
Path-following Control of Fish-like Robots:
A Deep Reinforcement Learning Approach ?

Tianhao Zhang ∗∗ Runyu Tian ∗∗ Chen Wang ∗,∗∗ Guangming Xie ∗∗,∗∗∗

∗ National Engineering Research Center for Software Engineering, Peking
University, Beijing 100871, China (e-mail: wangchen@pku.edu.cn)

∗∗ The State Key Laboratory of Turbulence and Complex Systems, Intelligent
Biomimetic Design Lab, College of Engineering, Peking University, Beijing

100871, China (e-mail: {tianhao z, trytian, xiegming}@pku.edu.cn)
∗∗∗ Institute of Ocean Research, Peking University, Beijing 100871, China

Abstract: In this paper, we propose a deep reinforcement learning (DRL) approach for path-following
control of a fish-like robot. The desired path may be a randomly generated Bézier curve. First, to
implement the locomotion control of the fish-like robot, we design a modified Central Pattern Generated
(CPG) model, using which the fish achieves varied swimming behaviors just by adjusting a single control
input. To reduce the reality gap between simulation and the physical system, using the experimental data
of the real fish-like robot, we build a surrogate simulation environment, which also well balances the
accuracy and the speed of training. Second, for the path-following control, we select the advantage actor-
critic (A2C) approach and train the control policy in the surrogate simulation environment with a straight
line as the desired path. Then the trained control policy is directly deployed on a physical fish-like robot
to follow a randomly generated Bézier curve. The experimental results show that our proposed approach
has good practical applicability in view of its efficiency and feasibility in controlling the physical fish-
like robot. This work shows a novel and promising way to control biomimetic underwater robots in the
real world.

Keywords: Reinforcement learning control, autonomous underwater vehicles, biomimetic underwater
robots, path following, deep learning

1. INTRODUCTION

Biomimetic robots have attracted increasing attention and sig-
nificant progress has been made, since such robots replicate
the outstanding skills of organisms in nature and, in turn, be-
come powerful tools for understanding animal behavior (Butail
et al. (2015)) and helping people in various tasks (Wang et al.
(2017)). The fish-like robot is a typical underwater biomimetic
robot. A variety of robotic fish prototypes have been con-
structed, most of which are designed based on the anguilli-
form swimming mode and the carangiform mode, such as the
well-known RoboTuna (Streitlien et al. (1996)), the salamander
robot (Ijspeert et al. (2007)), and the carp robot focused in this
paper (see Fig. 1). With the superior performance brought by
bionics, fish-like robots have been utilized for a growing variety
of applications (Ryuh et al. (2015)).

Many applications in mobile robots are built upon the func-
tionality of accurately following a predefined geometric path,
which is one of the central problems in automatic guidance
(Kapitanyuk et al. (2018)). Various control algorithms have
been developed to investigate the path-following task for under-
water vehicles, including the proportional-integral-derivative
(PID) control (Lekkas and Fossen (2012)), fuzzy control (Zhu
et al. (2016)), adaptive control (Shin et al. (2017)) and so on.
Unfortunately, most of the algorithms require prior knowledge

? This work was supported in part by grants from the National Natural
Science Foundation of China (NSFC, No. 61973007, 61633002, U1909206).
(Corresponding author: Chen Wang.)

of dynamic modeling, which is not easy to be obtained for a real
underwater vehicle in an uncertain environment. Obviously,
the situation will be more complicated for a fish-like robot
who has a flexible body, since the robot’s interaction with its
hydrodynamical environment is uncertainty and variability. To
overcome such limitations, recently, Woo et al. (2019) proposed
a deep reinforcement learning (DRL) based controller for path
following of an unmanned surface vehicle (USV). Their con-
troller does not require any prior knowledge of USV dynamics.
However, they only considered the linear path following that
the desired path is a straight line. And most important, their
work focused on the USV of a rigid body, whose dynamics is
much simpler than that of a fish-like robot. To the best of our
knowledge, there is no existing work of controlling a physical
fish-like robot without knowing its dynamic model to follow a
randomly generated Bézier curve as the desired path.

In this paper, a DRL based approach is proposed for path-
following control of a fish-like robot in the real world. First,
we design a modified Central Pattern Generated (CPG) model
to implement the lower level locomotion control of the fish-like
robot. Varied swimming behaviors can be achieved by the sin-
gle control input of the CPG model. Based on the experimental
data of the real fish-like robot, we build a surrogate simulation
environment, which well balances the accuracy and the speed
of training. Second, we choose the advantage actor-critic (A2C)
approach and train the control policy in the surrogate simulation
environment with a straight line as the desired path. Then the
trained policy is directly deployed on a physical fish-like robot
to follow a randomly generated Bézier curve. We will show

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 8261

8.
8c

m

Inflatable entrance Charging entrance

Servomotors

(A)

(B)

(C)

8.
8c

m

Inflatable entrance Charging entrance

Servomotors

(A)

(B)

(C)

8.
8c

m

Inflatable entrance Charging entrance

Servomotors

(A)

(B)

(C)
(A) Prototype.
(B) Interior mechanical structure.
(C) Schematic of the three-joint propulsive structure.

(A)
(B)

(C)

Fig. 1. The Fish-like robot.

through the experiments that our proposed approach has good
practical applicability in view of its efficiency and feasibility in
controlling the fish-like robot in the real world.

The main contributions of this paper are twofold. First, as far
as the authors are aware, it is the first time that DRL is applied
in the control of a biomimetic underwater robot with a flexi-
ble body whose accurate dynamic model is almost impossible
and unnecessary to know. Second, using our proposed DRL
approach in the path-following control of a fish-like robot, the
control policies for the robot are trained only in simulation
and only with a straight line as the desired path, the trained
policy is directly deployed on the real fish-like robot with-
out any tedious tuning and still performs well with a ran-
domly generated Bézier curve as the desired path. In summary,
this work shows a novel and promising way to control the
biomimetic underwater robots in the real world.

2. CPG MODEL FOR LOCOMOTION CONTROL

In this section, we first introduce the fish-like robot, and then
propose a modified CPG model to control its locomotion.

2.1 Fish-like Robot

In this work, a widely concerned fish-like robot (Wang et al.
(2011); Yu et al. (2016)) was chosen as the biomimetic under-
water robot of interest. The physical structure of the robotic fish
mimics a typical carangiform fish, Koi Carp, which consists of
a streamlined head, a flexible body, and a caudal fin (Fig.1).
The head of the robotic fish concludes an STM 32 onboard
control unit, a wireless module, and four 5V batteries. The
body of the fish-like robot contains three revolute joints that
are linked together by aluminium exoskeletons, and each joint
is driven by an R/C servomotor. Each servomotor at each joint
is steered by a PWM signal generated from the onboard control
unit, which controls its relative joint angle with respect to those
of its adjacent joints. The caudal fin of the fish is attached to the
third joint. θi and li (i = 1, 2, 3) are the deflection angle and the
joint length of the corresponding joint i, respectively. The fish-
like robot measures 44.3cm long and weighs 0.85kg in total. Its
density is just a little bit smaller than that of the water so that it
swims just below the water surface.

2.2 Robot’s Locomotion Control

The CPGs are essential building blocks for the locomotion neu-
ral circuits found in both invertebrates and vertebrates (Ijspeert
(2008)). A key feature of the CPGs is the capability of pro-
ducing coordinated patterns of rhythmic activities without any
rhythmic inputs from sensory feedback or high-level control
signals. Thus the lower level locomotion control of the fish-
like robot is implemented based on a simple but effective CPG

model (Wang et al. (2011); Li et al. (2015)). Due to the one-to-
one correspondence between the oscillators of the CPG and the
joints of the robot, for the three-joint fish-like robot of interest,
the ith, i = 1, 2, 3, oscillator is implemented as follows,

ṙi(t) = ζr(Ri − ri(t))
ẋi(t) = ζx(Xi − xi(t))
φ̈i(t) = −ζ2φ

∑3
j=1,j 6=i(φi(t)− φj(t)− ϕji)

−4ζφ(φ̇i(t)− 2πf)

θi(t) = xi(t) + ri(t) sin(φi(t))

(1)

where f represents the desired swing frequency of each joint,
Ri and Xi denote the desired swing amplitude and offset angle
of the joint i, respectively, and ϕij is set to be the desired phase
bias between joint i and j. Three parameters ζr, ζx, ζφ affect the
transient dynamics of the amplitude ri(t), offset angle xi(t),
and phase φi(t) of each joint i, respectively. The CPG model’s
output signals θi(t), which represent the deflection angle of the
corresponding joint i at time t (Fig. 1(C)), are sent to each
servomotor at each joint in the form of PWM to control the
robot’s locomotion.

Such a CPG model (1) can spontaneously generate rhythmic
output signals to propel the robotic fish and easily change
its locomotion behavior by adjusting the input parameters.
However, the number of the parameters (12 in total) is too
much which brings the difficulty of policy training, thus we
need a modified CPG model that can generate varied output
signals with only a few control inputs. To this end, we first
fixed some of the parameters as f = 1Hz, [R1, R2, R3] =
[0.0873, 0.1746, 0.2619]rad, [ϕ12, ϕ23] = [1.396, 2.094]rad,
ζr = 11.68/s, ζφ = 5.84/s according to the physical charac-
teristics of the fish-like robot, and let the desired offset angles
of the three joints to be equal Xc , Xi, i = 1, 2, 3, so that only
two parameters Xc and ζx were left. Note that, for Xc = 0,
the fish shifts its tail first to the left (resp. right) and then back
to the middle during the first (resp. second) half of each swing
period T = 1

f = 1s. Based on this observation, we consider the
situation in discrete time and set Xc by step signals

Xc(t) =

{
u(k), t ∈ [kh, kh+ h

2)

0, t ∈ [kh+ h
2 , kh+ h)

(2)

∀t ∈ [kh, kh+ h), k = 0, 1, 2, . . .

where k is the time step, h = T
2 is the sampling period. In this

context, u(k) ∈ [Umin, Umax], k = 0, 1, 2, . . . are a series of
control inputs under which the offset angle of each joint of the
robot can be set during each sampling period t ∈ [kh, kh+ h),
where the range [Umin, Umax], Umin < 0 < Umax depends
on the physical constraints of the robot. Meanwhile, we set the
parameter ζx = 14.4 to ensure the offset angle xi(t) of each
joint i first increase to the control input u(k) when t→ kh+ h

2
and then go back to 0 when t → kh + h. It is interesting to
note that, the way the control input u(k) works, which divides
each swing period T into two halves, allows the offset angle
xi(t) to have more flexible changes. Therefore, to distinguish
the two halves of each swing period, we introduced a time tag
ta(k) ∈ {0, 1} that for even k = 0, 2, 4, . . . and ta(k) = 1 for
odd k = 1, 3, 5, . . .; thus ta(k) = 0 (resp. ta(k) = 1) implies
that [kh, kh + h) is the first (resp. second) half of each swing
period of the robotic fish.

Up to now, we obtained a modified CPG model (1)(2) with
only one control input u(k), who can deliver much more kinds
of output signals (i.e., swimming behaviors) than that of the
original CPG model.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8262

Surrogate Simulation Environment

velocitydistancepose angle traction angletime tag

Actor-net
max

Critic-net

state

action

reward

value

Fig. 2. Structure of the control policy networks.

3. DRL APPROACH FOR PATH-FOLLOWING CONTROL

In this section, we propose a DRL based approach to deal
with the path-following control task of the fish-like robot. An
overview of our DRL approach is shown in Fig.2, and the
training loop proceeds as follows. Initially, within the surrogate
simulation environment we designed, it starts a training episode
and outputs the states of the fish-like robot. The control policy,
implemented by an actor-network, maps the observations of
current states to an action which determines the robot’s turning
motion. Then it executes the action within the surrogate simula-
tion environment, and calculates the corresponding reward and
the next states. Subsequently, the policy evaluation is provided
by a critic-network to help the actor with the policy improve-
ment. In the direction suggested by the critic, the actor-network
updates policy parameters, and the training episode continues
until the task is finished or failed. After each training episode,
the average reward of some latest episodes decides whether the
learning is finished or not. In what follows, we describe each
component in details.

3.1 Description of Path-following Task

Path-following task requires the robot to accurately follow a
predefined geometric path. Here we use a parametric Bézier
curve of degree n to describe the desired path P as

B(w) =

n∑
i=0

Pi
n!

i!(n− i)!
(1− t)n−iwi, w ∈ [0, 1] (3)

where w is a parameter, and the point Pi are control points.
Fig.3 schematically shows the geometry of the path-following
task of a fish-like robot, which combines the ideas of the line-
of-sight (LOS) guidance (in blue) (Fossen and Pettersen (2014))
and the nonlinear guidance law (NLGL) (in green) (Sujit et al.
(2014); Oh et al. (2015)).

In our case, the initial position of the robot is set on the
right side of the directed path P . Borrowing the idea of LOS
approach, the robot location p has a unique projection P onto
the path P . At each time step k, the signed distance from the
robot location p to the desired path P is defined as d(k) =
dist(p,P) where d is positive (resp. negative) when p is on
the right (resp. left) side of the directed path P . Thus one have
d(0) > 0 since the initial position of the robot is on the right
side of the directed path. Then the absolute value of the signed
distance is considered as the tracking error, i.e., e(k) , |d(k)|.
The ray lP starts from the projection point P and is tangent
to the path P at P, and the direction of the ray lP is chosen
to be coincide with the desired direction of the path following.
Taking the idea of NLGL, when the robot is not far away from

�

�

�

�

!(#)

%&

'(#)

((#)

�
)*

+(#)

Fig. 3. The path-following task for a fish-like robot.

Fig. 4. Surrogate simulation environment maps the locomotion
control input to the kinematics of the fish-like robot in the
real system.

the path, a circle of radius RE can be drawn at the robot’s
current position p(k), where RE > 0 is constant. The circle,
which can be seen as an exploration region of the robot, has
two intersections points with the path P , between which the
one lying ahead of the robot is marked as q. As shown in
Fig.3, β(k) is the angle between the ray lP and the vector−→pq, and α(k) is the robot’s current orientation relative to the
ray lP. To quantitatively evaluate the control performance, we
concern about three indicators, the average tracking error ē, the
maximum tracking error emax, and the overshooting times ko,
where ē and emax are the average and the maximum of the
tracking error e(k) during a task, respectively, ko denotes the
times when the tracking error exceeds the threshold R∗, and
R∗, 0 < R∗ < RB , implies the satisfactory tracking range.

In this paper, considering the physical characteristics of the
robotic fish that its body length is 0.443m and the average of its
stable velocity is 0.5m/s, we set the satisfactory tracking range
R∗ = 0.1m, and the exploration region RE = 0.643m.

3.2 Surrogate Simulation Environment

To efficiently train a control policy in simulation and directly
implement it on the real robot, a critical issue is to reduce
the reality gap caused by the discrepancy between the sim-
ulation and the real system. However, the complexity of its
hydrodynamic environment makes it impossible to construct a
sufficiently accurate simulation environment with few compu-
tational resources using traditional methods like computational
fluid dynamics.

To balance the accuracy and the computation speed, we built
a surrogate simulation environment based on the experimental
data of the real robot to introduce reality information, as well
as to speed up the training process. Specifically, the surrogate
model is mathematically formulated as a mapping function fs

fs : [ta(k), u(k)]→ [p̂(k + 1), α̂(k + 1), v(k + 1)] (4)
where v(k) ∈ R is the linear velocity of the robot at t = kh
and v(0) = 0, p̂(k + 1) ∈ R and α̂(k + 1) ∈ R represent
the variation of the position and that of the orientation of the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8263

Table 1. Surrogate simulation environment

ta = 0/ta = 1 action m m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

robot
kinematics

Dm
ta

0.14/0.13 0.15/0.16 0.15/0.15 0.15/0.17 0.15/0.16 0.14/0.16 0.16/0.16
Am

ta
-0.26/-0.41 -0.10/-0.24 -0.06/-0.15 0.01/-0.04 0.11/0.11 0.20/0.13 0.24/0.38

v(k) v(k) = (1− 1
1.15k

)Vmax, Vmax = 0.3

control input Xm -0.26/-0.26 -0.18/-0.18 -0.09/-0.09 0/0 0.18/0.18 0.26/0.26 0.35/0.35

fish during t ∈ [kh, kh+ h), respectively (Fig.4). The position
of the fish is defined by its center of gravity p(k) ∈ R2. We
assumed α̂(k) > 0 in the counterclockwise direction. ta(k) and
u(k) denote the time tag and the control input as mentioned
above, respectively. Considering the nonholonomic dynamics
of the fish-like robot, we assumed that v(k) ≥ 0, p̂(k) ≥ 0.

The concrete form of the mapping fs in Eq. (4) was ob-
tained based on the experimental data of the real fish-like
robot. We selected M constants Xm,m = 1, 2, . . . ,M , where
{X1, X2, . . . , XM} are nearly uniformly distributed in the
range [Umin, Umax], so that Xm can be seen as the sampled
data of the continuous domain [Umin, Umax]. Then, for each
u(k) = Xm, we conducted the experiments Gr times for
k ∈ {0, 1, 2, . . . ,Kr}. The average values of p̂(k + 1) when
ta(k) = 0 and when ta(k) = 1 were calculated and recorded
as D̃m

0 and D̃m
1 , respectively. Similarly, the average values

of α̂(k + 1) when ta(k) = 0 and when ta(k) = 1 were
calculated and recorded as Am0 and Am1 , respectively. Next, we
gained the linear velocity v(k). We randomly chose the u(k) in
[Umin, Umax] for each k, and performed the experiments GC
times for k ∈ {0, 1, 2, . . . ,KC}. For each run, the value of
the linear velocity is a curve from 0 up to its maximum value
when t increasing. Thus we calculated the average of the GC
maximum values and recoded it as Vmax, while the average of
the GC curves was figured and approximated as

v(k) = (1− 1

1.15k
)Vmax, (5)

from which we obtained the v(k) in the surrogate model (4).
According to the linear velocity, we made some modification to
the variation of the position obtained via the experiments that

Dm
ta =

v(k)

Vmax
D̃m
ta , ta = 0, 1. (6)

To sum up, we represented the mapping fs as
[Dm

ta , A
m
ta , v(k + 1)] = fs[ta(k), Xm]. (7)

In this paper, considering the physical limitations of the robotic
fish and the specific task which will be described later, we chose
[Umin, Umax] = [−0.5, 0.5]rad, M = 7, Kr = 23, Gr = 5,
KC = 59, GC = 3 and summarized the created surrogate
model (7) in Table 1.

3.3 Formulating the control problem

We mathematically formulate the control problem for the robot
as a discrete-time optimization problem. At each time step k,
the fish-like robot observes the state sk of its environment in
a state space S, and executes an action ak ∈ A according to
a policy π(ak|sk), which is a mapping from state sk to action
ak. Then the robot receives a scalar reward rk ∈ R, which mea-
sures how well it accomplishes the task, and the state changes to
sk+1 according to the environmental dynamics of the surrogate
simulation environment or that of the physical system. Given
a trajectory τ(π) under policy π as s0, a0, s1, a1, . . . with the
associated rewards r0, r1, . . ., the infinite horizon discounted
return along this trajectory is

∑∞
k=0 γ

krk where γ ∈ (0, 1] is

the discount factor. Then the control objective is to find an opti-
mal policy π∗ that maximizes the expectation of the discounted
sum of rewards over an infinite horizon

π∗ = arg max
π

Eτ(π)

[∞∑
k=0

γkrk

]
. (8)

In this study, the states sk include the time tag ta(k), the robot’s
velocity v(k), and some of its pose information selected accord-
ing to the path-following task; the actions are the locomotion
control input u(k) to the fish-like robot; and the rewards are
specified so as to complete the given task.

3.4 Deep Reinforcement Learning

To solve the above discrete-time optimization problem, rein-
forcement learning (RL) provides a possible way, in which the
robot learns to act in a trial-and-error manner as to maximize
the rewards obtained by interaction with its environment (Sut-
ton and Barto (2018)). More specifically, the aim of the robot
is to find an optimal policy which maximizes the reward so that
the given task is well completed. For the control of autonomous
fish-like robots in our study, we chose the A2C approach, which
takes advantage of both the value-based RL methods and the
policy-based RL methods, where the actor chooses the action
based on the probability, and the critic evaluates the current
policy to improve it. Specifically, the critic provides the actor
with the advantage value A(s) based on the value function
V (s), A(s) = r + λV (s′) − V (s), and the actor updates the
policy parameter using the gradient∇θ log πθ(s, a)A(s).

In this work, the A2C network is realized in a simple form
where each of the actor- and critic-network has one fully
connected hidden layer with 20 neurons. We trained the control
policy within the surrogate simulation environment. To avoid
over-fitting and to improve the generalization capabilities of
the algorithm, the training process terminates when the average
reward of the 50 episodes overreaches a task-specific threshold.

3.5 Observation, Action and Reward

Considering the path-following task, we defined the whole
observations as sk = [ta(k), v(k), d(k), α(k), β(k)] at each
time step k, where ta(k) and v(k) are the time tag and the
velocity of the robot, d(k) is the distance from the robot
location to the path, α(k) and β(k) are the robot’s orientation
and the bearing angle relative to the path’s projection (Fig.3).
We chose u(k), the locomotion control input of the robot, to be
the action ak which is the output of the control policy in our
training method. The selected 7 actions are shown in Table 1.
For the path-following task (Fig.3), we defined the reward as

rk =

{
1− |d(k)|RB

, when |d(k)| < RB
−1, when |d(k)| ≥ RB

(9)

Obviously, rk goes to 1 when the robot gets close to the desired
path, i.e., d(k) → 0, and rk decreases when the distance from
the robot location to the path d(k) increases. If the fish swims
out of the boundary described by the constant RB , the reward
rk turns into −1 as a punishment.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8264

Camera

Upper
computer

Transmitter

Swimming tank

Fish
Robotic

Wireless
signal

3 m

2 m

Fig. 5. Experimental platform of the fish-like robot.

3.6 Policy Training Details

For the given path-following task, it aims to control the fish-
like robot to follow a randomly generated Bézier curve P .
To this end, we trained the robot to follow a straight line in
surrogate simulation environment. At the beginning of each
training episode, the robot was randomly located near the given
line and on the right side of the line that the distance from the
robot location to the path satisfied 0 < d(0) < RE where
RE = 0.643m as mentioned above, while the orientation
of the robot α(0) is also set randomly. The training episode
continues until the task is failed that the robot swims out of
the boundary, i.e., e(k) = |d(k)| ≥ RE , or the time step
arrives at its maximum which is set as kmax = 100, and this
episode’s reward r̄e is defined as the average of the rewards
rk. After each training episode, the average reward of 50 latest
episodes are calculated and marked as r̄e(50) . Then the next
episode starts, and the loop continues until r̄e(50) goes beyond
the task-specsific threshold, which implies the situation when
the robot’s performance is good enough and is set as 0.94 for
the path-following task.

4. EXPERIMENTAL EVALUATION

In this section, the training results and the experiments with
real robots following Bézier curves are reported to show the
effectiveness of our proposed approach.

4.1 Experimental Platform

To test the trained policy, we use an experimental platform
consisting of a server computer, an overhead camera, a wire-
less communication module and a fish-like robot (Fig.5). The
overhead camera captures images of a 3 × 2m tank per 40ms
and then sends them to the server computer, where images
are processed to obtain the pose information of the robot.
The upper computer can exchange information with robot
through the wireless communication module. Thus, at each
time step k, the upper computer collects the pose informa-
tion of the robot and infers the whole observations sk =
[ta(k), v(k), d(k), α(k), β(k)], and then the upper computer
runs the training method and outputs an action ak = u(k),
which is send to the robot to be executed through the wireless
communication. We refer to (Wang et al. (2017); Yu et al.
(2016)) for readers who are interested in more technical details
about the experimental platform.

4.2 Experimental Results

As mentioned above, we trained the fish to follow a straight
line in simulation. The training method and its parameters were
adopt as described in Section 3.6. The simulation results of the

�B�

Fig. 6. Training to follow a straight line in surrogate simulation
environment.

training process, as well as some typical episodes during train-
ing, are shown in Fig.6. Fig.6(A) shows the learning curves of
the average reward of each episode and the average reward of 50
latest episodes in the surrogate environment. In the episode 350
within the surrogate environment, the fish fully followed the
straight line and got the episode’s reward of 0.9653, meanwhile,
the average reward of 50 latest episodes r̄e(50) increased as
0.9406 which reached the task-specific threshold 0.94 and thus
a trained policy π∗S was obtained. The training process for 350
episodes with the surrogate environment took only 50 minutes.
To gain insight into the training process and the performance
of our method, we selected some typical training episodes and
revealed the fish’s trajectories in Fig.6(B). The trajectory in red
indicates that the fish swims out of the boundary (|d(k)| ≥ RB)
that ends its corresponding episode, while the one in blue means
the fish completes the task successfully during the episode.

Then, we directly deployed the trained policy π∗S on the real
fish-like robot to follow the Bézier curve. It’s worth emphasiz-
ing that, in our training method, although the control policies
are trained only in simulation and only using a straight line as
the desired path, the trained policy is directly deployed on the
real robot and performs well for a randomly generated Bézier
curve. In this study, We chose n = 6, 10, 8 in Eq. (3), thus
7, 11, 9 control points are involved and can be chose randomly
to generate the desired curves P1,P2,P3 for the fish-like robot
to follow with, respectively. Fig. 7 shows the control perfor-
mance of our trained policy π∗S on the real fish-like robot. For
these three curves, we repeated the experiments five times. To
quantitatively evaluate the performance of the trained policies,
we mainly concerned about three indicators, ē, emax, ko (see
Section 3.1), which were calculated and summarized in Table
2. Each data is the average of five runs.

Table 2. Deploying on the real fish-robot to follow
the curves P1, P2, and P3, respectively.

P1 P2 P3

ē/emax/ko 0.062/0.199/2.4 0.038/0.173/10.8 0.051/0.212/22

According to these experimental results, the maximum error
is 0.212m, the minimum error is 0.038m. It’s worth noting
that the robotic fish is 0.443m long with the stable velocity of
0.5m/s. That is to say, our method successfully tracked three

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8265

Fig. 7. Deploying on the real fish-like robot to follow randomly
generated Bézier curve P1, P2, and P3, respectively.

curves. At the same time, when R∗ = 0.1, the overshooting
times of P1 is 2.4, which shows that the trajectory has a certain
degree of smoothness. Even for the complex curve P3, the
overshooting times is only 22, which also shows the method
is robust. Therefore, one could conclude that our trained policy
is of superior performance.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a DRL based approach for
path-following control of a fish-like robot in the real world.
A modified CPG model has been designed for the locomotion
control of the fish-like robot, so that the fish can achieve varied
swimming behaviors by a single control input. Based on the
experimental data of the real fish-like robot, we have built a
surrogate simulation environment, within which the training ac-
curacy and speed can be well balanced. For the path-following
task, we have selected the A2C approach and trained the control
policy in the surrogate simulation environment with a straight
line as the desired path. Then the trained control policy has been
directly implemented in a physical fish-like robot to validate its
path-following capability. The experimental results have shown
that the trained policies still performs well even with a ran-
domly generated Bézier curve as the desired path. That is, our
proposed approach has good practical applicability in control-
ling the fish-like robot in real world. To improve our results
in this paper, we are working on designing a more accurate
simulation environment to achieve more precise control.

REFERENCES

Butail, S., Abaid, N., Macrı̀, S., and Porfiri, M. (2015). Fish–
robot interactions: robot fish in animal behavioral studies. In
Robot fish, 359–377. Springer.

Fossen, T.I. and Pettersen, K.Y. (2014). On uniform semiglobal
exponential stability (USGES) of proportional line-of-sight
guidance laws. Automatica, 50(11), 2912–2917.

Ijspeert, A.J. (2008). Central pattern generators for locomotion
control in animals and robots: A review. Neural Networks,
21(4), 642–653.

Ijspeert, A.J., Crespi, A., Ryczko, D., and Cabelguen, J. (2007).
From swimming to walking with a salamander robot driven
by a spinal cord model. Science, 315, 1416–1420.

Kapitanyuk, Y.A., Proskurnikov, A.V., and Cao, M. (2018). A
guiding vector-field algorithm for path-following control of
nonholonomic mobile robots. IEEE Transactions on Control
Systems Technology, 26(4), 1372–1385.

Lekkas, A.M. and Fossen, T.I. (2012). A time-varying looka-
head distance guidance law for path following. IFAC Pro-
ceedings Volumes, 45(27), 398–403.

Li, L., Wang, C., and Xie, G. (2015). A general CPG network
and its implementation on the microcontroller. Neurocom-
puting, 167, 299–305.

Oh, H., Kim, S., Shin, H.s., and Tsourdos, A. (2015). Coordi-
nated standoff tracking of moving target groups using multi-
ple UAVs. IEEE Transactions on Aerospace and Electronic
Systems, 51(2), 1501–1514.

Ryuh, Y.S., Yang, G.H., Liu, J., and Hu, H. (2015). A school
of robotic fish for mariculture monitoring in the sea coast.
Journal of Bionic Engineering, 12(1), 37–46.

Shin, J., Kwak, D.J., and Lee, Y.i. (2017). Adaptive path-
following control for an unmanned surface vessel using an
identified dynamic model. IEEE/ASME transactions on
mechatronics, 22(3), 1143–1153.

Streitlien, K., Triantafyllou, G.S., and Triantafyllou, M.S.
(1996). Efficient foil propulsion through vortex control. Aiaa
journal, 34(11), 2315–2319.

Sujit, P., Saripalli, S., and Sousa, J.B. (2014). Unmanned aerial
vehicle path following: A survey and analysis of algorithms
for fixed-wing unmanned aerial vehicless. IEEE Control
Systems, 34(1), 42–59.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement learning:
An introduction. MIT press.

Wang, C., Xie, G., Wang, L., and Cao, M. (2011). CPG-based
locomotion control of a robotic fish: Using linear oscillators
and reducing control parameters via PSO. International
Journal of Innovative Computing, Information and Control,
7, 4237–4249.

Wang, C., Chen, X., Xie, G., and Cao, M. (2017). Emergence of
leadership in a robotic fish group under diverging individual
personality traits. Royal Society open science, 4(5), 161015.

Woo, J., Yu, C., and Kim, N. (2019). Deep reinforcement
learning-based controller for path following of an unmanned
surface vehicle. Ocean Engineering, 183, 155–166.

Yu, J., Wang, C., and Xie, G. (2016). Coordination of multiple
robotic fish with applications to underwater robot competi-
tion. IEEE Transactions on Industrial Electronics, 63(2),
1280–1288.

Zhu, J., Wang, J., Zheng, T., and Wu, G. (2016). Straight path
following of unmanned surface vehicle under flow distur-
bance. In OCEANS 2016-Shanghai, 1–7. IEEE.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8266

