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Abstract: This paper presents an agile and robust spacecraft attitude tracking controller using
the recently reformulated incremental nonlinear dynamic inversion (INDI). INDI is a combined
model- and sensor—based control approach that only requires a control effectiveness model and
measurements of the state and some of its derivatives, making a reduced dependency on exact
system dynamics knowledge. The reformulated INDI allows a non-cascaded dynamic inversion
control in terms of Modified Rodrigues Parameters (MRPs) where scheduling of the time-varying
control effectiveness is done analytically. This way, the controller is only sensitive to parametric
uncertainty of the augmented spacecraft inertia and its wheelset alignment. Moreover, we draw
some parallels to time-delay control (TDC) —more familiar in the robotics community— which
have been shown to be equivalent to the incremental formulation of proportional-integral-
derivative (PID) control for second order nonlinear systems in controller canonical form.
Simulation experiments for this particular problem demonstrate that INDI has similar nominal

performance as TDC/PID control, but superior robust performance and stability.

Keywords: aerospace, tracking, application of nonlinear analysis and design

1. INTRODUCTION

Future small satellite systems are expected to be more
performant not only for fine pointing capabilities in data
acquisition but also in terms of high agility for maneu-
verability (Yuan, Z., Chen, Y., and He, R. (2014). This
emerging field of ‘agile Farth Observation’ motivated the
development of a high-agility attitude control system for
the the satellite platform BIROS (Bispectral InfraRed Op-
tical System) while actuated with a redundant array of
‘High- Torque- Wheels” (HTW) (Acquatella B. (2018)).

The topic of optimal and agile spacecraft rotational ma-
neuvers is quite extensive and has been studied for many
decades (Junkins and Turner (1986); Ross et al. (2008);
Fleming et al. (2010)). However, most of the work reported
in literature relies on optimization and some form of trajec-
tory optimization, which might be difficult to implement
on-board. In this paper, we are motivated to find an agile
attitude control solution in closed-loop feedback form.
This is challenging because of the many nonlinearities
involved.

Incremental nonlinear dynamic inversion (INDI) has been
proposed as a promising sensor-based approach provid-
ing high performance and robust nonlinear control for
aerospace vehicles without requiring a detailed model of
the controlled plant. The INDI approach reduces its de-
pendency on onboard or baseline models while making
use of actuator output and angular acceleration measure-
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ment feedback. Theoretical development of increments of
nonlinear control action date back from the late nineties
by Smith (1998); Bacon and Ostroff (2000) which were
further developed as ‘incremental NDI' (Chen and Zhang
(2008); Chu (2010); Sieberling et al. (2010); Simplicio et al.
(2013)) for flight control as well as for spacecraft attitude
control (Acquatella B. et al. (2012)). More recently, this
technique has been applied also in practice for quadrotors
using adaptive control by Smeur et al. (2016), and in real
flight tests by van Ekeren, W., Looye, G., Kuchar, R. O.,
Chu, Q. P., and Van Kampen, E. (2018); Grondman, F.,
Looye, G., Kuchar, R. O., Chu, Q. P., and Van Kam-
pen, E. (2018), verifying its performance and robustness
properties against aerodynamic model uncertainties and
disturbance rejection.

INDI relies on the assumption that for small time in-
crements and high sampling rates, the nonlinear system
dynamics in its incremental form is simply approximated
by the (linearized) control effectiveness evaluated at the
current state. Recently, the INDI control in the literature
has been reformulated for systems with arbitrary relative
degree and without recurring to cascaded-control struc-
tures, i. e., without using a time—scale separation assump-
tion (Wang, X., van Kampen, E., Chu, Q.P., and Lu, P.
(2019b)). This reformulation allowed to extended further
the incremental nonlinear control approach for Sliding
Mode Control by Wang, X., van Kampen, E., Chu, Q.P.,
and Lu, P. (2019a). For these new reformulations and
extensions, conditions for stability and robustness analyses
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have been established and analyzed using Lyapunov-based
methods. Another nonlinear control method is time—delay-
control (TDC) (Youcef-Toumi and Ito (1990); Jung et al.
(2004); Chang and Jung (2009)), more commonly known in
the motion control and robotics community and pioneered
in the 90’s by the works of Hsia, Youcef-Toumi, et al.
(Youcef-Toumi and Ito (1990)). TDC works by estimating
and compensating disturbances and system uncertainties
(model and parametric) by utilizing time—delayed signals
of some of the system variables.

In this paper, we present three main contributions in the
context of nonlinear spacecraft attitude control system
design. 1) We consider the reformulated INDI control
for the spacecraft attitude control problem where input-
output linearization is done without the usual time scale
separation principle. 2) We revisit the reformulated INDI
for the attitude control problem and introduce a time-—
delay explicitly in this reformulation. 3) We revisit TDC
and establish the relationship and condition for equiva-
lence between INDI and TDC. Based on previous results
reported in the robotics literature showing the relationship
between discrete formulations of TDC and the incremen-
tal formulation of proportional-integral-derivative control
(PID) control, we also establish a clear relationship be-
tween INDI and nonlinear-PID control.

2. MODELING OF SPACECRAFT WITH REACTION
WHEELS

First we describe the comprehensive nonlinear rotational
dynamics model for spacecraft including a generic set of
reaction wheels as shown in Karpenko et al. (2014);
Acquatella B. (2018). In this paper, we consider the
Modified Rodrigues Parameters (MRPs) (Tsiotras (1996);
Schaub, H. and Junkins, J.L. (2003)) as they represent a
well defined attitude parameterization for all Eigen-axis
rotations in the large domain of 0° < 6 < 360° where 6 is
the principle angle rotation around the Euler-axis A. The
MRP attitude is a suitable kinematic parameterization
given their potential advantages for spacecraft attitude
control (Tsiotras (1996); Schaub, H. and Junkins, J.L.
(2003)).

2.1 Kinematics

Consider first an array consisting of n reaction wheels.
Introducing unit vectors a; which give the orientation of
the spin-axis of each reaction wheel with respect to the
spacecraft coordinate system, these are collected in the
configuration or alignment matrix A = [a; a,]. In
that sense, the kinematics of the i—th reaction wheel in
terms of its spin-axis angle ®,, and angular velocity €,
is simply given by <i>w_¢ = Qus, t = 1,...,n. The MRP
vector o is defined in relation to the Euler-axis A and
principle angle rotation 6 as o = Atan (6/4) (Schaub, H.
and Junkins, J.L. (2003)), and the kinematic differential
equation relating o with the spacecraft angular velocity
w € R3 (with respect to the body fixed frame) in vector
form is given by Schaub, H. and Junkins, J.L. (2003) as

1 1
& = 1 [(1-0To)I3x3+25(0) +2007] w= ZB(O'> w

where S(-) is defined such that S(z)y = = x y for any
x,y € R3. Moreover, in this paper we will also interested
on the exact relation (Schaub, H. and Junkins, J.L. (2003))

6=1[Blo)wtBo)w]|=1Clows) @
where
B(o) w= %[ 207w(l —oTo)w — (1 + oTo)wTwo

—40TwS(w)o + 4(0Tw)’o |

which relates the MRP “acceleration” & to the rigid
body’s angular velocity w and angular acceleration w. This
relationship will be key for the attitude control design as
it will be clear later on.

2.2 Dynamics

Following the derivations in Karpenko et al. (2014), we ob-
tain the rotational dynamics model as follows. First, con-
sider the angular momentum of the spacecraft equipped
with the reaction wheel array in question

H=Iw+h (3)

where, expressed in body-fixed frame, H € R? is the
total angular momentum of the system; I € R3*3 is the
constant inertia matrix of the spacecraft including the
reaction wheels; w € R3 is the spacecraft angular velocity;
and h € R3 is the total angular momentum vector
associated with the reaction wheel array. The angular
momentum h can be expressed from individual actuator
frames to body-fixed frame as

n
h=> aih,;=Al,Q, (4)

i=1
where I, = diag[ I 1 I, , ] is a diagonal matrix of
reaction wheel spin-axis inertia values and Q = Q,, + ATw
the inertial angular rate of the reaction wheel array, where
the term ATw is the extra angular motion relative to the
spacecraft. Considering the angular momentum associated

with the ¢—th reaction wheel in actuator frame

hw7i:Iw7i(Qw,i+a}w), 1=1,...,n, (5)

we can already obtain the differential equation describing
the reaction wheel dynamics in terms of reaction wheel
torques 7, ;, which are considered as the exogenous inputs
to the system provided by the wheel’s powertrain

1=1,...,n. (6)

Because the angular momentum must be conserved in the
absence of external perturbations, applying the transport
theorem (Junkins and Turner (1986); Karpenko et al.
(2014)) to Eq. (3), the following relation is obtained

. R T-
Qw,i - Iw,i Tw,i — a; W,

d

Combining Egs. (4), (6), and (7), the comprehensive
nonlinear model for spacecraft dynamics equipped with
reaction wheels Karpenko et al. (2014) is given by

w —w X (Jw+ A4y, + AT ATw)
Qw,l Tw,1

r| . |= . (8)
Q’w,n Tw,n
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where
I+AIwAT alIw)l aan,n
Iw,laI Iw,l 0
I= . . .
I, aj] 0 I,

is an augmented inertia coupling matrix for the full system.

2.8 Full nonlinear spacecraft model

The augmentation of the nonlinear spacecraft dynamics
model together with the MRP kinematics can be rewritten
as a full model in the generic form of affine n-dimensional
multivariable nonlinear system with m inputs u; and m
outputs y;
&= f(x)+g(z)u (9a)
y = h(z) (9b)
where x € R™, u € R™, and y € RP. The functions f, g,
and h are assumed to be smooth vector fields continuously
differentiable on R™. Moreover, the system has a vector
of relative degree of [ p1 pp |7 which represents the
number of differentiation of each output y; (i = 1,...,p)
needed for the input to appear Slotine and Li (1990),
and the total relative degree is obtained as p = p; +
-+ 4 pp. In this paper we consider the output MRP as
control variables y = h(x) = o, and assume to have
three reaction wheels (n,, = 3) as actuators, hence u =
[Tw1 Twz2 Tws|T and p=m = 3. Whenever p < m, the
input-output linearization is not straightforward and some
form of control allocation is required. Else, when p > m,
the control problem is underactuated and the input-output
linearization is underdetermined. These aspects are how-
ever out of the scope of this paper. Considering the vector
r=[oc w R,]|T with, respectively, o = [01 02 0o3]T,
w=[w, wy w,|T,andQy =[Qu1 Qw2 Qus3]T, the
full nonlinear system dynamics in (9) is obtained with the
functions given as

1B(o) w
flz) = ptl | wx (Iw+ AI,Q, + AT,AwW) ]| |,
031
(10a)
033
g(w) = | p1 [03><3] =G. (10b)
1343

3. INCREMENTAL NONLINEAR DYNAMIC
INVERSION

8.1 Nonlinear Dynamic Inversion Control

Nonlinear dynamic inversion (NDI) uses an accurate
model of the system to entirely or partly cancel its nonlin-
earities by means of feedback and exact state transforma-
tions. Finding an explicit relationship between the input
and the output of the system is generally not straightfor-
ward because they are not directly related. First, recall

L;I hl ($)
I(x) = : (11a)

L ()

Ly, L hy(x) -+ Ly, L™ ha(w)
LglL/}m_lhm(w) LgmL;m_lhm(w)
(11b)

71hj(:c) are Lie derivatives

where L?jhj(:c) and LgiL’;j
of the scalar functions h;(x) with respect to the vector
fields f(x) and g;(x), with j, ¢ = 1 to m. Denoting
the differentiated outputs ¢ = [yfﬁl yPm—L]T the
following relation is obtained

¢ =l(z)+ M(x)u. (12)
Denoting v as a virtual control input, the vector p(x) =
—M *(z)l(z), and the matrix ¥(x) = M~ *(x), then the
state feedback control law w defined as

u = p(x) + I x)v (13)
cancels all nonlinearities in closed-loop, and a simple linear
input-output relationship between the new input v and the
new output ¢ is obtained

(=v (14)
as long as ¥(x) is not singular, i.e., when M () is invert-
ible (which is always the case for the model in (10)). Apart
from being linear, the input v; is decoupled from the differ-
entiated output (;. From this fact, the input transforma-
tion (13) is called a decoupling control law and the result-
ing linear system (14) is called the single-integrator form.
The single-integrator form (14) is sought to be rendered
exponentially stable with the proper design of of v. From
this typical tracking problem it can be seen that the entire
control system will have two control loops (Chu (2010);
Sieberling et al. (2010)): the inner linearization loop (13),
and the outer control loop (14). This resulting NDI control
law depends on accurate knowledge of the model (I(x) and
M (x)) and its parameters, hence it is susceptible to model
and parametric uncertainties. For that reason we are now
interested in the concept of incremental NDI.

3.2 Incremental Nonlinear Dynamic Inversion Control

The concept of incremental nonlinear dynamic inversion
(INDI) amounts to the application of NDI to a system
expressed in an incremental form. This improves the ro-
bustness of the closed-loop system as compared with con-
ventional NDI since dependency on the accurate knowl-
edge of the plant dynamics is reduced. First, we introduce
a sufficiently small time—delay A\ and define the following
deviation variables &y := &(t — A), &y := x(t — A), and
ug := u(t — \), which are the A-time—delayed signals of
the current state derivative &(t), state x(t), and control
u(t), respectively. Moreover, we will denote A& := & — &,
Ax = x — xy, and Au := u — ug as the incremental
state derivative, the incremental state, and the so—called
incremental control input, respectively. To obtain an incre-
mental form of system dynamics, we consider a first-order
Taylor series expansion of #(t) (Sieberling et al. (2010);
Simplicio et al. (2013)), not in the geometric sense, but
with respect to the newly introduced time—delay A as

L P
¢= ¢o+ 2 [l(m) + M(a:)u] mszAw

+ M (z0)Au + O(Ax?)
=~ (o + Lo(mo) Az + M (xp)Au
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with

Co = C(t = A) = U(zo) + M (mo)uo (15a)
and

Lo(wo) = % (x) + M(@)u| emay (162

which represents the Jacobian linearization of the on-
board model. This means an approximate linearization
about the A—delayed signals is performed incrementally,
and not with respect to a particular equilibrium or oper-
ational point of interest. We will refer to the decoupling
matrix M (z) evaluated at g as the instantaneous control
effectiveness (ICE), i.e., the control effectiveness evaluated
at the current state, M (x).

Time-scale separation (TSS) assumption: For a suf-
ficiently small time-delay A and for any incremental con-
trol input, it is assumed that Ax does not vary significantly
during A. In other words, the input rate of change is much
faster than the state rate of change:

€EINDIrss(t) S Az = —x9 =20, V Au (17)
which leads to
¢= o+ Lo(z—xo) +M(x0) - (u — uo)
——
~0
or simply )
AC = M(x) - Au (18)

This assumption shows that for high sampling rates the
nonlinear system dynamics in its incremental form is
simply approximated by the ICE matrix M (), and that
for the development of control laws, it is required the
availability of {, and ug that are implicit in (18). For the
obtained approximation A¢ = M (x¢)-Awu, NDI is applied
to obtain a relation between the incremental control input
and the output of the system
’LL:’UJ()+M($B())71(I/7CO). (19)
Note that the incremental input wo that corresponds to
¢y is obtained from the output of the actuators, and it
has been assumed that a commanded control is achieved
sufficiently fast in regards to the actuator dynamics. The
total control command along with the obtained linearizing
control Au = u(t — \) can be rewritten as
u(t) = w(t — A) + M(zo) '[v — ((t = N)]. (20)
The dependency of the closed-loop system on accurate
knowledge of the dynamic model in I(x) is largely de-
creased, improving robustness against model uncertain-
ties contained therein. Therefore, this implicit control law
design is more dependent on accurate measurements or
estimates of the state derivatives ¢, and on the incremen-

tal control input ug, but is still largely dependent on the
model reflected in M ().

8.8 NDI attitude control

Since the output of the system has been selected to be
the MRP vector y = o the system has a vector of
relative degree [p1 p2 p3]T = [2 2 2]7 and total
relative degree p = 6. Since p < n, there are internal
states 7 which can be easily proven to lead to marginally
stable zero dynamics. Denoting the differentiated outputs
C=[o" ot oM T =[5, 9 G3]T, the rela-
tion (12) is obtained, where I(x) = L?O' and M(x) =

Lnga. The NDI control law (13) cancels all nonlinear-
ities in closed-loop and the nominal closed-loop system
(external states) is obtained as

E(G) :A(6><6)€(6) —|-B(6><3)l/(3)
y® = C(SX6)£(6)

(21)
(22)
where the upper indices indicate the dimensions of
the vectors and matrices and the new state vector &
is defined in terms of the original state x* as £ =
[o1 61 02 &2 o3 63T and A, B, and C are in
Brunovsky block canonical form (Wang, X., van Kampen,
E., Chu, Q.P., and Lu, P. (2019b)).

Denoting e = 0 — 0,y (valid for small deviations), this
single-integrator form can be rendered exponentially stable
with

v="yy+kpé+kpe (23)
where ¢, is the feedforward term for tracking tasks, and
kp and kp being 3 x 3 constant diagonal matrices whose
i—th diagonal elements kp, and kp,, respectively, are
chosen so that the polynomials s + kp,s + kp, i =
1,...,n = 3 may become Hurtwiz. This results in the
exponentially stable and decoupled error dynamics

é+kpe+kpe=0
which implies that o (t) = o,cf(t) exponentially.

(24)

8.4 INDI attitude control

Since we will consider the dynamics in its incremental form
for the control design

C(t) =t —A) = M(xo) [u(t) —u(t—A)],  (25)
the incremental nonlinear dynamic inversion results in a
control law that is only depending on the uncertainties
contained within the ICE matrix

w(t) = w(t — \) + M(xo) ™" [u (- A)]. (26)
however, notice that
O[Lih(zo)]
M@o)= —go— - & - @
~——~——" purely parametric

purely kinematic

This means that in the particular case of this plant, namely
a rigid body spacecraft actuated with a non-redundant
set of orthogonal reaction wheels and parameterized by
MRPs, the incremental nonlinear dynamic inversion is
robust since the control law is only exposed to uncertainty
in the parametric matrix G which contains information
about inertia values (of the rigid body and of the reaction
wheels). The term which is purely kinematic in this control
law is fully known and contains no uncertainties other
than the ones contained within the measured state xg. To
conclude the INDI attitude control design, we have made
use of the fact that

C(t=2) =&y =60 = [ Bloo)-wo+ Bloo) -wo |

(28)

N

where the relationship
. 1
B(o) w= 5[ 207w(l —o0To)w — (1 + 070 )wTwo (29)
—40"wS(w)o + 4(0Tw)?o | (30)

is highly beneficial to compute &g which is otherwise
very hard to estimate because of the noise contained in
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the measurements. By using the measured (¢t — A) and
commanded u(t — A) incrementally, we practically obtain
a nonlinear ‘self-scheduling’ NDI control law that is robust
to model and parametric uncertainties. The use of M (x)
in INDI is one of the key differences with respect to time-
delay control, where the control effectiveness is substituted
with a constant gain matrix instead. This method is briefly
presented next.

3.5 Time-Delay Control and relationship to INDI

Consider the following transformation as in Chang and
Jung (2009) .
¢ =H(z,u) + Mu (31)
with
H(z,u)=1(z) + [M(z) — M]u, (32)
and with M, an scalar-valued and invertible gain matrix
referred to as the incremental gain effectiveness (IGE)
matrix from now on. Defining the vector a(x) and matrix

3 as

a(z) = —M_lH(w, u) (33a)
B=M" (33b)

then, the state feedback control law u defined as
u:a(w)—l—ﬁ-l/:M_l[u—H(a:,u)} (34)

cancels all nonlinearities in the nominal closed-loop case,
as shown before, where we have used the virtual control
input as ¥ = (g5 Notice however, that still a full model
of H(x,u) is needed. Because this reformulated NDI
control law is nevertheless still depending on the model
represented by H (x, u), this controller is again susceptible
to uncertainties in this term.

To cope with the uncertainty issue, we will consider
an estimation of H denoted by H along the lines of
time delay control (TDC) (Chang and Jung (2009)), and
therefore we will consider the usual dynamic inversion

input transformation of (31) but with the H estimate
instead

w=M" [v—H(z,u)l (35)

being the nominal case when H = H which results in
perfect inversion. Our remaining task is therefore to find
a suitable H estimate such that, in combination with
v, the closed-loop system converges exponentially fast
to Eq. (14) while avoiding the uncertain terms to grow
unbounded. This means that, ultimately, the control law
given by Eq. (35) is able to obtain the desired closed-loop
dynamics defined by the nominal single integrator form
while rejecting the perturbation due to the uncertainties
in AH. For the sufficiently small time-delay A already
introduced, we consider the following approximation to
hold (Chang and Jung (2009)) such that H does not vary
significantly during A

€TDE,, ... (t) = H(x,u,t) — H(xz,u,t — \) =20 (36)
which is called time-delay estimation error at time t. If
we write the following current, and delayed dynamics,
respectively

¢(=H(z,u)+ M -u,
it is clear that
H(x,u) — H(wo,u0) = ({ — Co) — M (u — ug) = 0.

o = H(xo,u0) + M -ug

or simply

A¢ = M - Au. (37)
This relationship is used together with Eq. (31) to obtain
what is called time-delay estimation (TDE) as the follow-
ing

H:H(t—/\)zé’(t—/\)—M-u(t—)\) (38)
therefore we can rewrite in our usual notation as
H=H,=¢(y— M -u (39)

3.6 Parallels between INDI and TDC

With the TDE, the incremental counterpart of Eq. (20)
results in a control law that is not depending on the
dynamics model in H which contains I(z) and the control
effectiveness M (x), but instead on the IGE matrix M as

w=u+M " [u—éo}. (40)

in other words
u(t) =u(t— )+ M [V (- )\)} . (1)

This TDC law can be interpreted as an INDI control
whenever ~

M = M(w()), (42)
however, we had taken from the literature of TDC as
the IGE being a time-invariant gain matrix, which is the
main distinction with regards to INDI control laws. In
that regard, we can conclude that the INDI control laws
are combined model- and sensor-based control laws which
are promising for high-performance nonlinear and robust
attitude control because of this self-scheduling property
of the ICE matrix M (zo). Note that the self-scheduling
properties of INDI in Eq. (20) due to the ICE term M (z)
were lost in the TDC law of Eq. (40), suggesting that M
should be an scheduling variable as in INDI by imposing
the equivalence M = M (x).

3.7 Discrete formulations of INDI, TDC, and PID control
and their relationships

For practical implementations, sampled-time formulations
involving continuous and discrete quantities as in Chang
and Jung (2009) are more convenient and restated here.
For that, the smallest A one can consider is the equivalent
of the sampling period of the on-board computer. The
sampled formulation of (41) may be expressed as

u(k) = u(k — 1)+ M [u(k —1) =&k - 1)} (43)

where it has been necessary to consider v at sample k — 1
for causality reasons (see Chang and Jung (2009), Fig. 1).
Replacing the sampled virtual control v accordingly, we
have

u(k) =uw(k—1)+M "

[Catk=1)
+ kpé(k — 1) +kpe(k 1) = {(k—1)]  (44)
which results in
u(k) = u(k — 1)+ M ' [é(k - 1)

+kpe(k—1) + kpe(k —1)]  (45)

Previous results reported in the robotics literature (Chang
and Jung (2009)) show the relationship between this
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discrete formulation of TDC and proportional-integral-
derivative control (PID). Acquatella B. et al. (2017)
showed that INDI is equivalent to TDC but only under
the consideration when the ICE matrix was constant. This
in turn suggested a meaningful and systematic method
for PI(D)-control tuning of robust nonlinear flight control
systems via INDI as originally suggested in the systematic
method for gain selection of robust proportional-integral-
derivative (PID) controllers for nonlinear plants by Chang
and Jung (2009). Chang and Jung (2009) showed this re-
lationship first by considering the discrete implementation
of a PID control

k—1
u(k) =K |e(k —1)+ T tee(i) + Tpé(k — 1)|+us.
=0

(46)
where K denotes a diagonal proportional gain matrix, T’y
a constant diagonal matrix representing a (reset) integral
time, T'p a constant diagonal matrix representing deriva-
tive time, and up denotes a constant vector representing
a trim-bias from initial conditions. When subtracting two
consecutive terms of a discrete formulation, the integral
sum can be removed and thus the so-called PID controller
in incremental form can be obtained

u(k) =u(k —1)
+ K-t [Tpé(k—1)+eé(k—1)+T;" -e(k—1)]
(47)
If we consider a nonlinear-PID control in the form
k—1
u(k) = K(x) |e(k — 1) + T ") tee(i) + Tpe(k —1)|
i=0
(48)

comparing terms from Egs. (45)-(47)-(48), we have the
following relationships as originally found by Chang and
Jung (2009) which are the relationship between the dis-
crete formulations of TDC and PID in incremental form

K(x)=K=kp-(M-t,)™ ", (49a)
T;=kp kp', (49D)
Tp =k, (49¢)

Referring back to the Egs. (42)-(48) which shows the
relationship between INDI and TDC, considering the
state-dependent (and therefore scheduled) nonlinear-PID
proportional gain matrix K (x), it is related to the ICE
matrix M (xg) via the relationship

K(x) = K(xo) = kp - [M(zo) -t ", (50)
which then clearly suggests not only that an equivalent
discrete and incremental PID controller with gains <
K, T; T; > can be obtained in relationship to TDC
but also in relationship to INDI when considering an
incremental and self-scheduled nonlinear-PID controller
with gains < K(xzg), T, Ty >. Moreover, the tuning
of these (nonlinear-)PIDs proves to be more meaningful
and systematic than heuristic methods as already pointed
out in Chang and Jung (2009); Acquatella B. et al.
(2017). This is because the design starts from prescribing
desired error dynamics € + kpé + kpe = 0 by tuning the
Hurwitz gains < kp, kp,> and what follows is finding
the remaining IGE matrix M by the TDC approach, or
with the ICE matrix M (x) with the INDI approach. In

essence, this procedure is more efficient and much less
cumbersome than designing a whole set of PID gains
iteratively. Moreover, for attitude control systems, the
self-scheduling properties of inversion-based controllers
have suggested superior advantages with respect to PID
controls since these are, in general, not gain-scheduled
according to the nonlinear motion of the plant (Smeur
et al. (2016)). The relationships here outlined suggests that
scheduling of incremental PID control shall be done at the
level of the proportional gain K (x) via the IGE matrix
M or ICE matrix M (xg, and not over the whole set of
gains < K(z), T;, Tyq >.

3.8 Stability and Robustness Analysis

INDI relies on the assumption that for small time in-
crements and high sampling rates, the nonlinear system
dynamics in its incremental form is simply approximated
by the (linearized) control effectiveness evaluated at the
current state. However, and owing to the finite time delay
one can achieve in digital devices, there exists an error
€(t) (Wang, X., van Kampen, E., Chu, Q.P., and Lu,
P. (2019Db)), called the TDE error in the TDC literature
(Chang and Jung (2009)), for which the error dynamics
can be regarded as

é+kpé+kpe=¢€(t). (51)
Previous theoretical stability and robustness proofs for
INDI controllers had the problem of not having considered
this important residual error as pointed out by Wang, X.,
van Kampen, E., Chu, Q.P., and Lu, P. (2019b). Recently,
the INDI control in the literature has been reformulated
for systems with arbitrary relative degree and without re-
curring to cascaded-control structures, i.e., without using a
time-scale separation assumption Wang, X., van Kampen,
E., Chu, Q.P., and Lu, P. (2019b). This reformulation
allowed to extended further the incremental nonlinear
control approach for Sliding Mode Control Wang, X., van
Kampen, E., Chu, Q.P., and Lu, P. (2019a). For these new
reformulations and extensions, conditions for stability and
robustness analyses of incremental nonlinear control have
been finally established and analyzed using Lyapunov-
based methods. Details on the sufficient conditions for
closed—loop stability under INDI and discrete TDC, and
therefore applicable to this problem can be found in Wang,
X., van Kampen, E., Chu, Q.P.; and Lu, P. (2019b,a); Jung
et al. (2004); Chang and Jung (2009).

The existing sufficient condition for closed-loop stability
of INDI (Wang, X., van Kampen, E., Chu, Q.P.; and Lu,
P. (2019a)) for input—output linearizable plants have been
proposed as follows, which is similar to the one proposed
for TDC Youcef-Toumi and Ito (1990); Jung et al. (2004);
Chang and Jung (2009), and under the condition that
zero dynamics of the plant is exponentially stable and the
desired trajectory and its derivatives are bounded

‘I”—M(m)-M_lu <b<1 (52)

However, this condition does not have the sampling time
explicitly considered and it has been found that even
with a very small sampling time this condition might
be violated Jung et al. (2004). A sufficient condition for
closed-loop stability for discrete TDC systems is presented
by Jung et al. (2004); Chang and Jung (2009) as the
following (taking A as the sampling):
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’ L+ [(1+ B1yp)yp + B2vpp] A
(53)
where (1, 52, vp, Yp, and ypp are tunable gains. To
conclude, the influence model uncertainties to the refor-
mulated system can be regarded as
¢ =H(z,u)+AH(z,\) + M -u (54a)
and therefore, application of the control law w =

1

I, — M(z)- 1\7[‘1H <

M [v — H(x,u)]| to this uncertain dynamics actually
gives ¢ = v + AH(x,\) which is not linearizing as ex-
pected because of the extra uncertain term. This major
flaw of NDI-based control systems is well known and also
previously demonstrated by Sieberling et al. (2010) among
others. Wang, X., van Kampen, E., Chu, Q.P., and Lu, P.
(2019b,a) proved that

lim [|[AH(z,\)| =0, VYzeR" (55)
A—0

which implies that the term AH becomes negligible for
sufficiently high sampling rates, which has been the com-
mon assumption behind INDI control laws, and further-
more, asymptotic stability of the nominal system is proven
as the closed-loop system can be ultimately bounded by a
class KC function of the perturbation bounds.

4. ATTITUDE CONTROL SIMULATIONS

For numerical simulations to demonstrate the high-agility
attitude control system as derived in Sections 3.4 and 3.5,
we use the comprehensive analytical nonlinear model of
Section 2 for a small satellite with an inertia matrix of

10 1 0.5
I=|1 7 02| Kg-m?,
0502 9

and as main torque actuators, an array of three ‘High-
Torque-Wheels” (HTW) in orthogonal configuration (and
aligned with the principal axes). Wheel characteristics
for these HTWs are presented in (Acquatella B. (2018)),
where the most important ones are their max. torque of
0.23 [Nm] and moment of inertia of 5 x 1073 [Kg - m?].

The initial HTW wheel speeds are zero; normally dur-
ing operation, initial wheel speeds represent the angular
momentum stored in the satellite. The MRP tracking
reference commands are designed smooth up to a second
order with a simple reference trajectory generator. The
second derivative of these reference commands will act
as feed-forward acceleration commands. We restrict these
maneuvers according to the actuator limits in order to
avoid the case of actuator saturation. For all simulations
we consider the virtual controller v = y, + kpeé + kpe
so that the error dynamics are equivalent across different
scenarios. This is a classical second order dynamics where
considering a natural frequency w,, = 3 rad/s and damping
coefficient of ¢ = 0.707 we can obtain the gains kp, = 2-
C-wp=4242and kp, =w? =9, i=1,2,3.

Simulation results in nominal condition verifies that INDI
and TDC/PID control perform quite similarly. To study
the performance under realistic conditions, we apply un-
certainty in the inertia matrix of the satellite platform
and perform Monte-Carlo simulations. Figure 1 presents
the performance of the INDI attitude control under the
uncertainty considered by showcasing the attitude tracking

for the MRP reference maneuver commanded and the
respective tracking error. Further simulations showcase
a similar performance of the TDC/PID attitude control
under the same uncertainty in the inertia parameters, not
shown here because of the paper length limitation.

x107°
0.2 ‘ ‘ ‘ 5
— 41 J—
0.15 | — p— | —.
0.1}
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5
0
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(5 N Y
0 5. 10 15 20 0 5 10 15 20
time (s time (s)

Fig. 1. INDI control: MRP attitude tracking and tracking
error during a fast slew maneuver under uncertainty.

However, the nonlinear control laws perform differently
in terms of robust performance and stability according to
the metric in Eq. (52). This result is shown in Figure 2 for
both INDI and TDC/PID. At this stage it becomes evident
that the self-scheduling property of the INDI controller as
compared to the TDC/PID controllers makes the attitude
control system to guarantee a better stability margin as
compared to TDC/PID; in the latter case, their static
control effectiveness hinders the stability margin as it is
proportional to both the maneuver and the size of the
uncertainty. In summary, simulation results verified similar
nonlinear performance of agile attitude control using both
INDI and TDC/PID control. The robustness and stability
properties have been shown to be superior for INDI in
comparison to TDC/PID control for this particular case.

5. CONCLUSIONS

In this paper an agile and robust nonlinear spacecraft
attitude controller is developed based on the recent incre-
mental nonlinear dynamic inversion (INDI) reformulation.
This controller is an improvement over the previously INDI
approach for spacecraft atittude control in that it considers
a non-cascaded dynamic inversion control where schedul-
ing of the time-varying control effectiveness is done analyt-
ically. This results in a nonlinear controller scheduled only
by kinematic (fully known) and parametric terms, making
it robust to model uncertainties. Finally, a relationship
between INDI, time-delay control, and nonlinear-PID con-
trol is established. The systematic gain tuning and self
scheduling property of our INDI controller can be scaled
and readily applied to attitude control of rigid spacecraft
for agile maneuvers that do not saturate the actuators;
this issue will be addressed in future research. Simulations
results shows the effectiveness of our method.
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Fig. 2. INDI and TDC/PID criterion for closed-loop sta-
bility under uncertainty.
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