, the LLE inverse) within which the forecasting horizon
h gives an R2-score above a prescribed threshold.

To analyze the distribution of the ANN predictive power
within the system’s attractor, we introduce a local metric
based on the absolute error. For each ground truth value
xi(k) of the system’s state variables xi in the test dataset,
we normalize the absolute prediction error |xi(k + h) −
x̂
(h)
i (k + h)| by 3-times the data standard deviation σi =√
MSE(xi, x̄i) and we consider the largest h for which

the so-obtained relative error stays within 10%. We then
express the horizon length in unit of LTs and we average
the obtained metric over the state’s components, i =
1, . . . , n.

3. RESULTS

To assess the universality of the predictive power of the
proposed ANN architecture, Fig. 2 reports the R2-score
(2) for increasing length h of the forecasting horizon for
the five considered chaotic oscillators, separately for each
state variable xi. The forecasting horizon in the bottom
horizontal axis is expressed in the system’s physical time
t = τ h, where τ is the sampling time reported in Tab. 1,
while the unit of the top horizontal axis is the LT. For
each h ≥ 1 (multiple-step-ahead predictions, obtained
recursively), the R2-score is computed for a test dataset
of N = 105 points on the oscillator’s attractor.
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Fig. 2. R2-score R2
(
xi, x̂

(h)
i

)
for increasing length h of the

forecasting horizon, separately for each state variable.

The figure confirms the universal predictive power of our
ANN architecture. Though predictors for different systems
do show different (average) forecasting quality, differently
degrading for increasing h, the patterns uniformize if read
on the LT-time-scale (top horizontal axis). E.g., averaging
over the systems’ state variables, the R2-score drops below
0 after 5.41, 5.44, 4.65, 4.37, 4.66 LT for the five considered
chaotic oscillators (top-to-bottom).

Note that when the forecasting horizon is too long, the R2-
score approaches−1 for all systems. For chaotic oscillators,
this is a good feature of the predictor. Essentially, when
h is large, the data xi(k) and its best possible prediction
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x̂
(h)
i (k) becomes two uncorrelated samples over the sys-

tem’s attractor. The expected squared error then becomes
twice the data variance, so the R2-score approaches −1
(see (2); see Appendix B for a formal proof).

To assess the universality of the predictive power within
the attractor of each system, Fig. 3 shows the scatter-plots
of our local metric over the points of the test datasets (the
same datasets used in Fig. 2). Again, we can observe the
rather uniform predictive power.

4. CONCLUSIONS

We have successfully tested the universality of the predic-
tive power of the ANN architecture proposed in Fig. 1
on five well-known chaotic oscillators. For the robust-
ness of the test, the oscillators range from simple low-
dimensional to complex high-dimensional systems, includ-
ing non-reversible and hyper-chaotic ones (see Tab. 1). The
universality has been assessed in three ways. 1) Across the
different oscillators, the R2-scores computed for increasing
length of the forecasting horizon on test datasets, show
common deterioration patterns if the forecasting length
is measured in units of the oscillator Lyapunov time (LT,
the inverse of the largest Lyapunov exponent of the chaotic
attractor). 2) For all predictors, the R2-score approaches
−1 for long forecasting horizons, a feature that we realized
to be an interesting quality check. 3) Within the attractor
of each system, the universality of the predictive power
is shown by a local metric scaled by the system’s LT.
Though we only used synthetic data, our approach is
readily applicable to noisy and real-world time series.

Despite the focus of this work is not on performance,
the proposed architecture—feed-forward one-step-ahead
predictors used recursively—excels in forecasting short
ranges, making it suitable for real-time applications which
require fast computations. Further enhancement could
be obtained with a careful hyper-parameters tuning or
using deeper networks. These are however marginal im-
provements. For mid-to-long range prediction of chaotic
systems, architectures trained to predict multiple-steps
ahead might be preferable, since they should be able to
contrast the error propagation inherent with the recursive
approach. Furthermore, more advanced recurrent architec-
tures, such as reservoir computers (Pathak et al., 2018a)
and LSTM networks (Vlachas et al., 2018), should be
employed to further confirm both performance and uni-
versality.

Note, however, that even disposing the perfect predictor,
any initialization error in the predictor’s input (due to
unavoidable measurement errors and noise in real-world
applications) is tenfold every each log(10) ≈ 2.3 LTs,
so that forecasting noise-free time series beyond 3-4 LTs
becomes a theoretical exercise. Longer forecasting horizons
can however obtained in the parts of the system’s attractor
in which the dynamics is mildly chaotic or contracting. A
related issue, to be addressed in future work, is indeed
the normalization of our local metric by the local LT, the
inverse of the local exponential rate of divergence.

Specifically for control applications (Box et al., 2015),
while predictive control is usually model-based or employ-
ing observers such as a Kalman filter, robust forecasting

can provide a model-free approach (Piche et al., 2000;
Kumar et al., 2018).
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Appendix A. CHAOTIC OSCILLATORS

The state vector of the oscillator is denoted by x and its
dimension by n, the single components are xi, i = 1, . . . , n;
the discrete and continuous times by k and t, so that x(k)
and x(t) are vectors in Rn and x(0) is the initial condition.

A.1 Logistic map

The logistic map is a one-dimensional discrete-time model
introduced by Pierre Francois Verhulst to model the demo-
graphic growth a population assuming a limited carrying
capacity of the environment. The state equation is

x(k + 1) = px(k)(1− x(k)) (A.1)

with x(k) representing the ratio between the current and
maximum population density and parameter p ∈ (0, 4) the
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per-unit growth-rate at low density. We use p = 3.7, for
which the observed behavior is chaotic (see Tab. 1).

A.2 Hénon map

The Hénon map is a two-dimensional discrete-time system
introduced by Michel Hénon as a simplified model of the
Poincaré section of the Lorenz model. The equations are

x1(k + 1) = 1− ax1(k)2 + x2(k) (A.2a)

x2(k + 1) = bx1(k) (A.2b)

We use the standard parameter values a = 1.4 and b = 0.3,
for which the LEs are λ1 = 0.432 and λ2 = −1.636.

A.3 Generalized Hénon map

Baier and Klein generalized the Hénon map to a system of
any dimension. It is suitable for the purposes of this work
to employ the three-dimensional implementation given by

x1(k + 1) = a− x2(k)2 + bx3(k) (A.3a)

x2(k + 1) = x1(k) (A.3b)

x3(k + 1) = x2(k) (A.3c)

where a = 1.9 and b = 0.03. The system is hyperchaotic,
with λ1 = 0.277, λ2 = 0.262, and λ3 = −4.046.

A.4 Lorenz system

The Lorenz system models the convective motion of a two-
dimensional fluid cell warmed from above and cooled from
below. The state equations are

ẋ1 = σ(x2 − x1) (A.4a)

ẋ2 = x1(ρ− x3)− x2 (A.4b)

ẋ3 = x1x2 − βx3 (A.4c)

where x1, x2, and x3 describe the rate of convective
overturning, horizontal temperature variation and vertical
temperature variation respectively. We use the standard
parameter setting σ = 10, ρ = 28, and β = 8/3, for which
the LEs are λ1 = 0.900, λ2 = 0.004, and λ3 = −14.340.

A.5 Liley system

The Liley system models the neocortical activity of a
column of 40,000 to 100,000 neurons, measurable during
noninvasive EEG (Liley et al., 1999, 2002). The state
equations are

τeḣe=
[
her−he+

heeq−he
|heeq−her|

Iee,1+
hieq−he
|hieq−her|

Iie,1

]
(A.5a)

τiḣi=
[
hir− hi +

heeq−hi
|heeq−hir|

Iei,1+
hieq−hi
|hieq−hir|

Iii,1

]
(A.5b)

İee,1 = Iee,2 (A.5c)

İee,2 =−2aIee,2 − a2Iee,1 +Aae[NeeSe(he) + pee] (A.5d)

İie,1 = Iie,2 (A.5e)

İie,2 =−2bIie,2 − b2Iie,1 +BbeNieSi(hi) (A.5f)

İei,1 = Iei,2 (A.5g)

İei,2 =−2aIei,2 − a2Iei,1 +Aae[NeiSe(he) + pei] (A.5h)

İii,1 = Iii,2 (A.5i)

İii,2 =−2bIii,2 − b2Iii,1 +BbeNiiSi(hi), (A.5j)

The state variables, he and hi, describe by the mean
soma membrane potentials of the excitatory and inhibitory
neuron population, respectively. The variables Ipq,1 with
p, q ∈ {e, i} model the synaptic activity from neuron pop-
ulation p to population q, while their temporal derivations
are the variables Ipq,2. The function Sq(hq) converts the
mean soma membrane potentials hq into an equivalent
mean firing rate

Sq(hq) = mq(1 + exp(−
√

2(hq − θq)/sq))−1 (A.6)

with firing thresholds θe = θi = −50 mV, corresponding
standard deviations se = si = 5 mV and mean maximal
firing rates me = mi = 0.5 ms−1. Other parameters
include the resting potentials her = hir = −70 mV, the
equilibrium potentials heeq = 45 mV and hieq = −90 mV,
population membrane time constants τe = 9 ms and τi =
39 ms, excitatory and inhibitory population postsynaptic
potential peak amplitudes A = 0.81 mV and B = 4.85 mV,
synaptic rate constants a = 0.49 ms−1 and b = 0.592 ms−1,
the numbers of synapses received by excitatory and in-
hibitory neurons from nearby excitatory and inhibitory
neurons Nee = Nei = 3034 and Nie = Nii = 536, and
the inputs from distant excitatory cortical and subcortical
neurons pee = 9.3 ms−1 and pei = 4.0 ms−1. The com-
puted LEs are λ1 = 0.047 ms−1, λ2 = −0.003 ms−1, and
λ3 = −0.462 ms−1.

Appendix B. THE PREDICTOR’S ATTRACTOR

Imagine to have the perfect predictor, i.e., a copy of the
data generator. If the data are chaotic, it is well known that

the prediction x̂
(h)
i (k) will anyway diverge, for increasing

forecasting horizon h, from the true data xi(k), because
the local divergence that typifies chaos (the LLE is the
average exponential rate of local divergence) amplifies any

small initialization difference |xi(k − h) − x̂
(h)
i (k − h)|

between the data generator and the predictor. Because
the predictor is perfect, for large enough h, we can imagine

xi(k) and x̂
(h)
i (k) as two uncorrelated trajectories within

the chaotic attractor, so that, for large N as well, we have

1

N

N∑
k=1

xi(k) =
1

N

N∑
k=1

x̂
(h)
i (k) = E[xi(k)] = E[x̂

(h)
i (k)] (B.1a)

1

N

N∑
k=1

xi(k)x̂
(h)
i (k) = E[xi(k) x̂

(h)
i (k)] = E[xi(k)] E[x̂

(h)
i (k)].

(B.1b)

Exploiting (B.1), we can then write

MSE
(
xi, x̂

(h)
i

)
= E

[(
xi(k)− x̂(h)i (k)

)2]
= E[xi(k)2]− E[2xi(k) x̂

(h)
i (k)] + E[x̂

(h)
i (k)2]

= E[xi(k)2]− 2E[xi(k)] E[x̂
(h)
i (k)] + E[x̂

(h)
i (k)2]

= 2E[xi(k)2]− 2E[xi(k)]2

= 2(E[xi(k)2]− x̄21),

that substituted into (2) gives R2
(
xi, x̂

(h)
i

)
= −1.

The fact that the R2-score approaches −1 for large h is
hence a quality check for the predictor. It means that the
predictor, used recursively as a dynamical system itself, is
able to generate an attractor with the same characteristics
of the data generator.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1282


