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Abstract: Typically when designing distributed controllers it is assumed that the state-space
model of the plant consists of sparse matrices. However, in the discrete-time setting, if one begins
with a continuous-time model, the discretization process annihilates any sparsity in the model.
In this work we propose a discretization procedure that maintains the sparsity of the continuous-
time model. We show that this discretization out-performs a simple truncation method in terms
of its ability to approximate the “ground truth” model. Leveraging results from numerical
analysis we are also be able to upper-bound the error between the dense discretization and our
method. Furthermore, we show that in a robust control setting we can design a distributed
controller on the approximate (sparse) model that stabilizes the dense model.
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1. INTRODUCTION

Consider the continuous-time LTI model

ẋ(t) = Âx(t) + B̂1w(t) + B̂2u(t), (1)

where x(t) ∈ Rn, w(t) ∈ Rnw , and u(t) ∈ Rnu are the
state, disturbance, and control vectors at time t, and the
task of discretizing it to take the form

xk+1 = Axk +B1wk +B2uk, (2)

where we assume k is the integer sequence k = 0, 1, 2, . . .
of sampling points and that a zero-order-hold scheme is
used.

Discretization, the process of converting (1) to (2), is a
well studied topic and numerous methods have been pro-
posed, however all methods we have encountered destroy
the sparsity patterns in (Â, B̂1, B̂2) when constructing
(A,B1, B2). This is unfortunate as the sparsity patterns
typically encode some sort of graph or network structure
in the physical system. In this work, motivated by dis-
tributed control synthesis, we seek to construct sparse
discretizations of (1) that respect the network structure
of the continuous-time model and are close (in norm) to
the “true” discrete models.

2. BACKGROUND

2.1 Discretization

The zero-order-hold sampling method (see for exam-
ple Chen and Francis (2012)) for discretization maps
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(Â, B̂1, B̂2) to (A,B1, B2) by specifying a sample rate
τ > 0 and setting

A = eÂτ , Bi =

∫ τ

0

eÂλdλB̂i, i ∈ {1, 2}, (3)

where eX defines the exponential

eX =

∞∑
k=0

1

k!
Xk

of a matrix X ∈ Cn×n. When Â is non-singular the

expression for Bi reduces to Â−1(eÂτ − I)B̂i. Define B =
[B1, B2], a simple method for computing (A,B) (which

is applicable when the Â is non-singular) was derived
by Van Loan (1978) and proceeds as follows; Define the
matrix

Ψ =


−ÂT I 0 0

0 −ÂT Q 0

0 0 Â B̂
0 0 0 0


where Q = QT is an n × n real matrix and compute the
exponential eΨτ using an appropriate method c.f. Moler
and Loan (2003). The exponential takes the form

eΨτ =

 F1(τ) G1(τ) ? ?
0 F2(τ) G2(τ) ?
0 0 F3(τ) G3(τ)
0 0 0 F4(τ)

 ,
where F3(τ) = eÂτ and G3(τ) =

∫ τ
0
eÂ(τ−λ)dλB̂. El-

ements denoted by ? have analytic expressions but are
not required here, the remaining Fi and Gi functions are
structurally similar to the case of i = 3 given above. The
reader is referred to Van Loan (1978) for the full details.

An alternative method to the sample-and-hold approach
is to take a bi-linear transformation (often referred to as
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Tustin’s method) Chen and Francis (2012); Jiang et al.

(2014). In this case (Â, B̂) are mapped to (A,B) by

A =
(
I − τ

2
Â
)−1 (

I +
τ

2
Â
)
, B =

τ

2

(
I − τ

2
Â
)−1

B̂,

provided that the necessary inverse exists.

It should be clear that any non-trivial sparsity patterns in
the system matrices in (1) will be lost if (2) is obtained
from either (3) or the bilinear-transformation method as
both involve computing a matrix exponential or taking an
inverse.

We focus on approximate discretization based on the
transformation (3). Formally, we would like to construct a
matrix F such that for a sparse matrix X, eX ≈ F with
‖eX − F‖ < δ, where δ is known a priori and F is sparse.

It should be pointed out that computing approximations
of the matrix exponential is a mature topic in numerical
analysis. In general these methods look to compute the
exponential in a computationally efficient and stable man-
ner rather than preserve any sparsity pattern (Moler and
Loan, 2003). Rational approximations seek to replace eX

with p(X)/q(X) where p and q are matrix-valued polyno-
mial functions (Higham, 2005). Spectral methods are per-
haps intuitively the simplest methods; Let X = V DV −1

where D is a diagonal matrix and V is a matrix formed
from the eigenvectors of X, then eX = V eDV −1. For
matrices with dependent eigenvectors, other factorizations
can be used. Clearly neither of these methods attempts
to produce a sparse exponential. A related problem that
arises in numerical solutions of linear ordinary differential
equations is that of computing the action v 7→ eAtv
(Al-Mohy and Higham, 2011). Krylov subspace meth-
ods (Saad, 1992) attempt to approximate this action but
again it is not clear how one could incorporate sparsity
constraints and obtain error bounds using such a method.

In this work we will make use of the fact that the matrices
we care most about are likely banded. Such matrices are
well known to have favourable localization properties, i.e.
if X is banded, then for many functions, f(X), the entries
far from the diagonal decay exponentially fast (Benzi and
Razouk, 2007). In particular, we will make use of the work
of Iserles (2000) that deals with the matrix exponential
function.

2.2 Distributed Control

In this section we briefly review the System Level Synthesis
(SLS) framework (Wang et al., 2019; Doyle et al., 2017;
Anderson et al., 2019) for solving distributed control
problems. We consider the state-feedback problem where
the plant P models the state dynamics given by (2)
augmented with the error signal z̄k = C1xk + D11wk +
D12uk. Compactly the system is written as

P(z) =

 A B1 B2

C1 D11 D12

I 0 0

 ,
which defines the map[

z̄(z)
y(z)

]
= P(z)

[
w(z)
u(z)

]
.

We seek to design a controller u(z) = K(z)y(z) =
K(z)x(z). For the remainder of the paper we drop the

dependence on z from our notation and simply use bold-
face symbols to denote signals in the z-domain.

Unlike classical control synthesis methods which seek to
design controllers that minimize the norm of the map from
w to z̄, SLS controllers work with the closed-loop system
response which maps δx to (x,u) where δx = B1w. The
system response is described by[

x
u

]
=

[
Φx

Φu

]
δx,

where

Φx = (zI −A−B2K)−1, Φu = KΦ−1
x . (4)

The proceeding theorem parameterizes all achievable
closed-loop system responses and provides a realization of
an internally stabilizing controller Wang et al. (2019).

Theorem 2.1. Consider the LTI system (2), evolving under
a dynamic state-feedback control policy u = Kx. The
following statements are true:

(1) The affine subspace defined by

[zI −A −B2]

[
Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (5)

(where z−1RH∞ denotes the space of strictly proper
and stable transfer matrice) parameterizes all sys-
tem responses from δx to (x,u) as defined in (4),
achievable by an internally stabilizing state feedback
controller K.

(2) For any transfer matrices {Φx,Φu} satisfying (5), the
controller K = ΦuΦ

−1
x is internally stabilizing and

achieves the desired system response (4).

The significance of Theorem 2.1 is that (5) provides an
affine characterization of all achievable system responses.
In recent work it was shown that if the affine expression
in (5) is not satisfied, it is still possible to construct
a stabilizing controller based on an approximate system
response (Matni et al., 2017).

Theorem 2.2. Let (Φ̂x, Φ̂u,∆) with Φ̂x, Φ̂x ∈ 1
zRH∞ be

a solution to

[zI −A −B2]

[
Φ̂x

Φ̂u

]
= I + ∆. (6)

Then, the controller K = Φ̂uΦ̂
−1
x internally stabilizes

the system (A,B2) if and only if (I + ∆)−1 is stable.
Furthermore, the actual system responses achieved are
given by [

x
u

]
=

[
Φ̂x

Φ̂u

]
(I + ∆)−1δx.

Theorem 2.2 forms the basis of what we term a system
level synthesis problem, i.e., a mathematical program that
returns a distributed optimal controller. The standard SLS
problem is

minimizeγ∈[0,1) minimize
Φ̂x,Φ̂u,∆

g(Φ̂x, Φ̂u)

subject to Φ̂x, Φ̂x ∈
1

z
RH∞,

‖∆‖ < γ, (7)

(6),

[
Φ̂x

Φ̂u

]
∈ S.
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The SLS problem (7) is quasi-convex; the inner problem is
convex, and so a simple bisection on γ suffices. Note that
the choice of norm on ∆ must be an induced-norm, this is
a sufficient condition for (I + ∆)−1 to be stable. The cost
functional g is chosen to be∥∥∥∥[C1 D12]

[
Φ̂x

Φ̂u

]∥∥∥∥2

H2

.

Finally the constraint Φ̂ ∈ S encodes locality constraints
on {Φ̂x, Φ̂u}. Further details on locality constraints can
be found in Anderson et al. (2019); broadly speaking
these constraints ensure that when a disturbance hits the
system, the effect does not propagate to parts of the
system far away. Similarly, the affect of the disturbance
will not persist for long periods of time. In both cases,
locality can be imposed on {Φ̂x, Φ̂u} by constraining

their spectral elements. For example, we can write Φ̂x =∑∞
k=0 z

−kΦ̂x[k], where Φx[k] is a real matrix and is known

as the kth spectral element. Localizing Φ̂x (and/or Φ̂u)
in time corresponds to ensuring the spectral elements are
zero matrices for all k > T , for some positive integer T .
Spatial locality is enforced by controlling the sparsity of
the elements of each of the spectral components. In this
context, constraining the spectral elements of {Φ̂x, Φ̂u} to
have a bandwidth of at most d, (where d is a positive
integer) ensures that if a disturbance hits node i then
only the nodes i± d feel the disturbance. By defining the
bandwidth of the spectral elements over k = 1, . . . , T we
can effectively constrain the closed-loop system response.

One of the advantages of constraining the closed-loop
response is that the constraints on the spectral elements
typically take the form of convex constraints. Moreover,
objective functionals and locality constraints that satisfy a
separability property allow for the control synthesis prob-
lem (7) to be decomposed into smaller finite-dimensional
convex sub-problems and solved in parallel (Wang et al.,
2018). In contrast, classical methods scale poorly with
system size as the underlying optimization problem grows
rapidly with the magnitude of the state of the system.

Norms that we will consider are the H2, L1, and the E1
norms. The L1-norm of a transfer matrix G(z) is the
induced `∞ → `∞ norm which can be computed as

‖G‖L1 = max
1≤i≤m

n∑
j=1

∞∑
k=0

|Gij [k]|, ‖G‖E = ‖GT ‖L1 .

3. RESULTS

The ∆ block that appears in Theorem 2.2 allows us to
formulate robust control problems, i.e. the design of a
controller that stabilizes a the plant over all realizations
of an uncertainty set. In particular, we will consider the
ground-truth model to be of the form

A = An + ∆A, B2 = Bn + ∆B , (8)

where (An, Bn) represent the nominal system data and
∆A,∆B , represent perturbation matrices. The robust
problem we are interested in is: given upper-bounds on
‖∆A‖, ‖∆B‖, can we synthesize a robustly stabilizing
controller from the nominal system matrices? Consider the
case where the nominal system satisfies

[zI −An −Bn]

[
Φx

Φu

]
= I, (9)

then

[zI −A −B2]

[
Φx

Φu

]
= I + [∆A ∆B ]

[
Φx

Φu

]
︸ ︷︷ ︸,

:= ∆

where ∆ above is as defined in Theorem 2.2. Dean et al.
(2017) show that when when ‖∆A‖2 ≤ ρA, ‖∆B‖2 ≤ ρB
then a tractable upper-bound for ‖∆‖H∞ is possible.

Lemma 3.1. (Dean et al. (2017)). For ∆ as defined above
and with the bounds ρA, ρB, for any α ∈ (0, 1)

‖∆‖H∞ ≤

∥∥∥∥∥∥∥


ρA√
α

Φx

ρB√
1− α

Φu


∥∥∥∥∥∥∥
H∞

.

The upper-bound above is then used in place of the
constraint ‖∆‖H∞ < γ in the SLS problem (7). The
lemmas that follow are in the same spirit as the bound
above, but are for the L1 and E1-norms. Assume that
‖∆A‖∞ ≤ εA and ‖∆B‖∞ ≤ εB.

Lemma 3.2. Given the scalar bounds εA and εB, then for
all α ∈ (0, 1)

‖∆‖L1
≤

∥∥∥∥∥∥
 εA

α
Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

= max

{
εA
α
‖Φx‖L1 ,

εB
1− α

‖Φu‖L1

}
.

Proof. From the definition of ∆ we have

‖∆‖L1 =

∥∥∥∥∥∥
[
α

εA
∆A

(1− α)

εB
∆B

] εA
α

Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

≤
∥∥∥∥[ α

εA
∆A

(1− α)

εB
∆B

]∥∥∥∥
L1

∥∥∥∥∥∥
 εA

α
Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

≤

(∥∥∥∥ αεA ∆A

∥∥∥∥
L1

+

∥∥∥∥ (1− α)

εB
∆B

∥∥∥∥
L1

)∥∥∥∥∥∥
 εA

α
Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

=

(
α

εA
‖∆A‖L1

+
(1− α)

εB
‖∆B‖L1

)∥∥∥∥∥∥
 εA

α
Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

≤
(
α

εA
εA +

(1− α)

εB
εB

)∥∥∥∥∥∥
 εA

α
Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

=

∥∥∥∥∥∥
 εA

α
Φx

εB
1− α

Φu

∥∥∥∥∥∥
L1

= max

{
εA
α
‖Φx‖L1 ,

εB
1− α

‖Φu‖L1

}
.

The first inequality results from applying the triangle
inequality, the second comes from the fact that for B ∈
Cm×n1 and C ∈ Cm×n2

‖[B C]‖∞ ≤ ‖B‖∞ + ‖C‖∞,
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(and noting that L1-norm of a constant matrix is simply
the standard matrix ∞-norm.) and the final inequality
comes from substituting in the upper bounds. The last
equality follows since∥∥∥∥[XY

]∥∥∥∥
L1

= max {‖X‖L1 , ‖Y ‖L1} .

Now, assume instead that we have the bounds ‖∆A‖1 ≤
νA, ‖∆B‖1 ≤ νB.

Lemma 3.3. Given the scalar bounds νA, νB, the following
bound holds:

‖∆‖E1 ≤
∥∥∥∥[ νAΦx

νBΦu

]∥∥∥∥
E1
.

Proof. Follows similar arguments to the proof provided
for Lemma 3.2.

Thus Lemmas 3.1–3.3 provide upper-bounds that incor-
porate the perturbation magnitude (in terms of three
different norms of ∆A,∆B) into the SLS problem (7).

From the definition of the matrix exponential, the most
obvious way of constructing a sparse approximation is via
truncation. Given a sample parameter τ > 0, truncating
the exponential after k = 1 terms we have

Atruncτ := I +Aτ ≈ eÂτ .
Clearly Atruncτ has the same sparsity as Â. Indeed, this
approximation is the basis for first-order Euler methods
for solving initial point problems. It is well known that
truncation methods do not preserve stability. To reconcile
notation, we have Atruncτ = An, where An is defined in (8).

One advantage of this approximation method is that there
is a clean bound for the error.

Theorem 3.4. (Moler and Loan (2003)). Given a matrix

Â ∈ Cn×n and a constant τ > 0, then

‖Atruncτ − eÂτ‖2 ≤

(
‖Â‖22τ2

2

)(
1

1− τ
3‖Â‖2

)
.

This upper-bound would take the form of ρA in our robust
control problem.

In practice, the bound Theorem 3.4 is sharp for small τ
and useless for large values. We now propose a second
more accurate method for computing an estimate of the
matrix exponential. The method is simple; compute the
full matrix exponential and then project it onto the
support of Â. Formally, we define support matrix H as

[supp(H)]ij =

{
1 if Hij 6= 0
0 otherwise

.

For a fixed constant τ , the projected exponential is given
by

Aprojτ := supp(|Â|+ |I|) ◦ eÂτ ≈ eÂτ

where ◦ denotes the Hadamard (element-wise) product
between two matrices of equal dimension. Note that the
supp operation binds before the Hadamard product.

For the projection of B̂i, we use supp(|Â| + |I|) to

approximate supp(
∫ τ

0
eÂλdλ) and have:

Bproji,τ := supp((|Â|+ |I|) · |B̂i|) ◦
∫ τ

0

eÂλdλB̂i.

In order to obtain bounds on the approximation error we
will need to impose some structure on the continuous drift-
matrix Â.

Definition 1. Given a matrix Y ∈ Cn×n, the bandwidth
of Y is the smallest integer s such that Yjk = 0 for all
|j − k| ≥ s + 1. We use Y(s) to denote that Y has has
bandwidth s.

According to Definition 1 a diagonal matrix has a band-
width of zero, a tridiagonal matrix has bandwidth s = 1,
etc.

Let Eij = eie
T
j where ei is the standard ith basis vector

for Rn. Then a bandwidth s matrix can be extracted
from a dense matrix via Y(s) =

∑
|i−j|≤sEiiY Ejj , where

the summation is taken over all pairs {i, j} that satisfy
|i− j| ≤ s.
Assumption 1. The n × n drift matrix Â from (1) is a
banded matrix, or, there exists a permutation matrix Π
such that ΠÂΠ−1 is banded.

We note that this is not a major assumption, many appli-
cations produce matrices naturally in this form, examples
can be found in the online catalogue described in Davis and
Hu (2011) and in the recent work Vo and Sidje (2017).
While the exponential of a banded matrix is formally
dense, numerical analysts have noted that elements away
from the diagonal decay rapidly. Specifically, “provided
that A is a banded matrix, eA is itself within an exceedingly
small distance from a banded matrix.”, Iserles (2000). This
observation is illustrated qualitatively in Figure 1.

Recall the (non sub-multiplicative) max-norm of a matrix
X defined as

‖X‖max := max
k,l

|Xkl|.

The following result provides a bound on the elements of
the matrix exponential obtained from a banded matrix.

Theorem 3.5. (Iserles (2000)). Let A = eÂτ for some τ >

0, where Â is a banded matrix with bandwidth s ≥ 1. Let
α = ‖Âτ‖max.Then for |i− j| � 1,

|Aij | ≤
(

αs

|i− j|

) |i−j|
s

e |i−j|
s −

|i−j|−1∑
m=0

(|i− j|/s)m

m!


︸ ︷︷ ︸

.

Bij(α, s)

Under the assumption that Â from (1) is banded (with
bandwidth s), we define A = An+ ∆A where An = Aprojτ ,
thus An is banded and ∆A is is the complement of a
banded matrix. Appealing to Theorem 3.5 we can derive
upper-bounds on ‖∆A‖ for various norms. Moreover, the
upper-bounds can be computed using only scalar opera-
tions. For any choice of norm it follows that

‖∆A‖ =

∥∥∥∥∥∥
∑
|i−j|>s

Eiie
ÂτEjj

∥∥∥∥∥∥ ≤
∑
|i−j|>s

∥∥∥EiieÂτEjj∥∥∥
=

∑
|i−j|>s

|[eÂτ ]ij | ≤
∑
|i−j|>s

Bij(α, s).

Define ρ?A, ε
?
A, and ν?A to be ‖∆A‖ for the 2,∞, and 1-

norm respectively.
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Fig. 1. The matrix exponential of three banded matrices X1, X4, and X8 with bandwidth 1, 4, and 8 are shown from
left to right respectively.

Theorem 3.6. Let ρ?A, ε
?
A, and ν?A be defined as above.

Given a matrix Â ∈ Rn×n of bandwidth s. Then ρ?A, ε
?
A,

and ν?A can be upper-bounded by computations that
involve only scalar operations on the indices i, j and
parameters α and s. Specifically,

ρ?A ≤
∑
|i−j|>s

Bij(α, s), ε?A ≤ max
1≤i≤n

n∑
j = 1

|i− j| > s

Bij(α, s),

and ν?A ≤ max
1≤j≤n

n∑
i = 1

|i− j| > s

Bij(α, s).

Proof. The proof follows by applying Theorem 3.5, the
inequalities derived above, and the definition of the 1 and
∞ norms.

Similar bounds for the norms of ‖∆B‖ are easily derived.
In Figure 2 the upper-bound on ‖∆A‖2 from Theorem 3.6
is compared to the true value for matrices of bandwidth
4, i.e. Â(4) ∈ Rn×n. We show how the upper-bound
changes as a function of the dimension of the matrix where
n ∈ {20, 40, 60, 100, 200, 500, 1000}. It can be clearly seen,
that even for large matrices, the estimates εA are easily
small enough to be useful.

10
2

10
3

0.02

0.04

0.06

0.08

0.1

Actual

Upper-bound

Fig. 2. The error magnitude ‖∆A‖2 = ε?A and the upper-
bound for ‖∆A‖2 given by εA from Theorem 3.6.

4. EXAMPLES

We demonstrate the proposed method on a power grid
control example. The model comes from Zimmerman et al.

Fig. 3. Topology of the power network. A disturbance hits
the frequency state of node 3.

(2011) and has 57 buses with 7 generator buses. The
network topology is shown in Figure 3.

The power grid dynamics are described by the coupled
system of ordinary differential equations:

θ̇i = ωi,

Miω̇i = −Diωi − di − ui −
∑
j∈Ni

Hij(θi − θj), i ∈ G

0 = −Diωi − di − ui −
∑
j∈Ni

Hij(θi − θj), i ∈ L,

(10)
where θi and ωi are the phase angle and frequency of the
voltage at bus i, di is the uncontrollable load at bus i
which is treated as a disturbance. ui is the controllable
load, which is used to regulate bus i. G and L represent
the set of generator buses and the set of pure load buses. In
this example G = {1, 2, 3, 6, 8, 9, 12} and L = {1, . . . , 57} \
G. For a generator bus, Mi is the inertia and Di is the
“damping coefficient”; for a load bus, there is zero inertia
and ωi is determined by an algebraic equation. A generator
bus is modeled with 2 states (xi = [θi, ωi]

T ); and a load
bus is modeled with 1 state (xi = θi). Hij represents
the sensitivity of the power flow to phase variations, it is
nonzero when bus i and bus j are neighbors. We assume an
impulsive disturbance hits bus 3 and affects its frequency.

Using the sparse discretized model, the distributed con-
troller derived from (7) is feasible for an FIR horizon
T ≥ 5 and the locality radius of d ≥ 4. Informally this
means that if a single impulsive disturbance hits a node,
then only nodes within 3 “hops” of the affected node feel
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Fig. 4. The localized system response implemented on the
sparse model. Clearly the response to the disturbance
is localized in time and space.

the disturbance. In this example we have that ‖∆A‖ =
{0.455, 0.394, 0.873} and ‖∆B‖ = {0.001, 0.006, 0.001} for
the 1, 2, and ∞ norms respectively (to 3 s.f.).

When using the exact discretized model obtained us-
ing (3), the SLS program (7) is only feasible if all nodes
in the network area able to respond to the disturbance,
this corresponds to a locality radius of which requires
d = 12. The result is that localized distributed control
is not possible (i.e. the SLS problem has no localization
and is thus a centralized controller) if the underlying
model (10) is converted to discrete time using standard
methods. In Figure 4 the closed-loop response of the con-
troller on the sparse model is plotted. In Figure 5, we show
the system response when the controller is designed on
the sparse model and implemented on the dense discrete
model. Despite the model mismatch the robust controller
still manages to localize the disturbance in time and space.

Fig. 5. The controller is designed on the sparse model and
simulated on the dense model (3).

5. CONCLUSION

We have presented a simple projection based method
for sparsity-preserving discretization of a continuous-time
dynamical system. For the special case of banded ma-
trices, bounds on the approximation error were derived
and shown to perform well in practice. For non-banded
systems, the existing bound is useful in certain sampling
parameter regimes. In the banded case, the bounds were
incorporated into the ∆ uncertainty parameter. The re-
sults were illustrated on a 57-bus power network where it
was shown that an SLS distributed controller designed on

the sparse approximation performs well when implemented
on the dense “ground truth” model.
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