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Abstract: Adaptive control such as extremum seeking control (ESC) can be a very useful tool to
optimize problems with smooth convex functions. However, some systems can be noisy or contain non-
convex regions where the solution may result in a local minimum or maximum. Using perturbation based
ESC with appropriate amplitude, one can overcome local regions to find the global extremum. This work
introduces fractional dithering noise into stochastic ESC to improve performance for a class of smooth
convex functions. Noise with long range dependent behavior can yield a more optimal solution.
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1. INTRODUCTION

Source seeking is an important topic when it comes to gas
and oil industries. Where even small leaks can cause big (and
sometimes fatal) problems, such as the 2010 San Bruno incident
in southern California. These leaks are sometimes referred to
as fugitive leaks and are difficult to resolve. There has been
work done to localize leaks over the years. Matthes et al. (2005)
looked at spatially distributed systems and inverted the steady
state solution. Mesquita et al. (2008) looked at Optimotaxis
using a stochastic switching method based on Escherichia Coli
which mimics a chemotatic approach using a run and tumble
controller. Other researchers like Nehorai et al. (1995) used an
information based approached which uses the a combination of
the maximum likelihood principle and the Fischer information
matrix to calculate the gradient of the Cramer Rao bound.
This points the searching in the direction of the source in a
similar way to the flux measurements shown in Zarzhitsky
et al. (2004). Most of the work done using source seeking
is approximate or requires heavy computational resources to
calculate the analytical solution or numerically simulate. Thus
trying source seeking from a control perspective with model
free approach seems desirable.

However, in source seeking the plant information is generally
unknown and the measured output of the plant is noisy and
sparse. Therefore, these systems are not explicitly convex. Con-
sidering that the average system is convex, such as the Gaussian
plume model, but contains local extrema due to turbulence or
some other perturbation. One can possibly leverage convex
optimizers such as the extremum seeking control (ESC) to
minimize some cost function � for the system.

In this work we look at fractional dithering into the ESC
framework by introducing fractional Gaussian noise (fGn) and
Symmetric alpha stable (SUS) as a stochastic perturbation. The
paper is organized as follows: section 2, overviews of ESC
framework; section 3, covers the definition of fractional Gaus-
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sian noise; section 4, class of convex functions; section 5, goes
over averaging principle and the non-robust stability analysis;
section 6, simulation; section 7, results and performance; sec-
tion 8 discusses conclusions and future work.

2. ESC OVERVIEW

The idea of ESC has been shown as early as Leblanc (1922)
on electric railways. There are many different types of ESC
including; Analog optimizers, Numerical optimization, Slid-
ing mode control, and adaptive control (Zhang and Ordóñez
(2011)). These variations can even include state machines. In
this paper we are focusing on a specific type of perturbation
based ESC called stochastic ESC (SESC). The ideas of SESC
can be found in the works of (Liu and Krstic (2012); Manzie
and Krstic (2009)) and under constraints (Coito et al. (2005)).
Even under a discrete setting (Liu and Krstić (2014)

The principle of ESC relies on the minimization of a cost
function given some dynamical system. The cost function takes
the output of the plant as an input and its output exploited using
a perturbation strategy. This involves taking the fluctuations of
the cost function by way of high pass filter and multiplying
the perturbed control signal to it. This high pass filter can be
thought of as a taking the derivative of the signal as to explore
the slope of the cost function. The multiplication then will give
rise to a mainly negative or mainly positive signal. Typically, a
deterministic sinusoidal signal is used as the perturbation (such
as a = � sinlC in Fig. 1). Here we do not explicitly use a cost
function.

Coito et al. (2005); Liu and Krstic (2012) introduced stochastic
probing signals into ESC (a = [, in Fig. 1) due to the bounded
nature of the sine function and the possibility to restrict the
algorithms region of attraction. The nature of the sinusoidal
perturbations require the mean to be zero and variance to
be positive. Using Gaussian white noise this is preserved.
Additionally the stochastic ESC can be bounded as a = � sin[
in Fig. 1.
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Fig. 1. Control diagram of ESC.

3. DITHERING NOISES

In digital audio, dithering refers to the low level noise added
to reduce errors during changing of bit depth. The word dither
means “nervous vibration“ and can be used to improve reduced
images as well. In the context of ESC the stochastic perturba-
tions can be seen as a type of dithering. However, not all noise is
the same and thus we introduce fractional dithering to improve
performance.

3.1 Fractional Gaussian Noise

Fractional Gaussian Noise (fGn) can be derived in a similar
manner as Gaussian Noise (Gn). By taking the difference
between successive steps in Brownian motion (Bm) one can
arrive at Gn. The Riemann-Liouville fractional integral can be
used to define fractional Brownian motion (fBm) and is given
below,

�� (C) =
1

Γ(� +1/2)

∫ C

0
(C − B)�−1/23�(B).

Here the term 3�(B) is the general definition of white noise,
the term � is the Hurst parameter and Γ(·) is the usual gamma
function. We can see that depending on Hurst parameter the
motion can be,

• Brownian motion with � = 1/2
• Positively correlated � > 1/2
• Negatively correlated � < 1/2.

For � > 0.5 the process exhibits long-range dependence such
that,

∞∑
==1

� [�� (1) (�� (=+1) −�� (=))] =∞.

We can denote the fGn based on Hurst parameter as, 5 �=� (:) =
�� (: + 1) − �� (:). Where : here is used as a discrete time
step and not the gain used in the control diagram. In our case
we use low pass filtered white noise with high cutoff ratio
initially. This process is sometimes referred to as an Ornstein-
Uhlenbeck (OU) process. Replacing white noise with fGn cre-
ates a fractional OU process with new tuning parameter �.
To calculate or compute the fractional integral one can use
the Gaussian quadrature, Cholesky decomposition method, or
circulant embedding by Dietrich and Newsam (1997). Observa-
tion of fGn by itself may be difficult to abstract the correlations
in-between time steps. These characteristics can be quite easily
seen by looking at fBm (see Fig. 2). The probability density
function (PDF) in Fig. 3 shows the that the step lengths still
obey a Gaussian distribution. However, by examining the power
spectrum density (PSD) we can observe the persistent behavior
of fGn at values of � >= 0.5. If � < 0.5 the slope of the PSD

Fig. 2. Plot of fBm showing (left axis) neutral � = 0.5, and
anti-persistent behavior � = 0.1 and (right axis) persistent
behavior � = 0.9.

Fig. 3. Step length distribution for different values of H.

Fig. 4. The PSD shows the behavior in fGn for � > 0.5 which
(GG (l) ∝ l−(2�−1) .

line will become positive, indicating that there is much more
high frequency behavior (anti-persistent).

3.2 Symmetric U-Stable Noise

Alpha stable noise can be written in terms of four key pa-
rameters U, V, W, and 1 which can change the distribution
uniquely. U is called the characteristic exponent and measures
the ”thickness” of the tails in the distribution. V, is a symmetry
parameter that can skew the distribution to the left or right, here
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Fig. 5. The long range dependence can be seen in the heavy tails
of the probability distribution function of SUS for various
U.

Fig. 6. The PSD of SUS can be seen as a constant for various U
indicating no kind persistence or memory in the signal.

we let V = 0 which results in a symmetric U-stable or SUS. W
is the scale parameter, also called dispersion, and is similar to
the variance in the normal Gaussian case when U = 2. The last
parameter is 1 and is referred to as the location parameter. It is
the mean when 1 < U ≤ 2 and the median when 0 < U < 1.

The standard SUS density function is given below where U > 0.

5U (G)


1
cG

∞∑
:=1

(−1):−1

:!
Γ(U: +1) |G |−U: sin

:Uc

2
, U < 1

1
cU

∞∑
:=1

(−1):
2:!

Γ( 2: +1
U
)G2: , 1 ≤ U ≤ 2.

The mean is defined and zero for 1 < U ≤ 2 and variance is ∞
for U < 2. Fractional lower order moments (FLOM) can be used
to further analyze SUS for U > 1. The p-th order moment of SUS
must be less than U otherwise the moment is ∞. See Shao and
Nikias (1993); Nikias and Shao (1995), for more details.

The PDF of SUS is given in Fig. 5. The heavy tail behavior
can be observed as they decay at a much slower rate than the
traditional normal distribution as U decreases. The PSD of SUS
is shown in Fig. 6 to be flat. Thus the SUS noise behaves like
white noise with a heavy tail.

4. NON-SMOOTH CONVEX FUNCTIONS

Consider a class of convex functions that can be noisy, contain
local minimums and maximums, and is separable into an aver-
age function 5̄ and deviation function 5̃ .

5 (x, D) = 5̄ (x, D) + 5̃ (x, D).
The function 5̄ (x, D)) can be given in the time interval ) such
that it is convex ∀x ∈ Ω. The expectation of 5̃ (x, D) is zero and
the standard deviation is given as fx for some time interval ) .
The standard deviation f in this class of functions represents
the amplitude of noise or turbulence in the function.

5. STABILITY ANALYSIS

Using the averaging principle, as illustrated nicely in Liu and
Krstic (2012), the error dynamics of the averaged system can
be shown to be exponential stable in the Lyapunov sense.

5.1 Averaging principle

Given a system with a small positive parameter n and a function
5 (G,D) that is T-periodic in t.

3/ nC

3C
= n 5 (/ n (C +)), bC ) = n 5 (/ (C), bC ), / n0 = G.

We make the change of variables - nC = /
n
C/n such that,

3- nC

3C
= 5 (- nC , bC/n ), - n0 = G.

Considering that the system is bounded, continuous and sat-
isfies global Lipschitz condition the average dynamics can be
written as

3-̄ nC

3C
= 5̄ ( -̄C ), -̄0 = G,

given, bC is periodic or the sum of periodic functions. Then
by using the Gronwall-Bellman Lemma (Khalil (2015) and in
Appendix. A) the error dynamics can be written as,

|- nC − -̄C | ≤  
∫ C

0
|- nB − -̄B |3B+� (n)

sup
0≤C≤)

|- nC − -̄C | ≤ � (n)4 )

� (n) , sup
0≤C≤)

���∫ C

0
[ 5 ( -̄ nB , bB/n ) − 5̄ ( -̄B)]3B

���.
It can be shown that � (n) → 0 as n → 0. Thus the averaged
system will converge to the original system.

5.2 Extension from Gaussian Stability

To show the stability of the stochastic ESC with Gaussian noise,
we consider a control law D = 6(G, \) and smooth function
G = ; (\) s.t. 5 (G,D) = 5 (\). Defining parameter \ as,

\ (C) = 0[(C) + \̂ (C)
Here [(C) is the stochastic unbounded noise that is added
according to the transfer function where ℎ is the high frequency
cutoff.

[(C) =
√
n@

nB+ ℎ [�=] .

We can define the error of parameter \̃ as,
\̃ (C) = \∗− \̂ (C),

where the \̂ (C) is the estimate of the parameter \. Thus, the error
dynamics then become,

¤̃\ (C) = − ¤̂\ (C) = :[(C) 5 (\ (C)).
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We now need to find the function 5 (\) which can be approxi-
mated by using the Taylor series expansion around \∗.

5 (\) = 5 (0[+ \̂)

≈ 5 (\∗) + 5 ′(\∗) (0[− \̃) + 1
2
5 ′′(\∗) (0[− \̃)2.

Given that \∗ is a minimum to 5 (\) then 5 ′(\∗) = 0. Using this
finding and expanding the terms in the previous equation we
can substitute back into the equation for the error dynamics.

¤̃\ (C) ≈ :[(C)
[
5 (\∗) + 1

2
5 ′′(\∗) (02[2−20[\̃ + \̃2)

]
.

By regrouping the terms of [(C) we can then take the expec-
tation and average the system. The error dynamics can then
be broken into three terms: first moment, second moment, and
third moment.
¤̃\ (C) ≈ :

[
[(C) [ 5 (\∗) + 1

2
5 ′′(\∗)] −[2 (C)0 5 ′′(\∗)\̃2 (C)

+[3 (C) 0
2

2
5 ′′(\∗)

]
lim
C→∞

� [[(C)] = 0, lim
C→∞

� [[2 (C)] = @
2

2
, lim
C→∞

� [[3 (C)] = 0.

We can then define the Lyapunov function + = 1
2 \̃

2 where,

¤+ = \̃ ¤̃\ ≈ − :0@
2

2
5 ′′(\∗)\̃2. (1)

Thus in order for the error dynamics to be exponentially stable
in the averaged system we need 5 (G,D) to be convex around
the equilibrium point, 5 ′′(\∗) > 0. We also need the quantity,
:0 > 0.

Since the fGn has zero mean and variance tends to infinity
as � ∈ (0.5,1), we can substitute it into [ such that n3[� =

−[� 3C+
√
n@3�� . Consider that for values of � > 0.5 the result

in (1) still holds.

For SUS, the first moment is zero for 1 < U < 2 and undefined
for 0 < U < 1. Here we assume that it is zero. The third moment
is undefined due to the second moment being∞. FLOM can be
used to characterize SUS but would not be directly applicable
to the above analysis. Consider that by truncating the heavy tail
of a SUS and normalizing the sample variance we can achieve
a computational variance <∞.

6. SIMULATION

When given a function map to optimize a minimum or max-
imum we want the SESC algorithm to be robust to the event
where we may get stuck in a local minimum or the map is not
sufficiently smooth (i.e. in source seeking problems). Here we
explore the use of a static map. However, a dynamic map can be
used given the dynamics change very slowly, otherwise, it will
invoke internal model principle. Using the Rastrigin function as
the function map,

5 (x) = �=+
=∑
8+1
[G2
8 − �cos(2cG8)]

gives direct knowledge of the well width, Y, and amplitude, �.
In the source seeking framework this can be thought of as the
spatial distribution snapshot of a fluid subject to turbulence. We
then initialize \ (C = 0) = \0 = −3 such that we have multiple
extremums before the algorithm can reach the global extremum
at \ = 0 (see Fig. 7). To understand the characteristics for each
type of noise under these conditions we ran 1000 trials per

configuration choice of � and U. The values of � and U range
from 0.1 < � < 0.9 and 0.5 < U < 2.

Fig. 7. Rastrigin function.

6.1 Parameter Selection

In order to compare the different noises in both the bounded
and unbounded case we needed a metric. Using the root mean
square (RMS) of a sinusoidal signal (�'"( = �/

√
2) we can

scale the amplitude to be proportional to well width, Y.{
0� sinf[/

√
2 ≥
√

2Y, Stochastic Bounded
0f[/

√
2 ≥ 2Y, Stochastic Unbounded.

Here the term f[ represents the scaled standard deviation of
the generated noise . to satisfy the above inequality, such that
. = -f[/f- where - is either fGn or SUS. Due to the periodic
behavior of the sine function we chose to have the f[ for the
bounded case to be c/2 to maximize the output to be �[−1,1].
If the f[ is chosen too big we see harmonics show up in the
results as � or U is changed. Alternatively, if f[ is chosen too
small the output is too small to jump outside of the well width.

The value of : depends proportionally to the inverse of the
slope of the function.

: ∝ 1
maxG8 ∈Ω |

m 5

m\8
|
=

1
<
, for 8 = 1,2, ...=.

Here we chose : = :</< with :< = 20. The value of 0 can
be used to scale the perturbation on the filtered output and \.
Here we choose it to be 1 for simplicity. However, results can
be further improved by tuning 0.

The filter parameter n is chosen to be 0.25, where for small
n the limC→∞ � [[2] = @2/2. The gain of the filter becomes√
n@/ℎ and the cutoff frequency is ℎ/2cn . For simplicity we

choose ℎ = 5 and @ = 1 for all configurations leaving the noise
parameters to be optimized.

6.2 Performance Metrics

The time convergence C∗ is given as,
C∗ = min

C→)
C, s.t. |\∗− \̂ | < tol.

The stopping criteria tolerance is chosen to be 5% of Y. Se-
lection of a small tolerance can mean no convergence. The
rigorous proof of Krstic and Wang (1997) in Theorem 5.1 says
that their exist a ball of initial conditions and under the as-
sumption that 5 (\) is smooth, ¤\ = 5 (\) is locally exponentially
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stable for \ ∈ Ω and 5 ′(\∗) = 0 and 5 ′′(\∗) < 0 that solution
exponentially converges to a neighborhood of order $ (�+l+
small positive constant). Since our A is tuned based on well
width Y it seems appropriate to set the tolerance relative to the
system not the perturbation.

The X-neighborhood is defined as the standard deviation of the
estimate of \,

X =

√
� [(\̂ − \∗)2]

C∗<C<)
.

The reported value of \ estimate is given as,

\̂ =
1
#

#∑
8=1
\̂8 , for 8 = 1,2,3...#,

where \̂8 is the value of \̂C=) and ) is the length of the
simulation. Here we choose ) = 100 seconds with time step
ΔC = 0.01.

7. RESULTS

From the performance plots of the SESC with appropriate
choices of � and : (see Figs. 8-13), suggests that the type
of noise matters. We can observe that the performance of U
decreases around U = 1.5 before approaching a similar perfor-
mance for the U = 2 case. Intuitively it seems that this should
not be the case. However, when scaling the SUS noise the signal
is comprised mainly of low frequency parts with the occasional
long jump. Due to the low pass filter the high frequency jumps
get attenuated. The result is a more narrow frequency band of
jump sizes and because the amplitude of the perturbations affect
the SESC performance for jumping from one well to another it
makes sense C∗ is reduced. For fGn, the anti-persistent behavior
results tends to prohibit the well jumps to happen. For � < 0.4
and � > 0.8 the global convergence is not met (Figs 10 and
13). For larger values of H (persistent behavior) it can be seen
in Figs. 9 and 12 that the X-neighborhood grows exponentially.
A more optimal selection of noise can be found by minimizing
a cost function based on the performance metrics mentioned
earlier for � ∈ (0.1,0.9) and U ∈ (0.5,2),

min � s.t. � = C∗ + X/�+ \̂
The optimal value for bounded/unbounded cases of fGn is
found to be around � = 0.63 in this case. For SUS, the optimal
values for bounded/unbounded cases is U = 2,0.5, which for
U = 2 → Gn. The result for fGn is surprising in that some
LRD can improve the convergence behavior. While the result
from SUS is not surprising given the effect of filtering. All of
the heavy tail behavior is lost due to the type of filter. Also
the increase in performance when U approaches 0.5 results in
more impulse behavior. This in turn increases the frequency and
in the PESC as l increases, so does the convergence speed.
However, some systems may have bandwidth limitations. This
makes the persistent behavior of fGn more desirable.

8. CONCLUSION

In this work we examine SESC with fractional dithering noises
from SUS and fGn for a class of smooth convex functions. The
stability depends on 5 ′′(\∗) > 0, :0 > 0 and the second moment
of [ (i.e. choice of � or U). We found that:

• when parameter selection is based on the well width and
the inverse of the maximum gradient of 5 (\). The SESC
will converge to the global extremum more consistently.

Fig. 8. The temporal convergence to the global minimum from
the initial condition \0, denoted C∗, is shown as a function
of fGn and SUS dithering.

Fig. 9. The spatial deviation X around the converged \ is shown
as a function of fGn and SUS dithering.

Fig. 10. The final converged \ is shown as function of fGn nd
SUS dithering.

• the presence of fractional noise can improve convergence
in the presence of local extrema.
• A more optimal SESC can be achieved with � = 0.63, in

this example.

Future work will reconsider SUS and fGn under fractional order
filtering and explore tempered L4́vy distributions (Chen et al.
(2018)) as well as examine non-static functions.
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Fig. 11. The temporal convergence to the global minimum from
the initial condition \0, denoted C∗, is shown as a function
of fGn and SUS dithering.

Fig. 12. The spatial deviation X around the converged \ is shown
as a function of fGn and SUS dithering.

Fig. 13. The final converged \ is shown as function of fGn nd
SUS dithering.
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Appendix A. GRONWALL-BELLMAN LEMMA

A Let _ : [0, 1] → ' be continuous and ` : [0, 1] → '

be continuous and nonnegative. If a continuous function H :
[0, 1] → ' satisfies

H(C) ≤ _(C) +
∫ C

0

`(B)H(B)3B

for 0 ≤ C ≤, then on the same interval

H(C) ≤ _(C) +
∫ C

0

_(B)`(B)4G? [
∫ C

B

`(g)3g]3B

In particular, if _(C) ≡ _ is a constant, then

H(C) ≤ _(B)4G? [
∫ C

B

`(g)3g]

If, in addition, `(C) ≡ ` ≥ 0 is a constant, then
H(C) ≤ _4G? [`(C − 0)]
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