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Abstract: This paper proposes a Lyapunov-based adaptive backstepping approach to dis-
tributed optimization of nonlinear uncertain multi-agent systems. The model of each agent
is in the strict-feedback form with parametric uncertainties. By only using local objective
functions, this paper aims to solve the distributed optimization problem for the multi-agent
system such that the outputs of the agents converge to the optimizer of the total objective
function. Based on the idea of adaptive backstepping, the distributed optimization problem
for the high-order multi-agent system is decomposed into solving the optimization or control
problem for multiple first-order subsystems. The technical contributions lie in a Lyapunov-based
design for distributed optimization, and a refined nonlinear damping design to deal with the
newly appearing nonlinear uncertain terms caused by optimization. Based on the new designs,
a Lyapunov function is constructed for the entire system, and the LaSalle-Yoshizawa Theorem
is employed for convergence analysis. It is shown that the objective of distributed optimization
is achievable if the local objective functions are convex with at least one of them being strongly
convex. Computer-based numerical simulation is employed to show the effectiveness of the
proposed design.

Keywords: Distributed optimization, adaptive control, multi-agent systems, nonlinear
strict-feedback systems, parametric uncertainty.

1. INTRODUCTION

In the past decades, distributed optimization has attracted
increasing attention due to the demand for solving opti-
mization problems through parallel and coordinated com-
putation ???. Promising applications of distributed opti-
mization include sensor networks ?, signal processing ?,
power systems ? and robotic networks ?.

Aiming at developing a systematic theory for distributed
optimization, ?? have exploited discrete-time algorithms
and ????? have constructed continuous-time control laws.
Several existing methods have been refined for distributed
optimization, such as gradient-based control ????, in-
tersection computation ?, alternating direction method
of multipliers (ADMM) ? and extremum-seeking control
(ESC) ?. The information exchange topology has been
generalized from the static case ?? to the switching case
??.

Although most of the existing results focus on multi-agent
systems modeled by first-order or second-order integrators,

? This work was supported in part by NSFC grants 61522305,
61633007 and 61533007, in part by NSF grant EPCN-1903781, and
in part by State Key Laboratory of Intelligent Control and Decision
of Complex Systems at BIT.

some recent results have shown the interest in systems
involving more complex dynamics. The recent works ??
consider linear multi-agent systems, and the study in
?? focus on nonlinear multi-agent systems. ?? study the
distributed adaptive optimization problem for nonlinear
multi-agent systems in the normal form with parametric
uncertainties.

This paper studies the distributed adaptive optimization
for nonlinear uncertain systems in the popular strict-
feedback form. References ?? also studied the observer-
based adaptive fuzzy backstepping control of uncertain
nonlinear pure-feedback systems.

The challenge lies in unified Lyapunov-based designs for
distributed optimization and adaptive control, as well as
the convergence analysis of the resulted closed-loop sys-
tem. In this paper, the problem is solved through a refined
backstepping design ?. The initial step of the recursive
design fixes the distributed optimization problem with the
outputs of the agents considered as the virtual control
input. Then, for each agent, a constructive design is de-
veloped to deal with the subsystems one-by-one, until the
true control input appears. New nonlinear damping terms
are employed to the constructive design to cope with the
nonlinear terms introduced by the distributed optimiza-
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tion algorithm. Along with the constructive design, a Lya-
punov function can be constructed for the resulted closed-
loop system at the same time, and the boundedness and
convergence of the states are guaranteed by the LaSalle-
Yoshizawa Theorem ?.

2. NOTATIONS AND TERMINOLOGY

|·| denotes the Euclidean norm for vectors and the induced
norm for matrices. For A ∈ Rm×n, |A| represents its
induced 2-norm, and rankA represents the rank of A.
For real matrices A and B, A ⊗ B represents the Kro-
necker product. We use 1N to represent the N -dimensional
[1, . . . , 1]T , and use Id to represent the identity function.
By default,

∑s
i=k ai = 0 for any ai ∈ R and any k > s.

For a function ϕ : Rp → Rq, ∇ϕ represents the gradient
wherever it exists. A function ϕ : Rp → R is convex if, for
any 0 < a < 1, ϕ(aζ1 + (1− a)ζ2) ≤ aϕ(ζ1) + (1− a)ϕ(ζ2)
holds for all ζ1, ζ2 ∈ Rp. If ϕ is differentiable, then its
convexity can be equivalently defined by ∇ϕT (ζ2)(ζ1 −
ζ2) ≤ ϕ(ζ1) − ϕ(ζ2) for all ζ1, ζ2 ∈ Rp. A differentiable
function ϕ is strictly convex if the inequality above is strict
whenever ζ1 6= ζ2, and it is called ω-strongly convex with
ω > 0 if (∇Tϕ(ζ1)−∇Tϕ(ζ2))(ζ1−ζ2) ≥ ω|ζ1−ζ2|2 for all
ζ1, ζ2 ∈ Rp. A vector-valued function ψ : Rp → Rp is called
Lipschitz with constant ϑ, or simply called ϑ-Lipschitz, if
|ψ(ζ1)− ψ(ζ2)| ≤ ϑ|ζ1 − ζ2| for all ζ1, ζ2 ∈ Rp.

A weighted digraph G is a triple (N , E ,A) where N =
{1, . . . , N} is a nonempty, finite set, E is a subset of N×N
with (i, i) /∈ E for all i ∈ N , and A = [aij ]N×N is
the weighted adjacency matrix with aij = 0 for all i, j
satisfying (j, i) /∈ E and aij > 0 for all i, j satisfying
(j, i) ∈ E . Elements of N are referred to as nodes, and an
element (i, j) of E is referred to as the edge from i to j. The
Laplacian of a weighted digraph G, denoted by L, is defined
as L = [lij ]N×N with lii =

∑
j 6=i aij and lij = −aij for

j 6= i. Clearly, L1N = 0. The digraph G is quasi-strongly
connected (QSC) if there exists some c ∈ N such that
there is a directed path from c to i for each i ∈ N\{c};
the node c is called the center of G. The weighted digraph
G is weight-balanced if

∑
j∈N aij =

∑
j∈N aji holds for all

i ∈ N . For a weight-balanced digraph, LT1N = L1N = 0.
See Figure 1 in Section 6 for an example of a weighted
digraph.

3. PROBLEM FORMULATION

Given a multi-agent system composed of N agents with
each agent described by

ẋik = xi(k+1) + gTik(x̄ik)θi, k = 1, · · · , ni − 1 (1)

ẋini = ui + gTini(x̄ini)θi, (2)

yi = xi1 (3)

for i ∈ N = {1, . . . , N}, where xik ∈ Rny for k =
1, · · · , ni is the state, ui ∈ Rny is the control input, x̄ik =
[xTi1, · · · , xTik]T , yi ∈ Rny is the output, gik : Rkny → Rny
is a vector valued locally Lipschitz function, and θi ∈ Rnθi
are unknown parameters. Notice that the outputs of all the
agents have the same dimension while their states could
have different dimensions.

Consider the optimization problem

min
r∈Rny

c(r), c(r) =
∑
i∈N

ci(r) (4)

where each ci : Rny → R, referred to as local objective
function, is differentiable. c(r) is known as the (total)
objective function.

We make an assumption on the local objective functions.

Assumption 1. The objective function c satisfies that

(1) each ci with i ∈ N is convex, and at least one of ci is
ω-strongly convex with constant ω > 0;

(2) for each i ∈ N , the gradient ∇ci is ϑ-Lipschitz with
constant ϑ > 0.

Remark 1. The first condition of Assumption 1 guarantees
the existence of the unique solution to (4). The second con-
dition is used for the design of a distributed optimization
algorithm. Note that the second-order differentiability is
not required for ci and c, and at least one of the local
objective functions is required to be strongly convex.

Denote y∗ ∈ Rny as the global minimizer of c in (4). For
the multi-agent system (1)–(2), distributed optimal output
agreement aims to design a control law for each agent
by using the local measurements xi and ∇ci(yi) and the
information exchange between the agents such that all the
signals in the closed-loop system are bounded, and the
outputs of the agents converge to y∗, i.e.,

lim
t→∞

yi(t) = y∗. (5)

The information exchange topology of the multi-agent sys-
tem is described by a digraph G = (N , E ,A). Specifically,
each agent is represented by a node in G, and (i, j) ∈ E
if the information of agent i is available to agent j. The
element aij in the adjacency matrix A represents the
weight of the edge (j, i). The following assumption is made
on the digraph.

Assumption 2. The digraph G is QSC and weight-balanced.

4. BACKSTEPPING DESIGN FOR DISTRIBUTED
ADAPTIVE OPTIMIZATION

4.1 Initial Step for Distributed Optimization

This subsection presents the design for the initial step,
mainly focusing on distributed optimization. A Lyapunov
function is constructed to characterize the proposed dis-
tributed optimization algorithm, and will be used later to
construct a Lyapunov function for the entire system.

Consider the distributed optimization algorithm

ẏri = −∇ci(yi)−
∑
j∈N

aij(y
r
i − yrj )−

∑
j∈N

aij(qi − qj) (6)

q̇i = µ
∑
j∈N

aji(y
r
i − yrj ) (7)

where yri ∈ Rny and qi ∈ Rny are the states, yi is the
output of agent i, aij are elements of A, and µ > 0 is a
design parameter.

Here, yri can be considered as the virtual control input
for distributed optimization. If yri = yi and aij = aji,
then the existing results, e.g., ?, can readily guarantee the
convergence of the algorithm.
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For convenience of discussions, rewrite the system (6)–(7)
in the compact form

ẏr = −∆c(y)− L⊗yr − L⊗q (8)

q̇ = µLT⊗y
r (9)

where yr = [yrT1 , . . . , yrTN ]T , q = [qT1 , . . . , q
T
N ]T , y =

[yT1 , . . . , y
T
N ]T , ∆c(y) = [∇T c1(y1), . . . ,∇T cN (yN )]T , and

L⊗ = L⊗ Iny .

The existing result (?, Theorem 4.1) gives the equilibrium
of the system (8)–(9) with y ≡ yr. The result is given here
to make the paper self-contained.

Proposition 1. Under Assumptions 1 and 2, [yrT0 , qT0 ]T is
an equilibrium of the system (8)–(9) with y ≡ yr if

L⊗q0 = −∆c(1N ⊗ y∗), (10)

yr0 = 1N ⊗ y∗. (11)

Taking any [yrT0 , qT0 ]T satisfying (10)–(11), define

ȳ = yr − yr0, q̄ = q − q0. (12)

Then, the system (8)–(9) is transformed into

˙̄y = −(∆c(y
r)−∆c(y

r
0))− L⊗ȳ − L⊗q̄ + (∆c(y

r)−∆c(y)),
(13)

˙̄q = µLT⊗ȳ (14)

where ∆c(y
r) = [∇T c1(yr1), . . . ,∇T cN (yrN )]T and the

property L1N = 0 is used. Denote Z = [ȳT , q̄T ]T as the
state of the system.

Define ȳi = yri − y∗ for i ∈ N . By using the definitions of
yr0 in (11) and ȳi above, we have ȳ = [ȳT1 , . . . , ȳ

T
N ]T . Also,

define ỹ = [ỹT1 , . . . , ỹ
T
N ]T with

ỹi = yi − yri . (15)

The following result gives a method to construct a Lya-
punov function for the system (13)–(14).

Proposition 2. Consider the system (13)–(14). Under As-
sumptions 1 and 2, there exist constants k1, k2, χ2, χ3 > 0
and 0 < χ1 < 2/3 such that

P =

[
µk1IN k2L
k2L

T k1IN

]
,

Q1 = µk1(HT +H − χ2IN )− k2
(
ϑ2

χ1
IN + 2µLLT

)
are positive definite, where H = B + L and B =
diag(b1, · · · , bN ) with

bi =

{
ω if ci is ω-strongly convex,

0 otherwise.
(16)

Moreover, with

V0(Z) = ZT (P ⊗ Iny )Z, (17)

it holds that

λmin(P )|Z|2 ≤ V0(Z) ≤ λmax(P )|Z|2 (18)

V̇0(Z) ≤ −ZT (Q⊗ Iny )Z + d|ỹ|2 (19)

where d = ϑ2(µk1/χ2 + k2/χ3) and

Q =

[
Q1 Q2

QT2 Q3

]
(20)

is positive semidefinite with Q2 = k2L
TL and Q3 = (2 −

χ1 − χ3)k2L
TL.

4.2 Recursive Steps: Handling High Order Uncertain
Dynamics

This subsection presents the constructive design procedure
for desired nonlinear adaptive control laws. It is shown that
the distributed optimization algorithm leads to a nonlinear
uncertain term appearing at each step of the recursive
design, and the nonlinear damping technique is refined to
handle it. To simplify the discussions, this subsection only
gives the design for the case of ny = 1.

For i = 1, · · · , N , introduce the state transformation

eik = xik − αi(k−1), k = 1, . . . , ni (21)

θ̃i = θi − θ̂i (22)

where αi0 = yri , αik are virtual control laws of eik-

subsystem for k = 1, · · · , ni, and θ̂i represents an estimate
of the unknown parameter θi. Furthermore, for k =
1, · · · , ni define ēik = [ei1, · · · , eik]T and

Vik(ēik, θ̃i) =
1

2
|ēik|2 +

1

2
θ̃Ti Γ−1i θ̃i. (23)

Then, we recursively design αik as well as the update law

for θ̂i until the appearance of the true control input ui.

Step 1. From (1) and (21), the dynamics of ei1-subsystem
is

ėi1 = ei2 + αi1 + wTi1θi − ẏri , (24)

where wi1 = gi1. Taking the time derivative of Vi1, one has

V̇i1 = ei1(ei2 + αi1 + wTi1θ̂i − ẏri )− θ̃Ti Γ−1i (
˙̂
θi − Γiwi1ei1).

(25)

Consider the virtual control law

αi1 = −pi1ei1 − wTi1θ̂i −mi1ei1. (26)

Then, (25) becomes

V̇i1 = −pi1e2i1 −mi1e
2
i1 + ei1ei2 − ei1ẏri

− θ̃Ti Γ−1i (
˙̂
θi − Γiwi1ei1). (27)

Step k + 1 for 1 ≤ k ≤ ni − 1. Suppose that for the ēik-
subsystem we have designed virtual control laws

αij = −ei(j−1) − pijeij +

j−1∑
s=1

∂αi(j−1)

∂xis
xi(s+1) − wTij θ̂i

+
∂αi(j−1)

∂θ̂i
Γiτij −mijeij

(
∂αi(j−1)

∂yri

)2

+ vij , (28)

where wij = gij −
∑j−1
s=0

∂αi(j−1)

∂xis
gis and

vij =

j∑
s=1

ei(s−1)
∂αi(s−2)

∂θ̂i
Γiwij (29)

with αi(−1) = ei0 = 0, ∂αi0
∂xi0

= gi0 = 0, τij = w̄Tij ēij ,

w̄ij = [wTi1, · · · , wTij ]T and 1 ≤ j ≤ k such that

V̇ik = −
k∑
s=1

pise
2
is + eikei(k+1) + θ̃Ti (τik − Γ−1i

˙̂
θi)

+

(
k∑
s=1

∂αi(s−1)

∂θ̂i
eis

)
(Γiτik − ˙̂

θi)

−
k∑
s=1

mise
2
is

(
∂αi(s−1)

∂yri

)2

−
k∑
s=1

∂αi(s−1)

∂yri
eisẏ

r
i

(30)
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Property (27) ensures the validity of the hypothesis for
k = 1.

Consider the ei(k+1)-subsystem. From (1) and (21), we
have

ėi(k+1) = ei(k+2) + αi(k+1) −
k∑
s=1

∂αik
∂xis

xi(s+1)

+ wTi(k+1)θi −
∂αik

∂θ̂i

˙̂
θi −

∂αik
∂yri

ẏri . (31)

Then, along the trajectories of the system (31), the deriva-
tive of Vi(k+1) satisfies

V̇i(k+1) = −
k∑
s=1

pise
2
is +

(
k−1∑
s=1

∂αis

∂θ̂i
ei(s+1)

)
(Γiτik − ˙̂

θi)

+ ei(k+1)

[
eik + ei(k+2) + αi(k+1)

−
k∑
s=1

∂αik
∂xis

xi(s+1) + wTi(k+1)θ̂i −
∂αik

∂θ̂i

˙̂
θi

]

+ θ̃Ti (τi(k+1) − Γ−1i
˙̂
θi)−

k+1∑
s=1

∂αi(s−1)

∂yri
eisẏ

r
i .

(32)

Consider the virtual control law

αi(k+1) = −eik − pi(k+1)ei(k+1) +

k∑
s=1

∂αik
∂xis

xi(s+1)

− wTi(k+1)θ̂i +
∂αik

∂θ̂i
Γiτi(k+1)

−mi(k+1)ei(k+1)

(
∂αik
∂yri

)2

+ vi(k+1). (33)

Then, the equation (32) becomes

V̇i(k+1) = −
k+1∑
s=1

pise
2
is + ei(k+1)ei(k+2) + θ̃Ti (τi(k+1)

− Γ−1i
˙̂
θi) +

(
k∑
s=1

∂αis

∂θ̂i
ei(s+1)

)
(Γiτi(k+1) −

˙̂
θi)

−
k+1∑
s=1

mise
2
is

(
∂αi(s−1)

∂yri

)2

−
k+1∑
s=1

∂αi(s−1)

∂yri
eisẏ

r
i ,

(34)

where we used

˙̂
θi − Γiτi(k−1) =

˙̂
θi − Γiτik + Γiτik − Γiτi(k−1)

=
˙̂
θi − Γiτik + Γiwikeik.

Clearly, the V̇i(k+1) defined by (34) is in the form of the

V̇ik defined by (30).

Step ni. When k = ni, set ei(ni+1) = 0 and αini = ui.
Then, equation (30) is rewritten as

V̇ini = −
ni∑
s=1

pise
2
is + einiei(ni+1) + θ̃Ti (τini − Γ−1i

˙̂
θi)

+

(
ni−1∑
s=1

∂αis

∂θ̂i
ei(s+1)

)
(Γiτini −

˙̂
θi)

−
ni∑
s=1

mise
2
is

(
∂αi(s−1)

∂yri

)2

−
ni∑
s=1

∂αi(s−1)

∂yri
eisẏ

r
i .

(35)

Consider the control law for the true control input

ui = αini = −ei(ni−1) − pinieini +

ni−1∑
s=1

∂αi(ni−1)

∂xis
xi(s+1)

− wTini θ̂ +
∂αi(ni−1)

∂θ̂i
Γiτini

−minieini

(
∂αi(ni−1)

∂yri

)2

+ vini (36)

where wini = gini −
∑ni−1
s=1

∂αi(ni−1)

∂xis
gis and vini =∑ni

s=1 ei(s−1)
∂αi(s−2)

∂θ̂i
Γiwini .

To eliminate the terms of θ̃ from the right-hand side of

(35), we design the update law for θ̂i as

˙̂
θi = Γiτini(ēini , θ̂i) = Γiw̄

T
ini ēini . (37)

Then, equation (35) becomes

V̇ini = −
ni∑
s=1

pise
2
is −

ni∑
s=1

mise
2
is

(
∂αi(s−1)

∂yri

)2

−
ni∑
s=1

∂αi(s−1)

∂yri
eisẏ

r
i (38)

Remark 2. The proposed recursive design introduces non-
linear damping terms ? to the virtual control laws to
address the terms of ẏri , to avoid the usage of high-order
derivatives of yri .

5. STABILITY ANALYSIS

This section gives the main result of the paper.

Theorem 1. Consider the multi-agent system (1)–(3) with
the controller defined by (6)–(7) and (21)–(37). Under
Assumptions 1 and 2, the objective of distributed optimal
output agreement is achievable by appropriately choosing
pij and mij for i = 1, . . . , N and j = 1, . . . , ni.

Proof. Denote X = [ZT , ēT1n1
, θ̃T1 , · · · , ēTNnN , θ̃

T
i ]T . Define

V (X) = bV0(Z) +

N∑
i=1

Vini(ēini , θ̃i) (39)

with b > 0 to be determined later. Then, along the trajec-
tories of the closed-loop system considered by Theorem 1,
it holds that
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V̇ (X) = bV̇0(Z) +

N∑
i=1

V̇ini(ēini , θ̃
T
i )

≤ −bZT (Q⊗ Iny )Z + bd|ỹ|2 −
N∑
i=1

ni∑
s=1

pise
2
is

+

N∑
i=1

ni∑
s=1

1

4mis
|ẏri |2. (40)

By using ˙̄yi = ẏri − ẏ∗ = ẏri , (13) and Lq̄ = L̄ˆ̄q, we have

|ẏri | ≤ ϑ(|ȳi|+ |ỹi|) + |Li||ȳ|+ |L̄i||ˆ̄q|
which used the ϑ-Lipschitz property of ∇ci. Then, it holds
that

|ẏri |2 ≤ 4ϑ2(|ȳi|2 + |ỹi|2) + 4|Li|2|ȳ|2 + 4|L̄i|2|ˆ̄q|2. (41)

Substituting (41) into (40) yields

V̇ (X) ≤ −bZT (Q⊗ Iny )Z + bd|ỹ|2 −
N∑
i=1

ni∑
s=1

pise
2
is

+

N∑
i=1

ni∑
s=1

1

4mis

(
4ϑ2(|ȳi|2 + |ỹi|2) + 4|Li|2|ȳ|2

+ 4|L̄i|2|ˆ̄q|2
)
. (42)

By using (19), Q̄3 = (2 − χ1 − χ3)k2L̄
T L̄ and Lq̄ = L̄ˆ̄q,

inequality (42) becomes

V̇ (X) ≤ −bZ ′T (S ⊗ Iny )Z ′ − bỹT d̄ỹ −
N∑
i=1

ni∑
s=1

pise
2
is

(43)

with Z ′ = [ȳT , ˆ̄qT ]T , S =

[
S1 S2

ST2 S3

]
, and

S1 = bQ1 −
N∑
i=1

m̄i|Li|2IN − ϑ2diag(m̄1, · · · , m̄N ),

S2 = k2L̄
T L̄, S3 = bQ̄3 −

N∑
i=1

m̄i|L̄i|2IN , m̄i =

ni∑
s=1

1

mis
,

d̄ = diag(p11 − m̄1ϑ
2, · · · , pN1 − m̄Nϑ

2)− bdIN .

Proposition 2 guarantees the positive definiteness of Q1

and Q̄3, which means that given specific mis, Li and L̄i, we
can choose b large enough such that S is positive definite.
With such b, we can choose pi1 large enough such that d̄
is positive definite. Then, (43) implies

V̇ (X) ≤ −bZ ′T (S ⊗ Iny )Z ′ − bd̄|ỹ|2 −
N∑
i=1

ni∑
s=1

pise
2
is ≤ 0.

(44)

This guarantees the boundedness of X (?, Theorem 4.1).
Then, the boundedness of xik for i = 1, . . . , N and k =
1, . . . , ni can be proved following the standard analysis of
the backstepping approach ?.

With (44), by using the LaSalle-Yoshizawa Theorem (?,
Theorem 2.1), we have

lim
t→∞

(
−bZ ′T (S ⊗ Iny )Z ′ − bd̄|ỹ|2 −

N∑
i=1

ni∑
s=1

pise
2
is

)
= 0

Recall that S and d̄ are positive definite, and pik > 0 for
k = 2, · · · , ni. Then, it holds that

lim
t→∞

|ȳ(t)| = lim
t→∞

|ỹ(t)| = lim
t→∞

|ˆ̄q(t)| = lim
t→∞

|eik| = 0,

(45)

for k = 2, · · · , ni, which, together with the fact yi −
y∗ = yi − yri + yri − y∗ = ỹi + ȳi, leads to limt→∞(yi(t) −
y∗) = 0, and equivalently the satisfaction of (5). This ends
the proof. �

6. AN EXAMPLE

In this section, we employ a multi-agent system composed
of four pendulums to show the effectiveness of the proposed
design. For i = 1, . . . , 4, each pendulum is described by (?,
p. 5)

ẋi1 = xi2 (46)

ẋi2 = − g
li

sinxi1 −
θi
mi

xi2 +
1

mil2i
Ti (47)

yi = xi1 (48)

where xi1 and xi2 are the states, g is the acceleration due
to gravity, li and mi are the length and the mass of the
bob separately and Ti is the control input representing
the torque applied to the bob. In our example, we take
m1 = 1,m2 = 1.2,m3 = 1,m4 = 0.5, l1 = 0.1, l2 =
0.2, l3 = 0.15, l4 = 0.1, θ1 = 0.5, θ2 = 0.4, θ3 = 0.2, θ4 =
0.3 and g = 9.8. The objective is to render all of the
four pendulums to a desired position, i.e., the outputs
yi for i = 1, 2, 3 go to a common value determined by
the optimization problem (4) with ci(r) = 0.5(r − i)2 for
i = 1, 2, 4 and c3(r) = r − 1. The information exchange
topology and its adjacency matrix are shown in Figure 1.
One can check that Assumptions 1 and 2 are satisfied and
the optimal solution of (4) is y∗ = 2.

1 2

34

A =

 0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


Fig. 1. The information exchange digraph G and the

adjacency matrix A.

By taking gi1 = 0, gi2 = −xi2/mi and introducing a new
control input ũi such that Ti = mil

2
i (g/li sinxi1 + ui), the

system (46)–(48) is transformed into the form of (1)–(3).

We use the distributed coordinator (6)–(7) with µ =
1 and the adaptive backstepping control laws in the

form of (21)–(37) with the estimation θ̂i in the form
of (37). In particular, the control law is ui = αi2 =

−ei1 − pi2ei2 − (pi1 +mi1)xi2 −wi2θ̂i +wi1Γixi2ei2/mi −
mi2ei2(pi1 + mi1)2,

˙̂
θi = −xi2ei2/mi with the parameters

Γi = 1,m11 = m22 = m32 = m41 = m42 = 0.6,m12 =
m21 = 0.8,m31 = 0.7, p12 = p32 = 0.002, p22 = p42 =
0.001, p11 = 79.98, p21 = 79.99, p31 = 80.1 and p41 = 80.
The trajectories of yi are shown in Figure 2. It is shown
that all the yi converge to y∗ = 2.
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Fig. 2. Trajectories of the outputs of four pendulums with
initial states yr(0) = [1, 2, 3, 0], q(0) = [1,−1, 1, 0],
x1(0) = [0, 1, 2, 3] and x2(0) = [1, 1, 0.1, 0].

7. CONCLUSIONS

This paper studies the distributed optimal output agree-
ment problem of nonlinear multi-agent systems taking the
parametric strict-feedback form. A class of distributed
optimal coordinators is proposed and shown to have ro-
bustness with respect to tracking errors. This kind of
coordinators can estimate the optimizer exponentially if
there exists no tracking error under a mild assumption
on the optimal objective function and the interconnection
topologies. By means of a refined adaptive backstepping
method, state-feedback control laws are constructed that
render the closed-loop multi-agent system stable. In ad-
dition, it is shown that the distributed optimal output
agreement problem can be solved.
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