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Abstract: With the development of control theory and the pneumatic element, the application
of pneumatic systems has attracted more attention because of the performance to price ratio
improvement. Despite of these, there are still challenge to deal with the nonlinearity of the
system, the uncertainty of the parameters, the input saturation and the unknown control
direction in the tracking control of pneumatic system. In this paper, the nonlinearity and
model uncertainty are treated with adaptive radial basis function neural network (RBFNN),
meanwhile, the unknown control direction and input saturation are dealt with the Nussbaum
function and Gauss error function, respectively. The stability of the designed controller is proved
by Lyapunov theory. Finally, the experimental and comparison results show the effectiveness
and superiority of the proposed method.

Keywords: Pneumatic system, RBFNN, unknown model parameters, unknown control
direction, input saturation.

1. INTRODUCTION

Pneumatic systems are widely used in industrial automa-
tion in the world due to their cleanness, simple structure
and anti-electromagnetic interference [Yong and Wang
(2009)]. However, due to the compressibility of air, the
low natural frequency of pneumatic systems, the complex
flow through the valve port. It is very difficult to improve
positioning and tracking accuracy [Bai (2014)]. Therefore,
it is necessary to develop appropriate control methods to
improve the efficiency of pneumatic systems.

In recent years, many scholars have applied nonlinear
system control methods and intelligent control methods to
pneumatic systems [Yamamoto and Araki (1999)]. Among
them, adaptive control achieved a good control perfor-
mance when parameters can not be exactly determined [?].
[Li et al. (1998)] used single neuron adaptive PID control,
and achieved high positioning accuracy; [Yamamoto and
Araki (1999)] used a model reference adaptive control
method to control the pneumatic servo system. At the
same time, adaptive control and backstepping design are
often combined to eliminate the influence of system pa-
rameter time-varying and various disturbances. [Ren and
Huang (2013a), Ren and Huang (2013b)] proposed two
adaptive backstepping controllers. The design of the con-
troller adopted the backstepping method, by constructing
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the Lyapunov function to design the virtual control, and
to prove the stability of the system. [Ren and Fan (2016)]
designed an adaptive backstepping controller by combin-
ing Nussbaum function gain with adaptive backstepping
design method for pneumatic systems with unknown mod-
el parameters and control gain symbols. Neural network
control mainly uses the function approximation function
of neural network to achieve effective control of nonlinear
objects. [Choi et al. (1998)]used neural networks to deal
with the nonlinear relationship between velocity and ac-
celeration during penumatic system motion; [Dehghan and
Surgenor (2013)] designed the neural network PID con-
trol and achieved good control performance. Furthermore,
the combination of neural network control and adaptive
control can overcome the influence of the nonlinearity of
pneumatic systems. [Sakamoto et al. (2002)] pointed out
that, due to the compressibility of air and the nonlinearity
caused by cylinder friction, the model reference adaptive
control algorithm combined with neural network improved
the system performance; Based on the traditional I-PD
control algorithm, [Fujiwara et al. (1995)] used the neu-
ral network to learn the automatic adjustment of I-PD
gain, and proposed a self-correcting I-PD controller, this
method was applied in the position control of the cylinder
and achieved good tracking performance; [Li and Tana-
ka (2003)] proposed an adaptive pole placement control
based on neural network, so that the nonlinear system
linearization can be realized. These studies contribute
the application of the pneumatic system. At present, the
performance of the tracking control of pneumatic systems
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Fig. 1. Pneumatic servo control experiment system

needs to be further improved using the high performance
control method.

In this paper, an adaptive neural network [Zhai et al.
(2008)] based control method is proposed for pneumatic
servo systems with input saturation and unknown direc-
tion control. In this method, the neural network and adap-
tive backstepping method are combined with Nussbaum
function and Gauss error function for tracking control
of the pneumatic tracking control system. The RBFNN
is used to approximate the unknown nonlinear function.
Finally, the Lyapunov function is utilized to prove the
stability of the system, at the same time, the controller and
parameter adaptive law are designed. The experimental
results show that, when the control direction of the system
changes, the designed adaptive RBFNN controller can
track three kinds of reference signals very well. Compared
with some existing methods, this method obtains better
control performance.

2. THE MODEL OF PNEUMATIC SYSTEM AND
RBFNN

2.1 Pneumatic System Configure and Its Model

The principle of the pneumatic position servo system is
shown in Fig. 1. The compressed air is supplied by the
air compression pump, the flow of the compressed air
into chamber is controlled by the proportional valve, a
pressure difference created by the chamber causes the
movement of the payload. The displacement signal is sent
to the computer and the control signal is fed into the
proportional valve through the A/D and D/A converter of
the data acquisition card, respectively. Finally, the closed-
loop control is realized.

The dynamic equation of the pneumatic position servo
system is:

paAa − pbAb − Ff = Mÿ, (1)

where ÿ is the piston motion acceleration. Ff is the sum of
static friction, Coulomb friction, and viscous friction. M
is the total mass of the piston and payload. pa and pb are
pressures in Chambers A and B, respectively.

The model of system is given by [Ren and Fan (2016), Choi
et al. (1998), Bone and Ning (2007)].


ṁa = qma

ṁb = qmb

KRTṁa = KpaAaẏ +Aa(y0 + y)ṗa
KRTṁb = −KpbAbẏ +Ab(y0 − y)ṗb
Mÿ = paAa − pbAb − Ff

, (2)

where ṁa and ṁb are the gas mass flow rates into Cham-
bers A and B. Aa and Ab are the effective cross section
in the chamber A and B, respectively. y0 is the initial
position of the payload. ẏ is the velocity of the payload. K
is the specific heat ratio. T is the air temperature. R is the
ideal gas constant. qma and qmb are the mass flow rates of
gas flowing into the cylinder chamber A and chamber B,
respectively, which are given as:{

qma =
√
pu − pa(ca1u+ ca2u

2)
qmb =

√
pb − p0(cb1u+ cb2u

2)
, (3)

where p0 is the atmospheric pressure, pu is the upstream
pressure, ca1, ca2, cb1, cb2 are constants related to the air
property, u is the input voltage of the proportional valve.

Define the displacement of the payload as x1 = y, the
velocity of the payload as x2 = ẏ and the acceleration
of the payload as x3 = ÿ. Linearize of qma and qmb

and treat the friction Ff and other unmodeled factors as
disturbance, the third-order linear model of the pneumatic
position servo system can be obtained as follows [Ren and
Huang (2013a), Ren and Huang (2013b)]:

ẋ1 = x2
ẋ2 = x3
ẋ3 = a1x1 + a2x2 + a3x3 + bu+ d
y = x1

, (4)

where a1, a2, a3 and b are the model parameters, d is the
disturbance.

2.2 RBFNN

RBFNNs are usually used to approximate the unknown
nonlinear and continuous functions due to their approxi-
mation capabilities. They can approximate functions with
the above characteristics over a specified compact set
to any arbitrary accuracy. The RBFNN is a three-layer
forward neural network [Chen et al. (2015)]. Its specific
structure is shown in the Fig. 2.

Input layer: As a function of the input signal G =

[g1, g2, ..., gq]
T ∈ Rq, l = 1, 2, ..., q to the hidden layer, the

input layer is directly fed into the hidden layer with weight
being 1.

Hidden layer: Each hidden layer node contains a center
vector cc, the Euclidean distance between gl and ccj is
defined as ‖gl − ccj‖. The output of the hidden layer is
given as:

Sj(G) = e
−‖

G−ccj‖
σ2
j , (5)

where σj is the width of the Gauss function, j = 1, 2, ...,m
is the number of nodes in the hidden layer, S(G) =

[S1(G), S2(G), ..., Sm(G)]
T ∈ Rm.

Output layer: The output of the network is shown by the
following linear weighting function:

Y (G) = WTS(G), (6)
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Fig. 2. RBFNN structure

Fig. 3. Experiment equipments

where W ∈ Rm is the weight vector of output layer,

Y (G) = [y1, y2, ..., yn]
T

, yi is the neural network output,
i = 1, 2, ..., n is the number of output nodes.

3. ADAPTIVE RBFNN CONTROLLER DESIGN
BASED ON BACKSTEPPING METHOD

3.1 Saturated Pneumatic System Model

In this paper, Gauss error function erf(x) is used to
describe a class of saturation nonlinearity, which is defined
as[Ma et al. (2015)]

erf(x) =
2√
π

x∫
0

e−t
2

dt, (7)

erf(·) is a real-valued and continuous differentiable func-
tion.

According equation (7), the model to represent the satu-
ration nonlinearity with smooth form can be obtained as

u′ = uM × erf (au) , (8)

where uM is a known bound of u, a =
√
π/(2uM ), it can

be easily adjusted to different lower and upper bounds by
alternating the valve uM in equation (8).

Substituting equation (8) into equation (4), we have:


ẋ1 = x2
ẋ2 = x3
ẋ3 = a1x1 + a2x2 + a3x3 + bu′ + d
y = x1

. (9)

3.2 Adaptive RBFNN Control Design

N(ζ) is an Nussbaum type function that satisfies [Li et al.
(2010)]

lim
s→∞

sup 1
s

s∫
0

N(ζ)dζ = +∞

lim
s→∞

inf 1
s

s∫
0

N(ζ)dζ = −∞
. (10)

Lemma 1 [Ma et al. (2015)] Let V (t), ζ(t) be smooth
functions defined on [0, tf ], if the following inequality
holds:

V (t) ≤ c0 +

t∫
0

(bN(ζ) + 1)ζ̇dτ, ∀t ∈ [0, tf ), (11)

where c0 is a constant, then
∫ t

0
(bN(ζ) + 1)ζ̇dτ , V (t) and

ζ(t) must be bounded on [0, tf ].

Assumption The desired trajectory ym is continuous and
its upto the nth order derivatives are known and bounded.

As we all known, the control objective is to design an
adaptive RBFNN controller for pneumatic system and let
the output y following a desired trajectory ym [Meng et al.
(2013), Peng et al. (2006)].

Define the tracking error as [Ren et al. (2019b), Rubio
et al. (2011)]: {

z1 = x1 − ym
z2 = x2 − α1

z3 = x3 − α2

, (12)

where α1, α2 are virtual control variables. We design an
adaptive RBFNN cntroller as follows:

Step 1: Select the first Lyapunov function candidate as

V1 =
1

2
z2
1
. (13)

The derivative of equation (13) is

V̇1 = z1ż1 = z1 (x2 − ẏm) = z1 (z2 + α1 − ẏm) . (14)

Choose the first virtual control as

α1 = ẏm − c1z1, (15)

where c1 is a positive constant. if z2 = 0, then V̇1 =
−c1z21 ≤ 0, as a result, the first subsystem is stable.

Step 2: Select the second Lyapunov function candidate as

V2 = V1 +
1

2
z2
2
. (16)

The derivative of equation (16) is

V̇2 = V̇1 + z2ż2 = z1z2 − c1z21 + z2 (z3 + α2 − α̇1) . (17)

Choose the second virtual control as

α2 = α̇1 − c2z2 − z1, (18)
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where c2 is a positive constant. if z3 = 0, we have V̇2 =
−c1z21 − c2z22 ≤ 0, then the second subsystem is stable.

Step 3: From equation (9) and equation (12), we can obtain

ż3 = ẋ3 − α̇2 = a1x1 + a2x2 + a3x3+
bu′ + d− α̇2

. (19)

RBFNN is used to approximate the unknown function
f(G) = a1x1 + a2x2 + a3x3 − α̇2 , RBFNN input vector
G = [x1, x2, x3, α̇2], then

f(G) = ŴTS(G)− W̃TS(G) + ε(G), (20)

where ε(G) is approximation error, S (G) is a function
of the input vector G, W is unknown weight, define an
estimation of Ŵ as W , we can obtain estimation error
W̃ = Ŵ −W .

Select the third Lyapunov function candidate as

V3 = V2 +
1

2
z2
3

+
1

2
W̃T Γ−1W̃ +

1

2o
d̃2, (21)

where Γ is a positive defined matrix. Define an estimation

of d as d̂, we can obtain estimation error d̃ = d̂− d.

The derivative of equation (21) is

V̇3 = V̇2 + z3ż3 + W̃T Γ−1
˙̂
W + 1

o d̃
˙̂
d . (22)

The adaptive RBFNN controller and adaptive law as
follows:

u = N (ζ)
[
c3z3 + ŴTS(G)

]
−
(
z2 + d̂

)/
b

N (ζ) = ζ2 cos (ζ)

ζ̇ = c3z
2
3 + z3Ŵ

TS(G)
˙̂
W = Γ

[
z3S(G)− σŴ

]
˙̂
d = oz3

, (23)

where c3, σ and b are constants. Substituting equation (8)
and equation (23) into equation (22), we obtain

V̇3 = −c2z22 − c1z12 + z3(ŴTS(G)− W̃TS(G) + ε(G))

+z2z3 + bz3uMerf(au) + z3d̂+ W̃T Γ−1
˙̂
W + 1

o d̃
˙̂
d

= −c2z22 + z3(ŴTS(G)− W̃TS(G) + ε(G)) + bN (ζ) ζ̇

−c1z12+W̃T z3S(G)− σW̃T Ŵ + ζ̇ − c3z23 − z3ŴTS(G)

= −c2z22 − c1z12 − c3z23 + ζ̇(bN (ζ) + 1)

= −
3∑

i=1

ciz
2
i + ζ̇(bN (ζ) + 1)

.(24)

Integrate equation (24) over [0, t], we obtain V3(t) = V3(0)−
3∑

i=1

ci
∫ t

0
zi

2dτ +
∫ t

0
(bN(ζ) + 1)ζ̇dτ

≤ V3(0) +
∫ t

0
(bN(ζ) + 1)ζ̇dτ

.(25)

According to Lemma 1, we obtain
∫ t

0
(bN(ζ) + 1)ζ̇dτ and

V3(t) are bounded on [0, tf ]. As a result, the system is
stable.

4. EXPERIMENTAL RESULTS

4.1 Experimental setup

The hardware platform is shown in Fig .3. Its components
include: power supply, a five-way proportional valve, a

potentiometer, a double-acting rodless cylinder with a
25mm diameter bore and a 450mm stroke. The compressed
air is used as the energy source. The data acquisition card
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Fig. 4. Experimental results of reference signals by using
the proposed method for positive control direction.
In each subplot, the upper panel is the reference
and output, and the lower panel is the corresponding
tracking error.
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PCI2306 is used for position information acquisition and
proportional valve control output.

4.2 Experimental and comparison results

The analog signal output range of the D/A converter is
selected from 0-10v, and its corresponding digital signal
is between 0-4095. In order to decrease the energy con-
sumption, the controller output of all methods is limited
to [−Umax, Umax]. Reference signals for tracking control
are the same as in[Ren et al. (2019a), Ren et al. (2019b)].

The adaptive RBFNN controller combined with Nuss-
baum function to solve the problem of unknown control
direction. The parameters of the controller are set as
c1 = 50, c2 = 10, c3 = 10, b = 0.5, o = 1000. When the
control direction is positive, the tracking results are shown
as Fig. 4(a), Fig. 4(b), Fig. 4(c). The experimental results
of the proposed adaptive RBFNN controller for negative
direction and the comparison of the proposed method with
some existing methods are given quantitively in Tables 1
to 3.

To quantitatively analyze the tracking error of these meth-
ods in steady state, we define two indices: one is the root
mean square error(RMSE) of the tracking performance,
another is the energy consumption (Q) during the steady
state, both are the same as in [Ren and Fan (2016)]. Every
experiment is done at least 30 times to avoid the influence
of random factors, then the maximum value and average
value of RMSE and Q are obtained. From the comparison
results in Table 1 to 3, we know that the proposed method
achieves the superior performance as compared to some
existing methods.

5. CONCLUSION

In this paper, an RBFNN controller for position tracking
control of pneumatic servo system is proposed. The con-
troller combines RBFNN with the backstepping designing,
Gauss error function and Nussbaum function to solve
the problems that the unknown model, unknown control
direction and input saturation. This paper mainly does the
following work: First, the controller proposed in this paper
uses RBFNN to approximate unknown model of the pneu-
matic system, and the stability of the controller is proved;
Second, the controller uses the Nussbaum function solves
the unknown control direction of the pneumatic system;
and then, the controller is combined with the Guass error
function to deal with the input saturation nonlinearity
problem; Finally, the controller is designed without the
need for expensive pressure sensors, thereby significantly
reducing costs. According to the experimental results, the
proposed method is effective whether the control direc-
tion is positive or negative. Compared with some existing
methods, the method decreases energy consumption and
has better tracking performance.
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