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Abstract: An open-circuit fault-detection strategy is here proposed for single-phase DC/AC
conversion. The power converter under consideration consists of an H-bridge and a capacitor
with parallel resistance and current source in its DC side—these last two stand for the unknown
system load and energy injection from renewable resources, respectively. An inductor filter is
also included as a coupling element to the AC network. When an open-circuit fault occurs in
the H-bridge, the resulting AC output waveform is asymmetric, and induces DC and harmonic
components to the network. Hence, by using an additive fault modeling, the fault signature can
be expressed by a constant term fdc and a fluctuating signal. The sign of fdc allows to determine
the pair of faulty switches in the H-bridge. In this work, an DREM-based identification scheme
is proposed to estimate fdc. Through the sign of its estimate, it is possible to detect the pair of
faulty switches. To assess our approach, simulation results are included.

Keywords: Open-circuit fault-detection, Parameter estimation, DC/AC conversion.

1. INTRODUCTION

Alternative energy sources require a high level of inte-
gration into the electrical power grids. For this purpose,
DC/AC and AC/AC power converter are used to provide
the coupling, synchronization and appropriate power flow
to the electrical networks. These power converters em-
ploy high-frequency switching to manipulate the energy
conversion process. As a result of a constant operation
and load transients, the power switches in the DC/AC
and AC/AC topologies are facing voltage, current and
temperature stresses that could lead to a fault (Salehi-
far et al., 2015; Yang et al., 2011). After a fault, the
DC/AC and AC/AC power converter will not be able to
provide a symmetric voltage and current to the electri-
cal network and, consequently, the faulty converter will
induce harmonic contamination (Salimian and Iman-Eini,
2017; Jlassi et al., 2015; Mirafzal, 2014). Furthermore, the
remaining power switches will suffer more severe voltage
and current stresses that could lead to a complete system
breakdown. Thus, it is of general interest to detect as
quickly as possible a fault condition in power converters,
and to subsequently provide a corrective action.
The most common faults scenarios in the power switches
are open and short-circuits, that is, short-circuit (SCF)
and open-circuit faults (OCF). In OCF the switching
devices are unable to close, staying open regardless of
their control signal state. On the contrary, in SCF the
swithing devices are unable to open. As a matter of fact,
by the appropriate protective elements in the converter

topology, the SCF will have a similar electrical effect of
an OCF. So, this study will focus on OCF. Depending on
the pursued strategy, diagnosis and detection of faults can
be roughly categorized into signal-based methods, model-
based methods, knowledge-based methods, active fault
diagnosis methods and hybrid methods which combine
different methods. The interested reader is referred to
(Gao et al., 2015a,b), where a comprehensive monograph
on fault-diagnosis techniques is presented.
This work is placed within the model-based approaches.
They stand out because of their fastest detection time
compared, for example, to the signal-based schemes,
which require more computational time to process the
data of the measured signals. Model-based techniques
use the mathematical model of the converter to de-
sign observers/estimators and construct fault indicator
signals—these signals are known as residuals. These ob-
servers/estimators are designed according to the different
methods available in the literature of control systems. Fol-
lowing the sliding mode technique, an observer is derived
for OCF diagnosis in multilevel converters in (Mtepele
et al., 2019). Fault diagnosis and detection algorithms for
motor drive systems are presented in (Jung et al., 2013)
based on the model reference adaptive system (MRAS)
technique. Meanwhile, in (Salehifar et al., 2015) sliding
modes observers are used to detect faults in voltage source
inverters (VSI) by the measured and estimated currents
in the converter using a cross correlation factor. Finally,
proportional-integral observers were employed also to de-
tect faults in VSI and a directional evaluation in the dq-
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Fig. 1. Power converter under consideration.

frame.
In the current work, we consider the OCF problem in
single-phase DC/AC power conversion. The considered
power converter consists of a H-bridge, with a parallel
array of capacitor, resistor and current source in the DC
side, and a coupling inductor filter to the AC network. This
is the typical configuration adopted to interface renewable
generation units with the AC distribution grid. The cur-
rent source in the circuit represents the energy generated
by the renewable resources and the resistor stands for the
system load which is assumed to be unknown.
When OCF takes place in the H-bridge, a pair of switches
cannot operate in short circuit. The resulting AC output
waveform is asymmetric, and induces DC and harmonic
components to the network. Thus, by using an additive
fault modeling, the fault signature can be expressed by
a constant term fdc and a fluctuating signal. The sign
of fdc allows to determine the pair of faulty switches in
the H-bridge. In this work, the problem is tackled using a
parametric system identification approach that permits to
estimate fdc and, therefore, to know its sign. The pursued
approach follows from the well-known Dynamic Regressor
Extension and Mixing technique (Aranovskiy et al., 2017),
also appeared in (Aranovskiy et al., 2016) and successfully
implemented in maximum power point tracking problem
in photo-voltaic systems (Pyrkin et al., 2017).
The rest of the paper is organized as follows. In Section
2, the system in consideration is introduced and the prob-
lem is formulated. In Section 3 we present the procedure
which allows to extract the fault indicator signal (residual)
from the measurable signals. Section 4 consists of our
main result. The proposed estimator is therein presented.
The numerical validation of our approach is contained in
Section 5. The paper is finalized in Section 6 with our
conclusions and future work.

Notation: For x ∈ Rn and Q > 0 ∈ Rn×n, |x|2Q := x>Qx.

For x̂, x ∈ Rn, we define x̃ := x̂−x. For x(t) ∈ R, we define

x(i) := di

dtix(t), i ∈ Z>0. When clear from the context, the
argument in the functions is omitted.

2. SYSTEM MODELING AND PROBLEM
FORMULATION

The average model of the DC/AC power converter of Fig.
1 is

Mẋ =(Ju−G)x+

[
vs
is

]
(1)

where,

M =

[
L 0
0 C

]
, G =

[
0 0
0 g

]
, J =

[
0 −1
1 0

]
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Fig. 2. Control input in nominal condition, faulty control
input and fault profiles when: a)an OCF occurs in S2

and S4 and b)an OCF occurs in S1 and S3.

Also, according to Fig. 1, vs represents the voltage at the
output terminal, u ∈ [−1, 1] is the duty cycle signal of
the H-bridge and the state vector x> = [x1 x2] contains
the inductor current and capacitor voltage, respectively.
Parameters g := 1/r and L are the unknown load conduc-
tance and inductance of the input filter, respectively.
The steady-state of u in nominal conditions is shown in
Fig. 2. An OFC occurring in switches S2 and S4 leads to
the (faulty) input signal uf of Fig. 2a. Therefore, by using
an additive modeling, the fault input signal uf is expressed
as

uf := u+ f.

A similar analysis can be carried out when a fault occurs
in switches S1 and S3. The corresponding profiles for uf
and f are depicted Fig. 2b. As can be seen, the fault
profile f is a periodic signal in both cases, thus, it can
be decomposed as a sum of signals using Fourier series.
The oscillatory components will be related to the nominal
AC network frequency and its even harmonics. In fact, f
can be expressed as

f(t) =fdc +

n∑
i=1

Ai sin(ωit+ φi) + %t (2)

where fdc is the constant component of the signal and %t
is defined as 1

%t :=

∞∑
i=n+1

Ai sin(ωit+ φi), (3)

i.e., an infinite sum of frequency components. The param-
eters Ai, ωi and φi correspond to the amplitude, frequency
and phase of each harmonic, respectively. Here, it is further
assumed that Ai+1 < Ai for i ≥ 1. Note that %t ∈ L∞.
Furthermore, by inspection, the constant component fdc
is positive when an OFC affects switches S2 and S4, and
negative otherwise. Then, knowing the sign of fdc permits
to detect the pair of faulty switches.

The following assumptions are in order.

A1. L,C, x, vs and is are all known.

1 Function %t is a generic function of the form presented in (3),
namely, a sum of high-frequency harmonics.
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A2. The controller dynamics are slower compared to the
estimator time constant related to the error conver-
gence.

Parameters L and C of A1 are in fact known as they are
selected by the circuit designer. Also, x, vs and is can
be measured by sensors. On the other hand, A2 assures
that after an occurrence of an OCF, the control-input
response time is slow enough so that the parameters of
f in (2) can be actually considered constant for a short
period of time. This time interval is then sufficiently large
for the identification algorithm to give an estimate of fdc
and, therefore, to identify the faulty switches. During that
interval, the system can be modeled as (Mtepele et al.,
2019)

Mẋ =[Juf −G]x+

[
vs
is

]
. (4)

2.1 Estimation of g

Being that the load conductance g is unknown, an identifi-
cation algorithm for g is proposed in the following lemma.
The estimated value will be used in the sequel.

Lemma 1. Consider the estimator for g

˙̂gI =− κĝx22 + κvsx1 + κisx2, κ > 0 (5a)

ĝ =− 1

2
κ|x|2M + ĝI (5b)

for system (4) and x2 6∈ L2. Then,

lim
t→∞

g̃(t) = 0. (6)

Proof. The design follows from the I&I methodology (As-
tolfi et al., 2005). The derivative of the error g̃ = ĝ − g
is

˙̃g =− κx>Mẋ+ ˙̂gI

=gκx22 − κvsx1 − κisx2 + ˙̂g1

=(ĝ − g̃)κx22 − κvsx1 − κisx2 + ˙̂g1

Substituting ˙̂gI of (5a) into the last equation results in the
error dynamics

˙̃g = −κx22g̃
whose solution is

g̃(t) = g̃(0)e−φ(t), φ(t) := κ

∫ t

0

x22(s)ds.

Therefore, the error is bounded and for x2 6∈ L2, it
converges to zero. Moreover, for x2 > 0, this convergence
is exponential. 2

3. DERIVATION OF THE FAULT INDICATOR
SIGNAL

The fault indicator signal as unmeasurable state may be
reconstructed based on available measurements using the
technique of nonlinear observer design (Ortega et al., 2015;
Pyrkin et al., 2019).

In the following lemma, the fault indicator signal is ob-
tained from the available measurements. This signal is the
output of a linear operator driven by the signal f(t), and
has the same bias fdc and frequency components ωi.

Lemma 2. The signal

y :=

[
α

p+ α

](
−u+

1

|x|2M
(Lĝx1x2 + Cx2vs − Lx1is)

)
−
[
αp

p+ α

](√
LC arctan

(√
L

C

x1
x2

))
, (7)

where p := d
dt is the differentiation operator and α > 0 is

a constant, has the form of the multisine function

y(t) = fdc +

n∑
i=1

Āi sin(ωit+ φ̄i) + %t + εt. (8)

for some constants Āi and φ̄i.

Proof. Pre-multiplying (4) by −x>MJ yields

LC(ẋ2x1 − ẋ1x2) =|x|2M (u+ f)

− [Lgx1x2 + Cvsx2 − Lisx1]. (9)

Notice that division by |x|2M is allowed since x2 > 0 by
assumption. Dividing (9) by |x|2M results in

LC

|x|2M
(ẋ2x1 − ẋ1x2) = u+ f − 1

|x|2M
[Lgx1x2

+ Cvsx2 − Lisx1]. (10)

Notice that

LC

|x|2M
(ẋ2x1−ẋ1x2) = −

√
LC

√
L

C

C(ẋ1x2 − ẋ2x1)

Lx21 + Cx22

= −
√
LC

1

1 +
Lx2

1

Cx2
2

ẋ1x2 − ẋ2x1
x22

√
L

C

= −
√
LC

1

1 +
Lx2

1

Cx2
2

d

dt

(√
L

C

x1
x2

)

=−
√
LC

d

dt

{
arctan

(√
L

C

x1
x2

)}
. (11)

From (11), equation (10) is equivalent to

−
√
LC

d

dt

{
arctan

(√
L

C

x1
x2

)}
= u+ f − 1

|x|2M
(Lgx1x2

+ Cvsx2 − Lisx1).

After replacing g by ĝ − g̃, we get

f+
L

|x|2M
x1x2g̃v =−u+

1

|x|2M
(Lĝx1x2 + Cvsx2 − Lisx1)

−
√
LC

d

dt

{
arctan

(√
L

C

x1
x2

)}
. (12)

Processing both sides of (12) through the filter α
p+α with

some α > 0 yields

y : =

[
α

p+ α

](
f +

Lx1x2g̃

|x|2M

)
=

[
α

p+ α

](
−u+

1

|x|2M
(Lĝx1x2 + Cx2vs − Lx1is)

)
−
[
αp

p+ α

](√
LC arctan

(√
L

C

x1
x2

))
. (13)

Notice the following bound
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|Lx1x2g̃|
|x|2M

=
1

C|x|2M
|LCx1x2||g̃| ≤

1

2C
|g̃|. (14)

where Young’s inequality and (6) have been used to obtain
the last inequality. Hence, the signal y defined in (7) has
a form (8). The vanishing term εt is due to (14) and the
exponentially decaying function resulting from filtering 2 .
This completes the proof. �

4. MAIN RESULT

In this section we show how to estimate the parameter fdc
of signal (7) which has the form presented in (8).

4.1 Bias Parameterisation

By considering an auxiliary problem, first assume that the
signal.

y0(t) := fdc +

n∑
i=1

Āi sin(ωit+ φ̄i) (15)

is available for measurement, where all parameters σ, Āi,
ωi, φ̄i are unknown. The goal is to estimate parameter fdc:

lim
t→∞

(fdc − f̂dc(t)) = 0. (16)

where f̂dc is an estimate of the true bias fdc.

It is well-known (see, for example, Pyrkin et al. (2015))
that the following relation holds

p(p2 + ω2
1)(p2 + ω2

2) · · · (p2 + ω2
n)y0 = 0.

Introduce a linear filter

ξ =
λ2n+1

(p+ λ)2n+1
y0, λ > 0. (17)

and invoke the following Lemma.

Lemma 3. (Pyrkin et al. (2015)). The following relation
holds for the filter (17) and the input (15)

ξ(2n+1) = m>(t)Θ + εt (18)

where m> = [ξ(2n−1) . . . ξ(3) ξ(1)] is the regressor
composed of the functions ξ(j)(t) which are the time
derivatives of the filter’s output in (17), that is,

ξ(j) =
λ2n+1p j

(p+ λ)2n+1
y0,

and Θ> := [θ1 . . . θk−1 θk] is a vector of parameters
depending on the frequencies

θ1 = −ω2
1 − ω2

2 − · · · − ω2
n,

θ2 = −ω2
1ω

2
2 − ω2

1ω
2
3 − · · · − ω2

n−1ω
2
n,

...

θn = −ω2
1ω

2
2 . . . ω

2
n.

and εt is an exponentially decaying term.

Proof of Lemma 3 may be found in (Pyrkin et al. (2015)).

Departing from the previous lemma, we present the rela-
tion between states of the filter ξ and the bias fdc.
2 As consequence of the filter’s initial condition, additive expo-
nentially decaying terms appear in the filtered signal. As analyzed
in (Aranovskiy et al., 2017, 2015), a function εt ∈ L1 does not
compromise the convergence of the estimators to be presented.

Corollary 1. The following relation holds for the filter
(17) and the input (15)

fdc = ξ− 1

θn
(ξ(2n)−θ1ξ(2n−2)−θ2ξ(2n−4)− · · · −θn−1ξ(2))

+ εt. (19)

Proof. Indeed, applying Lemma 3 to the auxiliary signal

ξ0 := ξ − fdc,
which is a multisine function of time with zero offset, it is
easy to show the next equation

ξ
(2n)
0 = l>(t)Θ + εt, (20)

where Θ is defined in Lemma 3 and

l> = [ξ
(2n−2)
0 . . . ξ

(2)
0 ξ0].

Since ξ
(k)
0 = ξ(k) for all k > 1, the equation ξ2n may be

rewritten as

ξ(2n) = θ1ξ
(2n−2) + θ2ξ

(2n−4) + · · ·+ θn−1ξ
(2)

+ θn(ξ − fdc) + εt, (21)

from which (19) is obtained.

4.2 Estimation of θ

The expression for fdc in (19) depends on values θi, which
are unkown. It is possible, however, to obtain those values
from the linear regressor equation (18). To the best of
our knowledge, the most effective approach is well-known
DREM technique (Aranovskiy et al. (2017)).

Lemma 4. Consider the estimator Θ̂> := [θ̂1 . . . θ̂k−1 θ̂k],

˙̂
θi =γi∆(Yi −∆θ̂i), (22)

for γi > 0, with ∆ := det {Me},

Y := adj {Me}


ξ(2n+1)

H1(p)ξ(2n+1)

...

Hn−1(p)ξ(2n+1)

, Me :=


m>

H1(p)m>

...
Hn−1(p)m>

 ,
(23)

and linear operators Hi(p) which stand for time delays or
linear filters. Then,

lim
t→∞

θ̃i(t) = 0 ⇐⇒ ∆ 6∈ L2, (24)

where θ̃i are elements of the time-varying vector of esti-
mation errors Θ̃ := Θ− Θ̂.

Proof. It follows mutatis mutandi from (Aranovskiy et al.
(2017)).

4.3 Estimation of fdc

Now, the contribution of this work is enunciated by the
next proposition.

Proposition 1. Consider the adaptive estimator

f̂dc = ξ̄ − 1

θ̂n

(
ξ̄(2n) − θ̂1ξ̄(2n−2) − · · · − θ̂nξ̄(2)

)
, (25)

where ξ̄ is the output of the LTI filter

ξ̄ =
λ2n+1

(p+ λ)2n+1
y, (26)
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driven by the signal y, defined in (7), estimates θ̂ is obtain
using DREM procedure described in Lemma 4

˙̂
θi =γi∆(Yi −∆θ̂i), (27)

for γi > 0, with ∆ := det {Me},

Y := adj {Me}


ξ̄(2n+1)

H1(p)ξ̄(2n+1)

...

Hn−1(p)ξ̄(2n+1)

, Me :=


m̄>

H1(p)m̄>

...
Hn−1(p)m̄>

 ,
and θ̂i 6= 0, m̄> = [ξ̄(2n−1) . . . ξ̄(3) ξ̄(1)]. Then,

(i) limt→∞ f̃dc(t) = 0, if %t = 0 ;

(ii) lim supt→∞ |f̃dc(t)| ≤ C%, if |%t| ≤ C0, where the
constant C% depends on the upper bound C0 of the
term %t.

Proof. Note at the beginning that

ξ̄ =
λ2n+1

(p+ λ)2n+1
(y0 + %t + εt)

= ξ +
λ2n+1

(p+ λ)2n+1
(%t + εt)

= ξ + %t + εt, (28)

where %t and εt are two generic signals representing the
sum of harmonics of small amplitudes and exponentially
decaying term. The same property can be concluded for
the derivative of ξ̄ and ξ.

Therefore, the error f̃dc may be described straightfor-
wardly but lengthy as an analytic function of the form

f̃dc = F(‖Θ̃‖, %t, εt), (29)

which explicitly depends on Θ̃, disturbance term %t, and
decaying function of time εt. Moreover, F(0, 0, 0) = 0.

The claim (i) follows immediately from Corollary 1 and

Lemma 4 since Θ̃ exponentially converges to 0.

If %t is not 0, then Θ̃ converges to a bounded set Q de-
pending on the upper bound C0 which is a straightforward
result (see, e.g. Bobtsov et al. (2012); Pyrkin et al. (2011)).
Then, a constant of the form

C% := F (‖Q‖, C0, 0)

which is smaller with decreasing the upper bound C0 of
the disturbance term %t. 2

Remark 1. Equation (18) is a linear regression plus a per-
turbation term %t, consisting of high frequency harmonics.
If %t = 0, the identification algorithm to be proposed
eventually converge to the parameter value. Otherwise, an
approximate of Θ can be obtained. Because the amplitudes
of the harmonics decrease as their frequencies increase, a
good estimate will be obtained by considering a sufficiently
large number n of harmonics in (2). We underscore the fact
that the sign of fdc, and not its actual value, is sufficient
to detect the faulty switches.

Remark 2. It is worth mentioning that zero-crossings of

θ̂n make (25) be indefinite in the instants of time when
they occur. This division by zero can be avoided when
implementing. Besides, they do not affect the convergence

of f̂dc in the large.
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Fig. 3. Fault occurrence in S2 and S4: f̂dc , sign(f̂dc)
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Fig. 4. Fault occurrence in S1 and S3: f̂dc, sign(f̂dc).

5. SIMULATION RESULTS

The estimator has been numerically validated. For this
simulation, we consider a control input u = sin 2πf0t.
The chosen estimator gains are α = 10 and λ = 10—see
(7) and (26). We assume two frequencies in the estimator
design, that is, n = 2. The results are depicted in Fig.
3 and 4. Results for the fault profile in Fig. 2a are

shown in Fig. 3. As can be seen, the estimate f̂dc stays
bounded as expected. The signal sign(fdc) has a transitory
time-pattern during the initial part of the simulation,
and subsequently, it takes the constant value of one,
determining the pair of damaged switches (S2 and S4).
Results for the fault profile in Fig. 2b are shown in Fig.
4. The signal sign(fdc) exhibits a transitory but it finally
settles down at −1, thus, detecting the faulty switches S1

and S3.

6. CONCLUSIONS & FUTURE WORK

In this work, a model-based strategy for open-circuit
fault detection and isolation is proposed. The problem is
addressed by utilizing parametric identification techniques
to isolate the origin of the fault. The presented scheme is
derived from DREM technique.
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Fig. 5. Fault-detection in: a) Cascade H-Bridge (CHB) and
b) Radial topologies.

Our future work has the following three directions.

1. To carry out the experimental implementation of the
approach.

2. To incorporate the proposed algorithm to a controller
and endow it with fault-tolerant properties. With
this purpose, the controllability of the faulty system
needs to be analyzed. It is clear that after a fault
occurrence, some control degrees of freedom are lost
and, as consequence of that, the closed-loop system
may no longer accomplish its control task. However,
if this is the case, the controller may still maintain
the stability of the system despite the fault.

3. To derive a fault-detection strategies, using identifi-
cation algorithms, for multiconverter connection sce-
narios. Two scenarios are intended to be analyzed:
the radial and cascade topologies—see Fig. 5.
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