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Abstract: Over the past few decades, there has been widespread development of pressure swing adsorption 

(PSA) systems, with their applications expanding from traditional bulk gas separation and drying, to CO2 

sequestration, trace contaminant removal, and many others. With extensive industrial applications, there is 

a significant need for effective monitoring methods to detect and diagnose process abnormalities in real-

time, as well as to facilitate predictive maintenance for avoiding major production disruptions ahead. 

Although periodic operations such as PSA have been used widely in chemical and petrochemical industries, 

the process monitoring of these operations has received limited attention compared to non-periodic 

continuous or batch processes. A potential reason is that the monitoring of periodic processes is 

significantly more challenging than that of processes operated at steady-state. In this work, we propose a 

data-driven feature space monitoring (FSM) approach for PSA processes. We show that the FSM based 

fault detection naturally addresses the challenges in monitoring periodic processes, such as unequal step 

and/or cycle time that requires trajectory alignment or synchronization for the traditional statistical process 

monitoring (SPM) methods. In addition, we demonstrate the superior fault detection performance of the 

proposed method compared to the conventional SPM methods using both simulated faults and real faults 

from an industrial PSA process. 

Keywords: pressure swing adsorption, fault detection, fault diagnosis, statistical process monitoring, 

statistics pattern analysis, feature space monitoring. 
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1. INTRODUCTION 

In the past few decades, pressure swing adsorption (PSA) 

processes have gained increasing commercial acceptance as an 

energy efficient separation technology (Jiang et al., 2004). 

PSA applications range from traditional bulk gas separation 

and drying, to CO2 sequestration, trace contaminant removal, 

and other. With its extensive industrial applications, PSA has 

drawn significant research interests from the process systems 

engineering community recently. The research has focused 

mainly on PSA system modelling and simulation (Choi and 

Wen-Chung, 1994; Chou and Huang, 1994; Nikolic et al., 

2008), design and optimization (Boukouvala et al., 2017; Jiang 

et al., 2004, 2003). Although there is a significant need for 

effective monitoring methods to detect and diagnose PSA 

process abnormalities in real-time to avoid major production 

disruptions, research in this area has been scarce. This is 

mainly due to the non-stationary and periodic nature of the 

process, which pose special challenges to the monitoring of 

such a process. For example, the application of the 

conventional multivariate statistical process monitoring 

(MSPM) methods, such as principal component analysis 

(PCA) and its variants, can lead to frequent false alarms and/or 

missed faults (Pan et al., 2004). To address this challenge, Pan 

et al. (2004) proposed a process monitoring approach for 

continuous processes with periodic characteristics by 

identifying a stochastic state space model that captures the 

statistical behavior of changes occurring from period to period. 

The approach was validated using a waste water treatment 

process (WWTP). While there are similarities between WWTP 

and PSA processes, there are also differences. For example, 

the activated sludge process, which is a main part of a WWTP, 

is a natural periodic process with somewhat constant cycle 

time that is driven by the diurnal temperature and light 

fluctuations. In contrast, PSA is a forced periodic process with 

cycle time dynamically controlled to address many 

disturbances that affect the PSA operations (e.g., increased or 

decreased product throughput to meet customer demand or to 

minimize cost by scheduling based on electricity pricing, raw 

material feed composition variations),  even weather 

conditions can affect the plant operations. As a result, the cycle 

time is heavily and frequently adjusted, which renders the 

approach proposed in (Pan et al., 2004) less effective for PSA 

processes. Another difference is that while the biological 

process in the WWTP is a very slow process, PSA is a very 

fast process. Recently, Wang et al. (2017) proposed a 

geometric framework for the monitoring and fault detection of 

periodic processes. The proposed approach was applied to two 

simulated periodic processes with superior performance 

compared to the conventional dynamic PCA (DPCA) and 

multiway PCA (MPCA). For the simulated 2-bed PSA 

process, a total of 26 variables relating to the flow rate of the 

feed, as well as pressures and concentrations in and across both 

beds were used for observation. However, in industrial PSA 

processes, not all of these variables were measured, especially 

the concentrations in and across the beds. In addition, pressure 

is the major process variable to be monitored, in this case the 

proposed method is not applicable as there is no centroid for a 

single variable. Another method specifically proposed for 
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monitoring industrial PSA processes is a US patent (Arslan et 

al., 2014). In this method, a moving window discrete Fourier 

transform (DFT) was applied to process the data such as 

pressure profile. A number of “relevant” peaks were identified 

from the frequency spectra (i.e., their frequencies and 

amplitudes). Then calculate the logarithm of the amplitude 

ratio of peak 𝑘 between beds 𝑖 and 𝑗, which is defined as ℛ in 

this work as the following. 

ℛ = 𝑙𝑜𝑔 (
𝐴𝑖,𝑘

𝐴𝑗,𝑘
) (1) 

where 𝐴  is peak amplitude, 𝑖  and 𝑗  are the bed or vessel 

indices, 𝑘 is the peak index. ℛ is then monitored over time, 

where the control upper and lower limits were calculated based 

on normal operation data. In this work, we propose a 

completely different method based on a feature space 

monitoring (FSM) framework we proposed recently (Peter He 

and Wang, 2018). The basic idea of the proposed approach is 

that instead of monitoring the original pressure profile of a 

PSA process, we characterize the pressure profile of each PSA 

step by statistics and shape or morphology features. These 

features are then grouped by cycles and monitored by a linear 

or nonlinear MSPM method such as PCA for process 

monitoring (i.e., fault detection and diagnosis). The rest of the 

paper is organized as follows. Sec. 2 discusses some of the 

characteristics of the industrial PSA process and the challenges 

posed to the conventional MSPM methods by these 

characteristics. Sec. 3 briefly reviews statistics pattern analysis 

(SPA), which is the predecessor and a special case of FSM. 

Sec. 4 introduces the proposed FSM method for PSA 

processes. Sec. 5 presents several case studies, including 

simulated and real faults in an industrial PSA process to 

demonstrate the performance of the proposed method, which 

is compared to those of the conventional MSPM methods. 

Because only pressure was used for PSA process fault 

detection and diagnosis in this study, the method proposed by 

Wang et al. (2017) does not apply. While for the patent filed 

by Arslan et al. (2014), because there are no technical details 

as how the peaks were defined or classified as “relevant”, and 

the criteria used for peak selection and control limits 

determination are unknown, it is not compared either. Sec. 6 

discuss the results and Sec. 7 draws conclusions. 

2. PROCESS AND DATA CHARACTERISTICS 

In this section, we discuss the unique characteristics of a PSA 

process and how these characteristics pose challenges to 

process monitoring. Fig. 1 shows the typical pressure profile 

of a multi-bed PSA process. Due to the sensitivity of the actual 

operation and production data of the process, all axis tick 

labels in this and other figures based on real operation data 

were omitted. To reduce clutter, only the pressure profiles 

from three beds are plotted. This type of pressure time series 

plot is good for visualizing and observing between-bed 

variations. However, only obvious deviations/faults can be 

observed from this type of plot and it can become very 

cluttered and difficult to read if all beds were plotted on the 

same figure. Fig. 2 plots the overlapping of multiple cycles of 

a single bed, which can be used to visualize within-bed 

variations. Fig. 3 plots the durations of the cycles over a period 

of time. There are several points that can be made based on 

these three figures. First, the cycles are asynchronous across 

different beds as shown in Fig. 1. They do not exactly overlap 

each other after unfolding for the same bed as shown in Fig. 2, 

even for the onset, i.e., the start of the repressurization step, of 

the cycle. Second, the cycle duration, as well as the durations 

of the steps, vary from cycle to cycle as shown in Fig. 3. These 

durations are dynamically controlled to ensure product quality 

in response to dynamic scheduling, and/or disturbances such 

as demand change and weather conditions. Third, the process 

is highly nonlinear as shown in  

Fig. 1 Typical pressure profiles of three beds in a multi-bed 

PSA process 

Fig. 2 Overlapping pressure profiles of a single bed over 

multiple cycles 

Fig. 3 The cycle duration varies significantly from cycle to  

cyle 
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Figs. 1 and 2. These characteristics pose significantly 

challenges to conventional MSPM methods such as multi-way 

PCA (MPCA), trilinear decomposition (TLD) and parallel 

factor analysis (PARAFAC) (Wise et al., 1999), or recently 

proposed methods such as multi-way independent component 

analysis (MICA) (Yoo et al., 2004) and kernel PCA (KPCA) 

(Choi et al., 2005). All these methods require the construction 

of a 2D or 3D array, which means that they all require 

synchronization of all steps of the entire cycle to equal step 

and cycle durations. This can be done through different ways, 

including simple cut, interpolation, dynamic time warping 

(DTW), etc. However, all these pre-processing steps have their 

drawbacks, including trajectory distortion, information loss, 

etc. (He and Wang, 2007; Peter He and Wang, 2018). It is 

particularly undesirable for PSA process because the step and 

cycle durations are dynamically controlled. As shown in Fig. 

3, there are significant variabilities in step and cycle durations 

in a PSA process under normal operations. Step durations are 

not shown due to limited space, however, about half of them 

follow similar trends as the cycle duration while the other half 

of the steps were maintained relatively constant. Therefore, the 

pre-processing steps mentioned above is highly undesirable 

for PSA process. To address these challenges, we propose a 

feature space monitoring (FSM) based fault detection method 

for PSA. In the next section, we first briefly review statistics 

pattern analysis (SPA), which is the predecessor of FSM, then 

introduce the FSM based framework for PSA process 

monitoring. 

3. STATISTICS PATTERN ANALYSIS (SPA) 

Statistics pattern analysis (SPA) was originally proposed for 

monitoring batch processes (He and Wang, 2011) and later 

extended to the monitoring of continuous processes and other 

applications such as soft sensor (Shah et al., 2019; Wang and 

He, 2010). Since then many variations and extensions have 

been proposed in the literature (He and Xu, 2016; Yang et al., 

2018; Zhang et al., 2018; Zhou and Gu, 2019). Because cyclic 

or periodic continuous processes share many similarities with 

batch processes (e.g., they are usually highly nonlinear 

processes with multiple steps or phases and their behaviours 

somewhat repeat from cycle to cycle or batch to batch), batch-

based SPA is reviewed here. 

Batch-based SPA hypothesizes that the batch behaviour can be 

better characterized by the variance-covariance of batch 

statistics than by the variance-covariance of process variables. 

In SPA, a statistics pattern (SP) is a collection of various 

statistics calculated from a batch trajectory which capture the 

characteristics of each individual variable (e.g., mean and 

variance), the interactions among different variables (e.g., 

covariance), the dynamics (e.g., auto-, cross-correlations), as 

well as process nonlinearity and process data non-Gaussianity 

(e.g., skewness, kurtosis, and other higher order statistics or 

HOS). The basic idea of SPA is that the SPs of normal batches 

follow a similar pattern (i.e., normal pattern), while the SPs of 

abnormal or faulty batches must show some deviation from the 

normal pattern. More details on batch-based SPA can be found 

in (He and Wang, 2011). 

4. THE PROPOSED FRAMEWORK 

In this work, since only the pressure profile is monitored, only 

univariate statistics are calculated. However, to better capture 

the characteristics of pressure behavior in each step of the 

process, we include not only statistics, but also shape or 

morphological features. Therefore, the proposed approach 

falls into more general feature space monitoring (FCM) 

framework we proposed recently (Peter He and Wang, 2018). 

Specifically, the following statistical and morphological 

features have been evaluated in this work: mean (𝜇), standard 

deviation ( 𝜎 ), skewness ( 𝛾 ), kurtosis ( 𝜅 ), coefficient of 

variation ( 𝐶𝑉 ), coefficient of quartile variation ( 𝐶𝑄𝑉 ), 

interquartile range (𝑅𝐼𝑄), slope (𝑆), slope of linear regression 

line (𝑆𝐿𝐿), mean absolute deviation (𝐷𝑀𝑒𝑎𝑛), median absolute 

deviation (𝐷𝑀𝑒𝑑 ), and mean absolute error (MAE). Fig. 4 

shows the flow diagram of the proposed FSM based fault 

detection approach. The first step is cycle feature generation 

where various statistical and morphological features are 

generated for each step of a cycle based on the raw data. These 

features are stacked row-wise to form a feature vector for each 

cycle and multiple cycle features are stacked column-wise to 

form a feature matrix. The second step is to perform fault 

detection based on the feature matrix, where a conventional 

fault detection method such as PCA can be applied. 

 
Fig. 4 Flow diagram of the proposed FSM method: (a) cycle 

trajectories with unequal cycle-times; (b) cycle features 

consists of various step features, which form the feature 

matrix when stacked column-wise; (c) fault detection based 

on the feature matrix. 

Since features of a cycle consists of various statistical and 

morphological features calculated based on each step of the 

cycle, its dimension is independent of step durations as shown 

in Fig. 4. Therefore, FSM naturally handles unequal step 

durations and asynchronous cycle trajectories. In addition, 

FSM quantifies process dynamics and nonlinearity through 

various features as discussed previously. Therefore, FSM is 

well suited for the monitoring of PSA processes. 

5. AN INDUSTRIAL CASE STUDY 

In this section, we use an industrial PSA case study to 

demonstrate the performance of the proposed FSM method, 

and compare it to the traditional MPCA method. Because 

MPCA requires that each step across all cycles has the same 

duration, two different data preprocessing techniques are 

studied: one with simple cut denoted as MPCASC and the other 

with dynamic time warping (DTW) denoted as MPCADTW. 

Totally 2070 cycles under normal operations were used as the 

training set. It is not necessary to use this many cycles as the 

training for the proposed FSM method. However, for 
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MPCADTW, the number of variables after unfolding is about 

700. Therefore, we decided to use 2070 cycles, which is about 

three times the number of variables for MPCADTW. When 

simple cut is used, the shortest step duration across all cycles 

is used as the reference while the last measurements of any 

cycle with longer step duration were simply removed to match 

the shortest, which resulted in the number of variables to be 

about 440. While for FSM, 60 features were used. Six fault 

scenarios of a PSA process is studied in this work as listed in 

Table 1. The first four are simulated faults while the last two 

are from real industrial data. For each fault scenario, 16 cycles 

are used as the test set and among which 3 (cycle 4, 9 and 14) 

are faulty cycles. For the simulated faults, similar behaviours 

have been observed in actual operations, but the historical data 

for those types of faults are no longer available. In these cases, 

the faults were introduced by manipulating the real industrial 

data under normal operations. Details are provided later. It is 

worth noting that, it is only for better comparison that the 

faulty cycles were arrange in the same way for different fault 

scenarios, i.e., cycle 4, 9 and 14. For all methods, the number 

of principal component (PCs) is determined through 10-fold 

cross validation. The control limits on Hoteling’s T2 and 

squared prediction error (SPE) are calculated empirically 

using the training dataset at confidence level 99%. The number 

of PCs and other information discussed above are listed in 

Table 2. 

 

Table 1. Fault scenarios studied in this work 

Fault # Description 

1 
During adsorption step, the faulty cycles have lower pressure 

than normal cycles. 

2 
During adsorption step, the faulty cycles have higher pressure 

variations than normal cycles 

3 
During a hold step, the pressure of the faulty cycles decreases 

instead of being held steady 

4 

During an equalization step, the pressure of the faulty cycles was 

held steady followed by a sudden drop instead of smooth 

decrease 

5 
During re-pressurization, the pressure of the faulty cycles does 
not follow the normal cycle trajectory 

6 
During an equalization step, the pressure of the faulty cycles 

follows a zig-zag or stair-like profile instead of a smooth increase 

 

Table 2. Training, testing datasets and model parameters 

 MPCASC MPCADTW FSM 

# of features/variables 438 705 60 

# of PC’s 24 32 20 

Training 2070 normal cycles 

Testing 16 cycles (13 normal, 3 faulty: cycle 4, 9, 16) 

Confidence level 99% 

6. RESULTS 

Due to limited space, only the fault detection results of fault 

scenario 1 and 5 in the residual subspace (i.e., using SPE 

index) are shown in Fig. 5 and Fig. 6. In both figures, (a) is the 

SEP plot based on MPCASC, (b) based on MPCADTW, and (c) 

based on FSM. Fig. 5 shows that for fault scenario 1, MPCASC 

has difficulty in detecting Fault 1: missing two out of three 

faulty cycles. MPCADTW detects all three faulty cycles but also 

generated a false alarm. Only FSM detects all three faulty 

cycles without generating false alarms. Fig. 6 shows that for 

fault scenario 5, MPCASC detects all three faulty cycles while 

generating a false alarm. MPCADTW failed to detect two out of 

three faulty cycles. Again, only FSM successfully detects all 

faulty cycles without generating false alarms.  

Further investigation is conducted to understand the reason for 

MPCADTW’s failure in detecting faulty cycles under fault 

scenario 5. Since MPCASC was able to detect all faulty cycles, 

we suspect that the failure is related to data preprocessing by 

DTW. Therefore, we plotted the original pressure profiles of 

the 16 test cycles, which are shown in Fig. 7 (a), and compared 

to the pressure profiles after DTW as shown in Fig. 7 (b). The 

comparison clearly indicates that the irregular discrepancies of 

the faulty cycles shown in the original pressure profiles 

diminished after DTW. Therefore, it can be concluded that 

DTW caused severe information loss or distortion in the faulty 

cycles. This observation is consistent with our previous 

findings that data manipulations during preprocessing, 

including DTW, can cause information loss or distortion (He 

and Wang, 2011). This example further raise the alarm that the 

widely used DTW for batch trajectory warping or alignment in 

process monitoring applications is actually a problematic 

practice that can lead to missed detections of process faults. 

(a)  

(b) 
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(c) 

Fig. 5 Fault scenario 1: fault detection in residual subspace 

(SPE) from (a) MPCASC, (b) MPCADTW and (c) FSM 

 

 

(a) 

(b) 

 

(c) 

Fig. 6 Fault scenario 5: fault detection in residual subspace 

(SPE) from (a) MPCASC, (b) MPCADTW and (c) FSM 

 

(a) (b) 

Fig. 7 Comparison between the pressure profiles of (a) 

the original 16 test cycles and (b) the test cycles after 

DTW. The irregular discrepancies among cycles shown 

in the original profiles (highlighted in the dashed ellipse) 

have diminished after DTW, indicating that DTW causes 

severe information loss or distortion. 
 

By considering faults detected in both residual subspace using 

SPE and principal subspace using T2, the overall fault 

detection results are shown in Table 3. Specifically, the table 

lists faulty cycles detected by either SPE, or T2, or both. These 

results are also summarized in fault detection rates shown in 

Table 4, and false alarm rates shown in Table 5. These tables 

show that FSM detects all faulty cycles under all fault 

scenarios without generating false alarms. In comparison, 

MPCASC has missed detection under fault scenario 1, while 

MPCADTW has missed detection under fault scenario 5. In 

addition, both MPCASC and MPCADTW have false alarms. 

Table 3. Fault detection results (true fault cycles: 4, 9 & 14) 

Fault FSM MPCASC MPCADTW 

1 4, 9, 14 4, 14, 15 4, 9, 10, 14 

2 4, 9, 14 4, 9, 14, 15 4, 9, 10, 14 

3 4, 9, 14 4, 9, 14, 15 4, 9, 10, 14 

4 4, 9, 14 4, 9, 14, 15 4, 9, 10, 14 

5 4, 9, 14 4, 9, 14, 15 9, 10  

6 4, 9, 14 4, 9, 14, 15 4, 9, 10, 14 
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Table 4. Fault detection rate (out of 3 faulty test cycles) 

Fault FSM MPCASC MPCADTW 

1 100% 66.7% 100% 

2 100% 100% 100% 

3 100% 100% 100% 

4 100% 100% 100% 

5 100% 100% 33.3% 

6 100% 100% 100% 

Table 5. False alarm rate (out of 13 normal test cycles) 

Fault FSM MPCASC MPCADTW 

1 0% 7.7% 7.7% 

2 0% 7.7% 7.7% 

3 0% 7.7% 7.7% 

4 0% 7.7% 7.7% 

5 0% 7.7% 7.7% 

6 0% 7.7% 7.7% 

7. CONCLUSIONS 

In this work, we proposed a simple yet effective fault detection 

method for pressure swing adsorption (PSA) processes. The 

proposed feature space monitoring (FSM) approach 

characterizes cycle behaviour with various statistical and 

shape/morphological features that are step-based. In this way, 

FSM naturally handles asynchronous cycle trajectories and 

variable step and cycle durations. We demonstrated that FSM 

outperforms MPCA with simple cut (SC) or dynamic time 

warping (DTW) data preprocessing in six PSA fault scenarios. 

Specifically, FSM successfully detected all three faulty cycles 

in each fault scenario without generating false alarms. In 

comparison, both MPCASC and MPCADTW had missed 

detections in some fault scenarios, and both had false alarms 

in all fault scenarios. 
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