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Abstract: This paper studies the extremum seeking problem for static maps with the inputs of
the maps generated by a nonlinear uncertain system. A new small-gain approach is developed
which uses an extremum seeking strategy to generate a reference signal, and employs a control
law for reference-tracking of the nonlinear uncertain systems. The notions of input-to-state
stability (ISS) and input-to-output stability (IOS) are used to characterize the interconnection
between the extremum seeking strategy and the reference-tracking controller, and the nonlinear
small-gain theorem is employed to guarantee the stability of the closed-loop extremum seeking
system. With the proposed approach, the extremum seeking problem for a complex nonlinear
system is solvable as long as one can design a proper reference-tracking controller for the system.
Examples are given to show the feasibility of the proposed approach, and a numerical simulation
is employed to show the effectiveness of the proposed design.
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1. INTRODUCTION

The study of extremum seeking can be traced back to the
work of Leblanc (1922), when the technique was popularly
applied to control applications. By using input-output da-
ta, extremum seeking aims to solve the optimum searching
problem for uncertain plants through online tuning of
parameters or setpoints. In the past two decades, there is a
renewed interest in investigating its underlying theory and
applications to real-time optimization of nonlinear control
systems Ariyur and Krstić (2003); Scheinker and Krstić
(2017).

By taking advantage of the newly developed tools in non-
linear and adaptive control theory, a lot of efforts have
been devoted to improving the capability of extremum
seeking by enlarging the range of operations from local to
semi-global and global, and dealing with plants with more
complex dynamics. The tools including singular perturba-
tion and averaging Krstić and Wang (2000); Kutadinata
et al. (2017), Lyapunov methods Haring and Johansen
(2017), small-gain theorem Tan et al. (2006), stochastic
analysis Manzie and Krstić (2009); Liu and Krstić (2010),
time-varying estimation Guay and Dochain (2015) and Lie
algebra Dürr et al. (2017); Labar et al. (2019) have been
introduced to the literature.

? This work was supported in part by NSFC grants 61633007,
61733018, 61533007 and U1911401, in part by NSF grant EPCN-
1903781, and in part by State Key Laboratory of Intelligent Control
and Decision of Complex Systems at BIT.

This paper studies the extremum seeking problem for
static maps with the inputs of the maps generated by
nonlinear dynamical systems. It is shown that the problem
can be solved by using an extremum seeking strategy to
generate a reference signal, and designing a control law for
the nonlinear uncertain system to track the reference sig-
nal. Based on this idea, the closed-loop extremum seeking
system can be considered to be composed of two parts,
extremum seeking for a static map and reference-tracking
of the nonlinear uncertain system. The two parts inter-
act with each other through the reference signal and the
reference-tracking error, which leads to the major difficulty
for synthesis. In this paper, the notions of input-to-state
stability (ISS) Sontag (1989) and input-to-output stability
(IOS) Jiang et al. (1994) are employed to characterize the
robustness of the extremum seeking algorithm with respec-
t to reference-tracking error, and the robustness of the
reference-tracking capability with respect to the changes
of reference signals. Moreover, nonlinear gains are used to
describe the interconnections, and the nonlinear small-gain
theorem Jiang et al. (1994) is employed to guarantee the
stability of the closed-loop extremum seeking system, see
Sontag (2007) and Jiang and Liu (2018) for tutorials of
ISS and the nonlinear small-gain theorem.

In this paper, an assumption is used to represent the
reference-tracking capability of the controlled systems,
which is weaker than the conditions in many of the existing
results, such as Krstić and Wang (2000); Ariyur and Krstić
(2003); Tan et al. (2006); Guay and Dochain (2015). This
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makes the results of this paper more applicable. We also
give three examples to show how to make this assumption
satisfied for general systems.

The rest of the paper is organized as follows. Section 2
gives the problem formulation. The main result is pro-
posed in Section 3. Section 4 gives three examples on the
validity of the main assumption on the reference-tracking
capability. In Section 5, a numerical example is employed
to show the effectiveness of the proposed design. Section 6
contains some concluding remarks.

2. PROBLEM FORMULATION

Consider the following nonlinear uncertain systems

ẋ = f(x, u), z = g(x) (1)

where x ∈ Rn is the state, u ∈ R is the control input,
z ∈ R is the output, f : Rn ×R→ Rn and g : Rn → R are
locally Lipschitz functions (maybe unknown) representing
the system dynamics and the output map, respectively. We
aim at solving the extremum seeking problem for system
(1), i.e., designing controller u such that the output z
converges to the extremum of some objective function
h : R → R. Specifically, if h is strongly concave, it is
desired that z converges to

z∗ = argmax
z∈R

h(z). (2)

Extremum seeking aims to solve the optimum searching
problem when the function h is analytically unknown and
its gradient is not available. The problem becomes more
challenging when the system (1) which generates z involves
nonlinear and uncertain dynamics, and when only the
output or partial state is available for feedback.

By taking advantage of the rich literature of both ex-
tremum seeking and nonlinear control theory, the objective
of this paper is to propose a new hierarchical structure for
output extremum seeking. In particular, the structure is
composed of two levels, upper-level extremum seeking and
lower-level reference-tracking control, and the extremum
seeking problem is solvable for nonlinear uncertain systems
through the coordination of the two levels.

By convention, we make the following assumption on the
objective function h.

Assumption 1. The function h is strongly concave and
twice continuously differentiable. Moreover, with z∗ =
argmaxz∈R h(z), there exists a known Ω ⊆ R such that

z∗ ∈ Ω, (3)

and there exist h, h′, h
′
, h
′′ ∈ K∞ and known constants

h
∗
, h
′′∗ ≥ 0 such that

|h(z∗ + ζ)| ≤ h(|ζ|) + h
∗

(4)

h′(|ζ|) ≤ |h′(z∗ + ζ)| ≤ h′(|ζ|) (5)

|h′′(z∗ + ζ)| ≤ h′′(|ζ|) + h
′′∗

(6)

hold for all ζ ∈ R.

Remark 1. Assumption 1 is not a very strict condition.
There are many functions that satisfy this assumption,
such as h(z) = −z2 + 1 and h(z) = −z2.5 + 1.

The proposed solution is based on the design of a reference-
tracking controller for the plant. Without loss of generality,
suppose that the controller is in the form of

u = φ(x, χ, zr), χ̇ = ϕ(x, χ, zr) (7)

where χ ∈ Rm represents the internal state of the con-
troller, φ : Rn×Rm×R→ R and ϕ : Rn×Rm×R→ Rm
are locally Lipschitz functions, and zr ∈ R is a reference
signal.

Remark 2. Specifically, the state x in (7) does not always
need to be fully known. In 4.3 of this paper, the problem
of extremum seeking of nonlinear systems in the output-
feedback form is solved without using the state.

For convenience of notations, define

z̃ = z − zr (8)

as the reference-tracking error, and X = (x, χ) as the state
of the controlled plant. The following assumption employs
the notions of input-to-output practical stability (IOpS)
and unboundedness observability (UO) to characterize the
reference-tracking capability and stability of the controlled
plant composed of (1) and (7).

Assumption 2. For the controlled plant composed of (1)
and (7), there exist βz̃ ∈ KL, αz̃, γ

żr

z̃ , γ
zr

z̃ ∈ K∞ and
nonnegative constants c1, c2, c3 such that for any zr which
is continuously differentiable on the time-line, and any
initial state X(0),

|z̃(t)| ≤max{βz̃(|X(0)|+ ‖zr‖t + c1, t),

γż
r

z̃ (‖żr‖t), γz
r

z̃ (‖zr‖t), c2} (9)

|X(t)| ≤αz̃(|X(0)|+ ‖żr‖t + ‖zr‖t + c3) (10)

hold for all t ≥ 0, where ‖s‖t means ess sup0≤τ≤t |s(τ)| for
s : R+ → R.

Remark 3. Assumption 2 is used to represent the reference-
tracking capability of the controlled systems in extremum
seeking. It is weaker than many assumptions of the existing
literatures. Some controlled systems with multi-equilibria
or offset satisfy this assumption, while they do not satisfy
the assumptions in the existing results such as Krstić and
Wang (2000); Ariyur and Krstić (2003); Tan et al. (2006);
Guay and Dochain (2015). What is more, the dynamic
function of the system (1) does not need to be global-
ly Lipschitz, which is required in Haring and Johansen
(2017).

Three examples are given in Section 4 to show the validity
of Assumption 2.

3. MAIN RESULT

This section presents the main result of the paper. In-
tuitively, with Assumption 2 guaranteeing the reference-
tracking capability of the controlled plant, the problem of
extremum seeking is reduced to the one of generating an
appropriate reference signal.

As shown in Figure 1, the proposed extremum seeking con-
trol system features the standard structure of extremum
seeking.

Clearly, if the reference-tracking capability of the con-
trolled plant is perfect, say z ≡ zr, then the problem
is reduced to the fundamental one of static extremum
seeking. In such ideal case, the block of the controlled plant
(dashed bolck in Figure 1) can be removed. In the presence
of the reference-tracking error, we consider the closed-loop
extremum seeking control system as an interconnection of
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ẋ = f(x, φ(x, χ, zr))

z = g(x)
y = h(z)

Extremum Seeking

Algorithm

zzr y

Fig. 1. Structure of the closed-loop extremum seeking
system.

two parts: the upper level of static extremum seeking and
the lower level of reference-tracking; see Figure 2.

Extremum Seeking

Algorithm

y = h(z)
z

zr

y

ẋ = f(x, φ(x, χ, zr))
z = g(x)

zr

z

z̃

+
+

+
−

Fig. 2. Two-level structure of a closed-loop extremum
seeking system.

In the remainder of this section, we first use gains to
characterize the interconnection between the upper-level
static extremum seeking and the lower-level reference-
tracking, and then employ the nonlinear small-gain the-
orem to guarantee the boundedness of the signals in the
closed-loop system and the convergence of z to z∗.

3.1 Gain Interconnections

Consider the extremum seeking algorithm

θ̇ = kah(z) sin(ωt) (11)

zr = θ + a sin(ωt) (12)

where k, a and ω are positive constants. This subsection
propose some important properties of systems (11)–(12),
(1) and (7), which will be used in the next subsection to
solve the extremum seeking problem (2) of system (1).

If z ≡ zr, then the algorithm and its modifications have
been widely used in solving extremum seeking problems,
see Ariyur and Krstić (2003); Tan et al. (2006).

Recall that z̃ = z − zr represents the reference-tracking
error of the controlled plant. Define

θ̃ = θ − z∗. (13)

Then, the extremum seeking algorithm (11)–(12) implies

˙̃
θ = akh(z∗ + θ̃ + z̃ + a sin(ωt)) sin(ωt). (14)

The robust stability of systems like the system (14) has
been studied in Tan et al. (2006), with the influence of the

reference-tracking error z̃ described by the notion of ISS.
The result is given here for completeness of the paper.

Proposition 1. (Tan et al. (2006)). Consider system (14).
Design δ = k/ω. Suppose that Assumption 1 is satisfied.
For any positive constants λ, εθ̃ and ω, one can find
positive constants a and δ such that for any θ(0) and z̃

satisfying max{|θ̃(0)|, ‖z̃‖∞} ≤ λ,

|θ̃(t)| ≤ max{βθ̃(|θ̃(0)|, t), γz̃
θ̃
(‖z̃‖t), εθ̃} (15)

holds for all t ≥ 0, where βθ̃ is a class KL function, and
γz̃
θ̃

is a class K∞ function.

Next, two propositions are to describe the other intercon-
nections in the extremum seeking system by gains.

Proposition 2. Suppose that Assumption 1 holds for sys-

tem (14). Then, there exist γθ̃żr , γ
z̃
żr ∈ K∞ and a constant

εżr such that

|żr| ≤ max{γθ̃żr (|θ̃|), γz̃żr (|z̃|), εżr}. (16)

Proof Define σ = ωt, and recall k = ωδ. Then, the
system (14) can be rewritten as

dθ̃

dσ
= aδh(θ∗ + θ̃ + z̃ + a sin(σ)) sin(σ). (17)

With Assumption 1 satisfied, it can be directly proved that∣∣∣∣∣ dθ̃dσ

∣∣∣∣∣ ≤ max{γθ̃
θ̃σ

(|θ̃|), γz̃
θ̃σ

(|z̃|), dθ̃σ} (18)

where γθ̃
θ̃σ

(s) = aδh(3s), γz̃
θ̃σ

(s) = aδh(3s) ∈ K∞, and

dθ̃σ = aδ(h(3a) + h
∗
). Using (12), we obtain

dzr

dσ
=

dθ̃

dσ
+ a cos(σ), (19)

which implies∣∣∣∣dzrdσ

∣∣∣∣ ≤ max

{
γθ̃σzrσ

(∣∣∣∣∣ dθ̃dσ

∣∣∣∣∣
)
, dzrσ

}
, (20)

where γθ̃σzrσ (s) = 2s and dzrσ = 2a. Properties (18) and

(20) together guarantee (16) with γθ̃żr (s) = ωγθ̃σzrσ ◦ γ
θ̃
θ̃σ

(s),

γz̃żr (s) = ωγθ̃σzrσ ◦ γ
z̃
θ̃σ

(s), and εżr = max{ωdzrσ , ωγ
θ̃σ
zrσ

(dθ̃σ )}.
This ends the proof of Proposition 2. �
Proposition 3. Suppose that Assumptions 1 and 2 are sat-
isfied. Consider the extremum seeking algorithm defined
by (11) and (12), and the controlled plant composed of

(1) and (7). There exist a class K∞ function γθ̃z̃ and a
constant εz̃ such that

|z̃(t)| ≤max{βz̃(|X(0)|+ ‖zr‖t + c1, t),

γż
r

z̃ (‖żr‖t), γθ̃z̃ (‖θ̃‖t), εz̃} (21)

where βz̃, γ
żr

z̃ and c1 are given by Assumption 2.

Proof Under Assumption 1, there exist s a known
positive constant z∗ such that |z∗| ≤ z∗. With (12) and
(13), it can be directly verified that

|zr| ≤ max{γθ̃zr (θ̃), dzr} (22)

where γθ̃zr (s) = 2s and dzr = 2z∗ + 2a. Then, Assumption

2 directly implies (21) with γθ̃z̃ (s) = γz
r

z̃ ◦ γθ̃zr (s) and
εz̃ = max{c2, γz

r

z̃ (dzr )}. This ends the proof of Proposition
3. �
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3.2 Small-Gain-Based Synthesis

With Propositions 1, 2 and 3, the closed-loop extremum
seeking system is transformed into an interconnected sys-
tem with the interconnections described by gains; as shown
in Figure 3.

z̃

żrθ̃
γθ̃żr

γz̃żr

γz̃
θ̃

γθ̃z̃
γż

r

z̃

Fig. 3. Gain interconnection of the closed-loop extremum
seeking system.

The following theorem gives the main result of the paper.

Theorem 4. Suppose that Assumptions 1 and 2 are sat-
isfied. Consider the closed-loop extremum seeking system
composed of (1), (7), (11) and (12). For any constants
ρ, ω > 0, by choosing suitably a, δ > 0 such that

γż
r

z̃ ◦ γz̃żr < Id, γθ̃z̃ ◦ γz̃θ̃ < Id, γθ̃żr ◦ γz̃θ̃ ◦ γ
żr

z̃ < Id, (23)

there exists a class KL function βfinal such that for any
θ(0) and X(0) satisfying max{|θ̃(0)|, |X(0)|} ≤ ρ,

|θ̃(t)| ≤ max{βfinal(|[θ̃(0), X(0)]|, t), ε} (24)

holds for all t ≥ 0, with ε = max{εθ̃, γz̃θ̃ (εz̃), γ
z̃
θ̃
◦ γżrz̃ (εżr )}.

Since the closed-loop extremum seeking system has been
transformed into a network with the interconnections de-
scribed by gains, the main result is proved by directly using
the recently developed nonlinear cyclic-small-gain theorem
for dynamic networks Sontag (1989); Bao et al. (2019).
Specifically, the three inequalities in (23) correspond to the
three simple cycles in the graph shown in Figure 3. The
details of the proof are omitted due to space limitation.

4. EXAMPLES

This section employs examples to show the validity of
Assumption 2.

4.1 A Nonlinear System with Multi-Equilibria

For the system in Sontag and Wang (1999):

ẋ1 = 0, ẋ2 = −x2 − u
1 + x2

1

, z = x2. (25)

Consider the control law

u = zr − b(1 + x2
1)(x2 − zr) (26)

where zr represents the reference signal, and b is a positive
constant. Define x̃1 = x1, x̃2 = x2 − zr and z̃ = z − zr.
Then, the closed-loop system is

˙̃x1 = 0, ˙̃x2 = − x̃2

1 + x̃2
1

− bx̃2 − żr, z̃ = x̃2, (27)

which satisfies Assumption 2 withX = [x̃1, x̃2]T , βz̃(s, t) =
e−0.5bts, γż

r

z̃ (s) = 2s/b, γz
r

z̃ (s) = 0.0001s, αz̃(s) =
(1.0001 + 2/b)(s) and c1 = c2 = c3 = 0.

4.2 A General Class of Linear Systems

Consider a linear system represented by the transfer func-
tion

G(s) = K
b0 + b1s+ · · ·+ bn−r−1s

n−r−1 + sn−r

a0 + a1s+ · · ·+ an−1sn−1 + sn
. (28)

Suppose that the numerator and denominator polynomials
are relatively prime. Then, one of its minimal realizations
is

ẋ = Ax+Bu, z = Cx (29)

where

A =


0 1
...

. . .
1

−a0 −a1 · · · −an−1

 , B =


0
...
0
K

 (30)

C = [b0, · · · , bn−r−1, 1, 0, · · · , 0]. (31)

with K 6= 0 and b0 6= 0.

Define matrices K1 = 1
K [a0, · · · , an−1] and K2 satisfy-

ing A2 = A + BK1 − BK2 is Hurwitz. This is achiev-
able due to the controllability of the minimal realization.
Then, it can be verified that CA−1

2 B 6= 0. Define x̃ =

diag{1, µ, · · · , µn−1}x − A−1
2 B

CA−1
2 B

zr and choose u = K1x −
K2diag{µ−n, · · · , µ−1}x−µ−n 1

CA−1
2 B

zr with zr represent-

ing the reference signal, and µ being a positive parameter
to be determined later. Then, direct calculation yields

˙̃x = µ−1A2x̃−
A−1

2 B

CA−1
2 B

żr. (32)

This guarantees the satisfaction of Assumption 2 by taking
proper µ.

4.3 Nonlinear Systems in the Output-Feedback Form

Consider the class of nonlinear uncertain systems in the
output-feedback form, which has been widely studied in
the literature of nonlinear control Krstić et al. (1995):

ẋj = xj+1 + ∆j(z), 1 ≤ j ≤ n− 1,

ẋn = u+ ∆n(z),

z = x1 (33)

where x = [x1, · · · , xn]T ∈ Rn is the state, u ∈ R is the
control input, z ∈ R is the output, and ∆i : R → R with
i = 1, . . . , n are nonlinear uncertain functions.

The following assumption is made on the system dynamics.

Assumption 3. There exist ψ1∆j
, ψ2∆j

, ψ∆j
which are

known, locally Lipschitz, class K∞ functions, and c∆j

which is a known nonnegative constant for 1 ≤ j ≤ n,
such that

|∆j(z)−∆j(z
r)| ≤ψ1∆j

(|z − zr|) + ψ2∆j
(|zr|),

1 ≤ j ≤ n (34)∣∣∣∣∂∆j(z)

∂z

∣∣∣∣ ≤ψ∆j (|z|) + c∆j , 1 ≤ j ≤ n− 1 (35)

|∆n(zr)| ≤ψ∆n
(|zr|) + c∆n

(36)

hold for all z, zr ∈ R.

The following design is motivated by the observer-based
control law developed by Liu and Jiang (2013).
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Define x̃1 = x1−zr and x̃j = xj +∆j−1(zr) for 2 ≤ j ≤ n.
Then, the system (33) can be rewritten as

˙̃xj =x̃j+1 + ∆̃j(z, z
r, żr), 1 ≤ j ≤ n− 1

˙̃xn =u+ ∆̃n(z, zr, żr)

z̃ =x̃1 (37)

where ∆̃1(z, zr, żr) = ∆1(z)−∆1(zr)− żr, ∆̃j(z, z
r, żr) =

∆j(z) − ∆j(z
r) +

∂∆j−1(zr)
∂zr żr for j = 2, · · · , n − 1 and

∆̃n(z, zr, żr) = ∆n(z) − ∆n(zr) + ∂∆n−1(zr)
∂zr żr + ∆n(zr).

From Assumption 3, we have

|∆̃1(z, zr, żr)| ≤ψ1∆1
(|x̃1|) + ψ2∆1

(|zr|) + |żr|
:=∆̃∗j (|x̃1|, |zr|, |żr|),

|∆̃j(z, z
r, żr)| ≤ψ∆j

(|x̃1|) + ψ2∆j
(|zr|)

+ 0.5ψ2
∆j−1

(|zr|) + 0.5|żr|2 + c∆j
|żr|

:=∆̃∗j (|x̃1|, |zr|, |żr|), j = 2, · · · , n− 1,

|∆̃n(z, zr, żr)| ≤ψ∆n
(|x̃1|) + ψ2∆n

(|zr|) + 0.5ψ2
∆n−1

(|zr|)
+ 0.5|żr|2 + c∆n

|żr|+ ψ∆n
(|zr|) + c∆n

:=∆̃∗n(|x̃1|, |zr|, |żr|, c∆n).

Owing to the output-feedback structure, we design an
observer

ξ̇1 =ξ2 + L2ξ1 + ρ1(ξ1 − x̃1)

ξ̇j =ξj+1 + Lj+1ξ1 − Lj(ξ2 + L2ξ1), 2 ≤ j ≤ n− 1

ξ̇n =u− Ln(ξ2 + L2ξ1) (38)

where ρ1 : R → R is an odd and strictly decreasing
function, and L2, · · · , Ln are positive constants. In the
observer, ξ1 is an estimate of z̃, and ξj is an estimate of
x̃j − Lj z̃ for 2 ≤ j ≤ n. Then, we consider the observer-
based nonlinear control law

e1 = ξ1,

ej = ξj − κj−1(ej−1), 2 ≤ j ≤ n, u = κn(en) (39)

where κ1, · · · , κn are continuously differentiable, odd,
strictly decreasing and radially unbounded functions. De-
fine X = [x̃1, · · · , x̃n, ξ1, · · · , ξn]T as the internal state of
the controlled system composed of the transformed system
(37) and the observer-based controller (38)-(39). Then,
Assumption 2 can be satisfied following an analysis similar
to that in (Liu and Jiang, 2013, Section V).

5. NUMERICAL SIMULATION

Consider the system (25) in Section 4.1, with the objective
function

y = h(z) = −0.4(z + 1)2 + 1. (40)

Define Ω = [−3, 1]. Then, it is clear that z∗ ∈ Ω and the
maximum value of y is 1. Also,

|h(z∗ + ζ)| ≤ 2|ζ|+ 1.2 (41)

0.5|ζ| ≤|h′(z∗ + ζ)| ≤ |ζ| (42)

|h′′(z∗ + ζ)| ≤ |ζ|+ 0.2 (43)

hold for all z∗ ∈ Ω and |ζ| ≤ 5.

By choosing a = 0.2, δ = 0.5 and ω = 1 and using control
law (26) with b = 100, Assaumption 2 and the cyclic-
small-gain condition (23) are satisfied. Figure 4 shows
the simulation result with initial states x1(0) = −0.6,
x2(0) = 3 and θ(0) = 2.7.
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Fig. 4. Numerical simulation result.

It can be observed that z and θ converge to a small
neighborhood of the extremum point z∗ = −1, and y
converges to a small neighborhood of the maximum y = 1.

6. CONCLUSIONS

This paper has introduced a small-gain approach to ex-
tremum seeking for static maps with the inputs of the
maps generated by nonlinear uncertain systems. It has
been shown that the problem can be solved by using an
extremum seeking strategy to generate a reference signal,
and designing a control law for the nonlinear uncertain
system to track the reference signal. The closed-loop sys-
tem has been transformed into an interconnected system,
and the nonlinear small-gain theorem has been used for
stability and convergence analysis. With the proposed
approach, the extremum seeking problem for static maps
with the inputs of the maps generated by nonlinear un-
certain system is solvable as long as one can design an
appropriate reference-tracking controller for the system.
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