Robust Output Agreement of Multi-Agent Systems with Flexible Topologies

Zhanxiu Wang∗ Tengfei Liu∗ Zhong-Ping Jiang**

∗ State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110004, China (e-mail: zhanxiuwang@foxmail.com; tfliu@mail.neu.edu.cn).
** Department of Electrical and Computer Engineering, New York University, 370 Jay Street, Brooklyn, NY 11201, USA (e-mail: zjiang@nyu.edu)

Abstract: This paper studies the robust output agreement problem for second-order multi-agent systems with flexible topologies subject to measurement disturbances. A new distributed control law is proposed to guarantee the robust output agreement in the sense of input-to-state stability (ISS) as long as the union of the interconnection graphs satisfies a standard connectivity condition. It is proved that, robust output agreement can be achieved in the presence of any bounded measurement disturbances if the functions of the distributed control laws are radially unbounded, and a local result can still be guaranteed if the condition of radial unboundedness is not satisfied. Numerical simulations are employed to show the effectiveness of the main result.

Keywords: Multi-agent systems, robust output agreement, measurement disturbance, flexible topology.

1. INTRODUCTION

Considerable efforts have been made on the distributed control of multi-agent systems to accomplish cooperative tasks, e.g., consensus, flocking, swarm, rendezvous and synchronization. Representative methods include algebraic graph theory in ?, ?, passive systems theory in ?, Lyapunov stability theory in ?, ?, output regulation in ?, ? and small-gain approach in ?.

The distributed control problem for agents with second-order dynamics has been mainly studied from the perspective of second-order consensus and flocking. Great efforts have been devoted to solving the problems under switching information exchange topologies. Related results include ?, ?, ? and ?. Specifically, ? used potential functions to define Lyapunov functions and the topologies are allowed to be switching but undirected. ? presented a consensus result for double-integrator systems based on a refined graph theoretical method. ? studied circular formations which did not rely on any global information but required a directed cycle graph. Several recent results on distributed control can also be found in ?, ?, ? and ?. It should be pointed out that most of the papers mentioned above do not take into account disturbances, for which specific distributed nonlinear designs are expected. In ?, the robust consensus problem of multi-agent systems with time-varying communication graphs subject to process noises is studied. However, the method used for such first-order multi-agent systems cannot be readily applied.

This paper shows the validity of the controllers with nested loops for robust output agreement of multi-agent systems modeled by double-integrators. From a practical point of view, we assume that the double-integrators interact with each other through the interconnection between controllers, for coordination. In this paper, it is proved that robust convergence of the outputs can be achieved as long as the information exchange digraph satisfies a mild connectivity condition. Based on the control design, any bounded measurement disturbances can be handled if the functions of the distributed control laws are radially unbounded. If the condition of radial unboundedness is not satisfied, then a local robust output agreement result can be achieved.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce some preliminaries about digraphs and comparison functions, and then give the problem formulation.

2.1 Notions and Preliminaries

Basic Notations The notations used in this paper are standard. We use \(\mathbb{Z}_+ \) to denote the set of all nonnegative integers. For any \(\omega \in \mathbb{R}^N \), \(\omega^T \) is its transpose and \(|\omega| \) its Euclidean norm. For any function \(x : \mathbb{R}_+ \rightarrow \mathbb{R}^N \), we denote \(\|x\|_\infty = \sup \{|x(t)|, t \in [0, \infty)\} \leq \infty \). For two functions \(\gamma_1, \gamma_2 : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), use \(\gamma_1 \circ \gamma_2 \) to represent the composition of the two functions. We use \(\text{Id} \) to denote the identity function defined on \(\mathbb{R}_+ \).

Comparison Functions For ease of presentation, two classes of functions are introduced. A function \(\beta : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \)
This paper studies the robust output agreement problem such that a robust output agreement objective is achieved, i.e., there exist $\gamma_i^0, \gamma_i^2 \in \mathbb{K}$ such that
\[
\lim_{t \to \infty} |\eta_i(t) - \eta_j(t)| \leq \gamma_i^2 (|\omega_i|_\infty), \quad i, j = 1, \ldots, N
\]
(5)
\[
\lim_{t \to \infty} |\zeta_i(t)| \leq \gamma_i^2 (|\omega_i|_\infty), \quad i = 1, \ldots, N
\]
(6)
where $\omega = [\omega_1, \ldots, \omega_N, \omega_1, \ldots, \omega_N]^T$.

3. ROBUST OUTPUT AGREEMENT IN THE PRESENCE OF MEASUREMENT DISTURBANCES

This section focuses on the robust output agreement problem in the presence of measurement disturbances. We first propose several properties of the controlled agents in Subsection 3.1. Based on the properties, Subsection 3.2 presents the main result with proof given by Subsection 3.3.

3.1 Properties of the Controlled Agents

Consider a class of distributed control laws
\[
\mu_i = \varphi_i (\zeta_i - \varphi_i (\eta_i - \kappa_i)) \tag{7}
\]
where $\varphi_i, \varphi_i : \mathbb{R} \to \mathbb{R}$ are nonincreasing and globally Lipschitz functions, and κ_i is the disturbed information available to coordination control of agent i, and is defined as
\[
\kappa_i = \sum_{j \in N_i (\sigma (t))} a_{ij} (\eta_j + \omega_{ij}) \tag{8}
\]
where $N_i(p) \subseteq \{1, \ldots, N\}$ denotes the neighbor set of agent i for each $i = 1, \ldots, N$ and each $p \in P$, constant $a_{ij} > 0$ if $i \neq j$, and $a_{ij} \geq 0$ if $i = j$.

By substituting control law (7)–(8) into agent (1)–(2), we have
\[
\dot{\eta}_i = \zeta_i, \tag{9}
\]
\[
\dot{\zeta}_i = \varphi_i (\zeta_i - \varphi_i (\eta_i - \kappa_i)). \tag{10}
\]
We first introduce a key proposition on the invariant set property of a class of controlled agents.

Proposition 1. For $i = 1, \ldots, N$, consider each controlled agent defined by (9)–(10) with φ_i and ϕ_i satisfying
\[
\varphi_i (0) = \varphi_i (0) = 0, \tag{11}
\]
\[
\varphi_i (r) r < 0, \quad \varphi_i (r) r < 0 \quad \text{for } r \neq 0, \tag{12}
\]
\[
\sup_{r \in \mathbb{R}} \{\max \partial \varphi_i (r)\} < 4 \inf_{r \in \mathbb{R}} \{\min \partial \varphi_i (r)\}. \tag{13}
\]
There exist globally Lipschitz and strictly decreasing functions $\overline{\psi}_i, \underline{\psi}_i : \mathbb{R} \to \mathbb{R}$ satisfying $\overline{\psi}_i (0) = 0$, $\overline{\psi}_i (r) = 0$, $\underline{\psi}_i (r) = \lim_{r \to -\infty} \underline{\psi}_i (r) = \infty$ such that system (9)–(10) has the following properties:

(1) If $\kappa_i \in [\epsilon_i, \pi_i]$ with $\epsilon_i \leq \pi_i$ being constants, then
\[
S_i (\epsilon_i, \pi_i) = \{\eta_1, \zeta_1, \ldots, \eta_N, \zeta_N\}
\]
is an invariant set.

(2) For any specific initial state $(\eta_i(0), \zeta_i(0))$, there exist constants $\mu_i, \eta_0 \in \mathbb{R}$ such that
\[
\overline{\psi}_i (\eta_i (0) - \mu_i) \leq \zeta_i (0) \leq \overline{\psi}_i (\eta_i (0) - \pi_i). \tag{14}
\]
(3) There exist $\beta_{i1}, \overline{\beta}_{i2} \in IL$ which are radially unbounded with respect to the first argument, such that for any specific $\mu_i, \overline{\mu}_i \in \mathbb{R}$, if $(\eta_i(t), \zeta_i(t)) \in S_i(\mu_i, \overline{\mu}_i)$ for $t \in [0, T]$, then
\[
\mu_i - \beta_{i1}(\mu_i - \eta_i(0), t) \leq \eta_i(t) \leq \beta_{i1}(\eta_i(0) - \overline{\mu}_i, t) + \overline{\mu}_i
\]
for $t \in [0, T]$.

(4) For any specific compact $C \subset \mathbb{R}$, there exist $\beta_{i2}, \overline{\beta}_{i2} \in IL$ such that if $(\eta_i(0), \zeta_i(0)) \in S_i(\mu_i(0), \overline{\mu}_i(0))$ with $\mu_i(0) \leq \overline{\mu}_i(0)$ belonging to C and $\kappa_i \in [\underline{\kappa}_i, \overline{\kappa}_i]$ with $\kappa_i \leq \overline{\kappa}_i$ belonging to C, then there exist $\mu_i(t)$ and $\overline{\mu}_i(t)$ satisfying
\[
-\beta_{i2}(\kappa_i - \mu_i(t), t) + \omega_i \leq \mu_i(t) \leq \beta_{i2}(\mu_i(t) - \overline{\mu}_i(t), t) + \overline{\mu}_i(t)
\]
such that
\[
(\eta_i(t), \zeta_i(t)) \in S_i(\mu_i(t), \overline{\mu}_i(t))
\]
for all $t \geq 0$. If moreover ϕ_i is radially unbounded, then β_{i2} and $\overline{\beta}_{i2}$ can be chosen to be radially unbounded with respect to the first argument.

Due to space limitation, the basic idea of the proof of Proposition 1 is given by Remark 2 and the proof of which is placed in the technical report ?.

Remark 2. With κ_i considered as the external input of agent i, the basic idea of the proof is to show that if κ_i is bounded, then controlled agent i admits an invariant set with useful properties.

For convenience of discussions, use $v_i = \sum_{j \in N_i(\sigma(t))} a_{ij} \eta_j / \sum_{j \in N_i(\sigma(t))} a_{ij}$ and $\omega_i = \sum_{j \in N_i(\sigma(t))} a_{ij} \omega_{ij} / \sum_{j \in N_i(\sigma(t))} a_{ij}$ to denote the interaction between the agents and weighted measurement disturbances acting on agent i, respectively, then κ_i defined by (8) can be rewritten as $\kappa_i = v_i + \omega_i$.

Proposition 2 gives an estimation on the “worst-case” divergence rate of the controlled agents.

Proposition 2. Consider the controlled multi-agent system with each agent defined by (9)–(10) with ϕ_i and ψ_i satisfying (11)–(13) for $i = 1, \ldots, N$. With ψ_i, $\overline{\psi}_i$ and S_i defined in Proposition 1, for all measurable and locally essentially bounded ω, there exist $\mu_i(t)$ and $\overline{\mu}_i(t)$ satisfying
\[
\mu_i(0) - M^0||\omega||_{\infty} t \leq \mu_i(t) \leq \overline{\mu}_i(0) + M^0||\omega||_{\infty} t
\]
such that
\[
(\eta_i(t), \zeta_i(t)) \in S_i(\mu_i(t), \overline{\mu}_i(t)) \quad (19)
\]
\[
\mu_i(t) \leq (\eta_i(t) - \overline{\kappa}_i) \leq \overline{\mu}_i(t) \quad (20)
\]
for all $t \geq 0$, where $M^0 = \max \left\{ L_\psi^i L_{\psi, \psi, \psi}^i, L_\psi^i L_{\psi, \psi, \psi}^i, L_{\psi, \psi, \psi}^i \right\}$ with
\[
\overline{\psi}(r) = \max_{e \in E} \overline{\psi}(r), \quad \psi(r) = \min_{e \in E} \psi(r), \quad L_\psi^i = -\sup_{r \in E} \left\{ \max D^+ \psi(r) \right\}, \quad L_{\psi, \psi}^i = -\sup_{r \in E} \left\{ \max D^+ \psi(r) \right\}, \quad L_{\psi, \psi, \psi}^i = -\inf_{r \in E} \left\{ \min D^+ \partial \phi_i(r) \right\}.
\]
Here, D^+ denotes the Dini derivative. One may consult ? for detailed discussions on Dini derivatives. Due to space limitation, the basic idea of the proof of Proposition 2 is given by Remark 3, and the proof of which is placed in the technical report ?.

Remark 3. In the proof, the idea of the plane translational motion of the rigid body $\zeta_i = \psi(\eta_i - \overline{\mu}_i)$ is used; see e.g., ?. Basic thought of the proof is to estimate an upper bound of the translational motion velocity of the rigid body.

3.2 Main Result

The main result of this paper is given by Theorem 1.

Theorem 1. Consider multi-agent system (1)–(2) with control law (7)–(8). For $i = 1, \ldots, N$, assume that ϕ_i and γ_i are nonincreasing and globally Lipschitz, and satisfy (11)–(13).

- If $G(\sigma(t)) = (\mathcal{N}, \mathcal{E}(\sigma(t)))$ with $\sigma : [0, \infty) \rightarrow \mathcal{P}$ is $UQSC$ and has an edge dwell-time $\tau_D > 0$, then there exist $\beta_1, \beta_2 \in KL$, $\gamma_1^1, \gamma_2^1 \in K_\infty$ and constant $\rho > 0$ such that for all ω satisfying $||\omega||_{\infty} \leq \rho$, and for all $t \geq 0$,\[
|\eta_i(t) - \eta_j(t)| \leq \max\{|\beta_1(\eta_i(0) - \eta_j(0)), t), \gamma_1^1(||\omega||_{\infty})\},
\]
\[
|\zeta_i(t)| \leq \max\{|\beta_2(\zeta_i(0)), t), \gamma_2^1(||\omega||_{\infty})\}
\]
for $i, j \in N$.

- If moreover ϕ_i is radially unbounded, then (21) and (22) hold for all measurable and locally essentially bounded ω.

3.3 Proof of Theorem 1

Based on Proposition 1, the basic idea of the proof is to find appropriate $\mu(t) \leq \overline{\mu}(t)$ such that the controlled multi-agent system admits properties in the form of (19) and (20), and the difference between $\overline{\mu}(t)$ and $\mu(t)$, admits an ISS-like property with the measurement disturbance ω as the input.

Since ψ and $\overline{\psi}$ are radially unbounded, one can find $\mu(0)$ and $\overline{\mu}(0)$ such that (19) and (20) hold for $i \in \mathcal{N}$ with $t \equiv 0$.

We define two sets \mathcal{O}_1 and \mathcal{O}_2 as a partition of set \mathcal{N} such that
\[
\eta_i(0) \geq (\overline{\mu}(0) + \mu(0))/2, \quad \text{for } i \in \mathcal{O}_1,
\]
\[
\eta_i(0) \leq (\overline{\mu}(0) + \mu(0))/2, \quad \text{for } i \in \mathcal{O}_2.
\]

It should be mentioned that either \mathcal{O}_1 or \mathcal{O}_2 can be an empty set, and the existence of the pair $(\mathcal{O}_1, \mathcal{O}_2)$ may not be unique. This does not influence the validity of the proof.

Define $T' = N(T + 2\tau_D + \Delta_T) + \Delta_T$ with any constant $\Delta_T > 0$. According to Proposition 2, there exist $\mu(t)$ and $\overline{\mu}(t)$ satisfying (19) such that (19) and (20) hold for all $t \geq 0$. Define $M = \overline{\mu}(t)/||\omega||_{\infty}$. And thus, for each $i \in \mathcal{O}_1$, $(\eta_i(t), \zeta_i(t)) \in S_i(\mu(0) - M^t, \overline{\mu}(0) + M^t)$ holds for all $t \in [0, T']$. With property 3 in Proposition 1, there exists $\beta_{i1} \in IL$ which is radially unbounded with respect to the first argument such that
\[
(\eta_i(t) - \overline{\kappa}_i) \leq -\beta_{i1}(\mu(0) - M^t - \eta_i(0), t) + \mu(0) - M^t
\]
\[
\leq -\beta_{i1}(\overline{\mu}(0) - \mu(0))/2 - M^t, T') + \mu(0) - M^t
\]
\[
= a_i^1(\overline{\mu}(0) - \mu(0) + 2M^t) + \mu(0) - M^t
\]
for $t \in [0, T']$. Clearly, a_i^1 is of class K_∞ and less than Id. 5723
Denote N_2 and i^* as the number of elements of set \mathcal{O}_2 and the center of the union digraph $G([0, T']^r)$, respectively. Due to symmetry, we only consider the case of $i^* \in \mathcal{O}_1$. Recursively define $I_k = \{i_1, \ldots, i_k\}$ for $k = 1, \ldots, N_2$ such that

- there exist t'_i, satisfying $[t'_i, t'_i + \tau_D] \subseteq [0, T + 2\tau_D]$ and $l_i \in \mathcal{O}_1$ such that $(l_i, i) \in \mathcal{E}(\sigma([t'_i, t'_i + \tau_D]))$;
- for $k = 2, \ldots, N_2$, there exist t'_i, satisfying $[t'_i, t'_i + \tau_D] \subseteq (k-1)'D + T + 2\tau_D + \Delta t, k(T + 2\tau_D + \Delta t) - \Delta t]$ and $l_i \in \mathcal{O}_1 \cup I_{k-1}$ such that $(l_i, i_k) \in \mathcal{E}(\sigma([t'_i, t'_i + \tau_D]))$.

The existence of such i_k is guaranteed by the UQSC property of \mathcal{G}, which is discussed in Remark 1. For convenience of notations, denote $I_0 = \emptyset$.

Denote $\tilde{\mu}(t) = \tilde{\nu}(t) - \mu(t)$. Note that (25) holds for $i \in \mathcal{O}_1$ for all $t \in [0, T']$. It then follows that $\tilde{\eta}_i(t) \geq \alpha_{i+1}^1 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT'$ holds for $i \in \mathcal{O}_1 \cup I_0$ for all $t \in [0, T']$.

We assume that there exists a function $\alpha_{i+1}^1 < Id$ which is continuous and positive definite such that $\tilde{\eta}_i(t) \geq \alpha_{i+1}^1 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - (k-1)\|w\|_{\infty}$ holds for $i \in \mathcal{O}_1 \cup I_{k-1}$ for all $t \in [k-1]'D + T + 2\tau_D + \Delta t, T']$. In what follows, we prove the existence of $\alpha_{i+1}^1 < Id$ which is continuous and positive definite such that $\eta_i(t) \geq \alpha_{i+1}^1 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - k\|w\|_{\infty}$ holds for $i \in \mathcal{O}_1 \cup I_k$, for all $t \in [k]'D + T + 2\tau_D + \Delta t, T']$. One can show that

\[
v_i(t) = \sum_{\sigma(t) \in \mathcal{N}_i} a_{i,i} \tilde{\nu}_i(t) = \sum_{\sigma(t) \in \mathcal{N}_i} a_{i,i} \tilde{\nu}_i(t) + \sum_{\sigma(t) \in \mathcal{N}_i} a_{i,i} \tilde{\nu}_i(t) \geq \sum_{\sigma(t) \in \mathcal{N}_i} a_{i,i} \tilde{\nu}_i(t) \geq \alpha_{i,i}^1 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - (k-1)\|w\|_{\infty} + a_{i,i} \alpha_{i,i}^1 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - (k-1)\|w\|_{\infty} \geq \alpha_{i,i}^1 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - (k-1)\|w\|_{\infty}
\]

for $t \in [t'_i, t'_i + \tau_D]$, with $\alpha_{i,i}^1 (s) = a_{i,i} \alpha_{i,i}^1(s)/\sum_{\sigma(t) \in \mathcal{N}_i} a_{i,i}$ for $s \in \mathbb{R}^+$, where $\sigma(t)$ represents the fixed topology during the time interval. It can be directly checked that $\alpha_{i,i}^1$ is continuous, positive definite and less than Id. Then, with property 4 of Proposition 1, there exists $\beta_{i,i} \in TL$ such that

\[
(\eta_i(t), \zeta_i(t)) \in S_{i,i}(\tilde{\nu}_i(t), \pi(0) + MT')
\]

holds with

\[
\tilde{\nu}_i(t') = -\tilde{\nu}_i(\tilde{\nu}_i - \mu_{0,i}^0 t) + \epsilon_{i,i}, \text{ with } \epsilon_{i,i} = \min_{t_i \leq t_i' \leq t_i + \tau_D} \{\nu_i(t) + \omega_i(t)\} \geq \alpha_{i,i}^2 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - k\|w\|_{\infty} \geq \alpha_{i,i}^2 (\tilde{\mu}(0) + 2MT') + \mu(0) - MT' - k\|w\|_{\infty} \geq -\tilde{\nu}_i(\tilde{\nu}_i - \mu_{0,i}^0 t) + \epsilon_{i,i}
\]

for $t \in I_{k+1}$. Hence, the proof is completed.
\(\alpha_5^i\circ\alpha_4^i\circ(\text{Id} - \alpha_3^i)\circ\alpha_2^i\). From the definitions of \(\alpha_2^k\), \(\alpha_3^k\), \(\alpha_4^k\) and \(\alpha_5^k\), we obtain that \(\alpha_2^k\) and \(\text{Id} - \alpha_3^k\) are continuous, positive definite and less than \(\text{Id}\), and \(\alpha_5^k\) is of class \(\mathcal{K}_\infty\). Then, \(\tilde{\alpha}\) is continuous, positive definite and less than \(\text{Id}\). Thus, we have

\[
\tilde{\mu}(T^i) \leq \tilde{\alpha}(\tilde{\mu}(0) + 2MT^i) + 2MT^i + N\|\omega\|_\infty.
\]

Recall the definition of \(M\). By recursively applying the reasoning above, one can show that

\[
\tilde{\mu}(k + 1)T^i \leq \tilde{\alpha}(\tilde{\mu}(kT^i) + 2MT^i + N\|\omega\|_\infty)
\]

+ \(2MT^i + N\). \(\Box\)

Define \(\bar{\mu}(T^i) = \tilde{\mu}(kT^i) + 2MT^i\|\omega\|_\infty\) for \(k \in \mathbb{Z}_+\). Then it follows from (30) that

\[
\tilde{\mu}(k + 1)T^i \leq \tilde{\alpha}(\bar{\mu}(kT^i))
\]

+ \(2MT^i + N\). \(\Box\)

Property (31) is in the form of standard ISS. If \(\tilde{\alpha} \in \mathcal{K}_\infty\), then ISS property can be proved. The rest of the proof studies the ISS property by considering the following two cases regarding the radial unboundedness of \(\phi_i\).

For the case that \(\phi_i\) is bounded for some \(i \in N\), one can show that there exists a constant \(\lambda\) such that \(\lim_{r \to \infty} \sup\alpha(r) \geq \lambda\). Given a positive definite \(\epsilon\) satisfying \((\text{Id} - \epsilon) \in \mathcal{K}_\infty\), if

\[
\|\omega\|_\infty \leq \frac{(\text{Id} - \epsilon) \circ \lambda}{2\max\{L_{\gamma}L_{\alpha}, L_{\gamma}L_{\alpha}\} T^i + N} \equiv \rho_i
\]

we obtain

\[
\tilde{\mu}(T^i) \geq \gamma(\|\omega\|_\infty) \\
\tilde{\mu}(k + 1)T^i = \tilde{\alpha}(\tilde{\mu}(kT^i))
\]

where \(\gamma(s) = \alpha^{-1} \circ (\text{Id} - \epsilon)^{-1}\). \(2MT^i + N\) for \(s \in \mathbb{R}_+\).

By a standard comparison lemma in 7, there exists a \(\beta \in \mathcal{L}\) such that

\[
\tilde{\mu}(kT^i) \leq \max\{\beta(0), kT^i\}, \gamma(\|\omega\|_\infty)\}
\]

(33)

holds for all \(k \in \mathbb{Z}_+\).

By (18), one sees that \(\tilde{\mu}(T^i) \leq \tilde{\mu}(kT^i) + 2MT^i\|\omega\|_\infty\) for all \(t \in [kT^i, (k + 1)T^i]\). This together with the definition of \(\tilde{\mu}(kT^i)\) yields

\[
\tilde{\mu}(T^i) \leq \max\{\beta(0) + 2MT^i\|\omega\|_\infty, T, \gamma(\|\omega\|_\infty)\}
\]

(34)

for all \(t \geq 0\).

Consider the case that \(\phi_i\) is radially unbounded for all \(i \in N\). By using properties 3 and 4 in Proposition 1, one can prove that \(\alpha_2^i\), \((\text{Id} - \alpha_3^i)\), \(\alpha_4^i\) and \((\text{Id} - \alpha_5^i)\) are of class \(\mathcal{K}_\infty\) and less than \(\text{Id}\). Thus, there exists \(\tilde{\alpha} \in \mathcal{K}_\infty\) such that (31) holds. Clearly, (34) holds for all measurable and locally essentially bounded \(\omega\).

From the discussions above, it always holds that (19)–(20). Properties (21) and (22) can be proved as \(\tilde{\mu}\) satisfies (34). This ends the proof of Theorem 1.

4. NUMERICAL SIMULATION

In this section, numerical simulation examples are employed to verify the main results. We consider a group of six agents with indices 1, . . . , 6.

Case 1. \(\phi_i\) is bounded for some \(i \in N\). We choose \(\varphi_i(r) = -6r\) and \(\phi_i(r) = -\text{sgn}(r)\min\{0.3, 0.3r\}\) for

\(i = 1, \ldots, 6\). Here, \(\text{sgn}\) represents the sign function. With direct calculation, it can be verified that the selected \(\varphi_i\) and \(\phi_i\) satisfy (13).

In the simulation, the initial states of the agents are chosen as: \(\eta_1(0) = 0, \eta_2(0) = -24, \eta_3(0) = 36, \eta_4(0) = -40, \eta_5(0) = 35, \eta_6(0) = 20\) and \(\zeta(0) = 0\) for all \(i = 1, \ldots, 6\).

The information exchange topology switches between six digraphs \(G_i\) \((i = 1, \ldots, 6)\) with their links defined as: \(G_1 = \{(1, 2), (3, 4), (4, 5), (6, 1)\} \cup G_2 = \{(2, 3), (6, 5), (1, 6)\} \cup G_3 = \{(3, 4), (5, 6), (6, 1)\} \cup G_4 = \{(2, 3), (6, 4), (1, 6)\} \cup G_5 = \{(1, 2), (6, 4), (6, 1)\} \cup G_6 = \{(3, 2), (4, 5), (1, 6), (1, 6)\}.\) The switching sequence is shown in Figure 1. Figures 2 and 3 show the state trajectories of the agents in the presence of measurement disturbances \(\omega_i(t) = 0.1\sin(0.01t)\) and \(\omega_i(t) \equiv 2\), respectively, which are in accordance with the local robust output agreement results given by Theorem 1.

Fig. 1. The switching sequence of the information exchange topology.

Fig. 2. The state trajectories of the agents with \(\omega_1(t) = 0.1\sin(0.01t)\).

Fig. 3. The state trajectories of the agents with \(\omega_1(t) \equiv 2\).
The initial states of the agents are the same with the first case.

Figure 4 shows the state trajectories of the agents subject to measurement disturbances $\omega_i(t) = 6 \sin(0.01t)$, which is in accordance with the robust output agreement result given by Theorem 1.

Fig. 4. The state trajectories of the agents with $\omega_i(t) = 6 \sin(0.01t)$.

5. CONCLUSIONS

This paper has studied the robust output agreement problem for multi-agent systems with flexible topologies subject to measurement disturbances. A class of nonlinear distributed control laws has been proposed for robust output agreement in the sense of ISS, as long as the switching interconnection digraph satisfies a mild connectivity condition. It is proved that, robust output agreement can be guaranteed in the presence of any bounded measurement disturbances if the functions of the distributed control laws are radially unbounded, while a local result can still be achieved if the condition of radial unboundedness is not satisfied.

Appendix A. A TECHNICAL LEMMA

Lemma 1. Consider the initial value problem

$$\dot{\varsigma} = \phi(\varsigma), \quad \varsigma(0) = \varsigma_0$$

(A.1)

where $\varsigma \in \mathbb{R}$ is the state, and ϕ is nonincreasing and locally Lipschitz and satisfies $\phi(0) = 0$ and $r \phi(r) < 0$ for all $r \neq 0$. For $\varsigma_0 \in \mathbb{R}$ and $t \geq 0$, denote $\varsigma(\varsigma_0, t)$ as the solution. Then, $\varsigma \in \mathcal{L}_L$. If moreover there exists a $k_{\phi} > 0$ such that $|\phi(r)| \leq k_{\phi}|r|$ for all $r \in \mathbb{R}$ and ϕ is radially unbounded, then ς and $\varsigma_0 - \varsigma$ are radially unbounded with respect to ς_0.

Due to space limitation, the proof of Lemma 1 is placed in the technical report ?.