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Abstract: Airborne Wind Energy Systems involve, in most solution concepts, flying kites at
high speeds on a pre-specified, crosswind, optimized path. We develop a heading angle controller,
using Model Predictive Control (MPC) on top of a guidance logic control, to maintain the kite
within the desired path. The computed MPC law is used to enhance an existing controller
and is able to preserve its stabilizing properties. The performance of the overall scheme can
only improve upon the one of the basis controller. The optimization problems involved in the
MPC algorithm are solved in an efficient way since the optimizer starts from a feasible solution.
Nevertheless, even when the optimizer fails to provide an adequate solution in time, a guaranteed
stabilizing law is used.
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1. INTRODUCTION

We address Airborne Wind Energy Systems (AWES),
in particular the problem of devising a control for the
kite (tethered drone) to follow a pre-specified path. We
propose a Model Predictive Control (MPC) scheme that
is used to improve the performance of an existing path-
following guidance method for AWES, maintaining its
stability guarantees.

Airborne Wind Energy Systems are devices that convert
wind energy into electricity using high speed flying wings
attached to the ground by a tether. These systems aim
to harvest wind energy at high altitudes, where the wind
is stronger and more consistent, using a lightweight infras-
tructure (see e.g. Schmehl (2018)). AWES aim to exploit a
huge, still unexploited resource – the high altitude winds
–, having the potential to significantly contribute to the
energy transition from fossil-based to renewable sources.

The development of a performant and robust path-
following control scheme is timely and relevant for the
advancement of AWES technology. On the one hand, in
AWES, as in most electrical energy generation systems,
maximizing output power production is a major goal. To
achieve this goal, the kites should follow an optimized
periodic path which can be found by solving an opti-
mal control problem maximizing power production; see
Houska and Diehl (2007); De Lellis et al. (2018); Paiva
and Fontes (2018). The development of a controller that
can closely follow the optimized path, as is proposed here,
has a direct impact on the performance of the AWES.
On the other hand, one of the main challenges towards
the commercialization of AWES is to guarantee a safe,
reliable and autonomous operation for long periods of

time, under diverse weather conditions (see report van
Hussen et al., 2018). The development of a controller that
can guarantee convergence to a pre-specified path with a
large domain of attraction, as is proposed here, contributes
to this challenge.

In this paper, we use as basis a path-following guidance
control law, which was shown to have global stabilizing
properties (Silva et al., 2019). On top of such control
law, we add a term computed within an MPC algorithm.
The overall controller can only improve performance with
respect to the basis controller. The objective functions
for the optimal control problems involved in the MPC
scheme are the Lyapunov control pair of functions that
was used to verify the stability of the guidance control law.
Therefore, it is guaranteed that the stabilizing properties
are preserved (Fontes, 2001).

The heading angle control of kites in AWES has been
previously studied in Fagiano (2009); Lellis et al. (2013);
Silva et al. (2019), among others. The use of MPC on
top of an already adequate stabilizing controller has been
reported in the literature in (Magni et al., 2002; Zeiaee
et al., 2017), on the control of an inverted pendulum and
of a nonholonomic mobile robot, respectively. This com-
plementary use of MPC brings about several advantages:
(i) the stability of the MPC strategy can be guaranteed,
by means of a constructive procedure to select stabilizing
MPC design parameters; (ii) the performance of the com-
bined controller can only improve upon the basis solution;
(iii) the optimization problems within MPC strategy are
numerically solved in a very efficient way, since the process
already starts from a feasible solution; (iv) the method is
robust even when the optimizer fails to provide an ade-
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Fig. 1. Time–independent 3D path on the surface of a
sphere (blue) and trajectory following it (red)

quate solution in time, since at least the feasible solution
known from the beginning can be used.

2. PATH–FOLLOWING GUIDANCE AND CONTROL

2.1 Surface Path–following Parameterization

The maximization of power production is frequently a
major goal in electrical energy generation systems. An
approach to address this goal is to formulate it in an
Optimal Control Problem (OCP) where the cost functional
is set to maximize the power production. Such OCP
can be solved using numerical methods and typically its
solution is a periodic trajectory (Houska and Diehl, 2007;
De Lellis et al., 2018; Paiva and Fontes, 2018). In real–
time applications, instead of solving on–line a complete
OCP, which would have a high computational cost, we
implement a guidance scheme where the kite’s trajectory
has to follow a pre–specified path.

To design such time–independent 3D path (see Fig. 1), we
start with the 3D periodic trajectory, obtained as solution
of the OCP, and we parametrize it. Considering a tether
with constant length r, the kite moves on the surface of
a sphere of radius r, and its position can be defined by
the azimuth and elevation angles (φ and β, respectively)
in spherical coordinates. Thus, our 3D path reduces to a
2D surface path in a (φ, β) referential, typically a periodic
motion, clockwise, of elliptical shape or figure–of–eight
(lemniscate) shape.

2.2 Heading Angle Dynamics

Consider a coordinate system (e1, e2, e3) attached to the
kite body, where e1 is in the kite longitudinal axis pointing
forward, e2 is in the kite transversal axis pointing to the
left wing tip, and e3 is in the kite vertical axis pointing
upwards, satisfying e3 = e1 × e2.

We assume the kite aligns naturally with the apparent
wind velocity va, therefore we can define the kite longitu-
dinal axis to be e1 = − va

‖va‖ . Since the speed of the kite is

generally much larger than the wind speed, the apparent
wind velocity, and thus the kite longitudinal axis can be
considered to be in the plane τ , spanning (φ, β), tangent to
the sphere centered at the ground station and with radius
equal to the tether length.

For a roll angle (ψ) around the longitudinal axis equal to
zero, the vector e3 aligned with the Lift Force is completely

Fig. 2. Roll angle and turning dynamics

radial. As we alter the roll angle, we convey a lateral
component to the lift force: the Turning Lift as shown in
Figure 2. This Turning Lift causes a lateral acceleration al
responsible for steering the kite within the tangent plane
τ . The lateral acceleration caused by the Turning Lift is
given by

al =
1

m
Flift sin(ψ). (1)

2.3 Guidance Logic

The Guidance Logic used here for the basis controller is
the one recently reported in Silva et al. (2019), which is
based on a modification of Park et al. (2004) .

We use a reference target approach to follow the path
parameterized in (φ, β) space. Given the kite current
position p(φ, β), we begin by computing its closest point
(Q) in the path, defining also the cross–track distance d;
see Figure 3. Then, we find the reference point R in the
path distancing a given L0 ahead of Q. The vector joining
the current kite position and the reference point is defined
as L1.

The reference for the heading angle adjustment η can be
computed as the angle between the kite velocity ṗ and
the vector L1. Figure 3 describes the variables used in the
Guidance Logic.

We then compute the required centripetal acceleration for
the kite to follow a curved line joining the current position
at the reference point R. This centripetal acceleration is

as = 2
v2

L1
sin(η), (2)

where v is the kite speed, v = |ṗ|.
This guidance logic differs from the one in Park et al.
(2004) since it is the length of L0 and not of L1 which is
defined a priori. This modification allows a larger domain
of attraction since the guidance logic with a fixed L1 would
require that d < ‖L1‖ to function properly. With this
modification, such condition is always satisfied since L1

is computed by L1 =
√
d2 + L2

0. (See Silva et al. (2019)
for details)

2.4 Heading Angle Control

We act on the roll angle in order to steer the kite.
The Heading Angle Control is based on the required
centripetal acceleration calculated through equation (2)
and the lateral acceleration provided by the Turning Lift,
and therefore the roll angle, computed by equation (1).
Making both accelerations equal, we can compute the
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Fig. 3. Guidance logic to follow a reference in the path.
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Fig. 4. Domain of attraction regions for the stabilizing
controller.

required roll angle to give a trajectory convergent to the
path as:

ψ = arcsin

(
2m

v2 sin(η)

FliftL1

)
. (3)

However, having a limited range for the values of the roll
angle ψ ∈ [−ψmax, ψmax], the control with saturation is
given by:

ψ = min

{
ψmax,max

{
−ψmax, arcsin

(
2m

v2 sin(η)

FliftL1

)}}
.

Figure 1 shows, in red, a simulation of a trajectory using
the guidance control described above for the pre-defined
path.

The domain of attraction for our controller without satu-
ration is the set:

S1 := {(d, η) : d ∈ R, η ∈ [−η, η]}, (4)

where η is the angle in (0, π/2) satisfying sin η =
2mv2

FliftL1
sinψmax.

Let S2 and S3 be the sets:

S2 := {(d, η) : d ∈ R, η ∈ (η, π]}, (5)

S3 := {(d, η) : d ∈ R, η ∈ (−π,−η)}. (6)

A global domain S := {(d, η) : d ∈ R, η ∈ (−π,−π]} can
be defined as the union of the sets S1,S2 and S3. See Fig.
4.

Finally, we can provide the guidance logic controller that
gives the reference for the roll angle ψref = KGL, which
for a given speed v is a function of (d, η)

KGL(d, η) =


ψmax if (d, η) ∈ S2,

arcsin

(
2mv2 sin(η)

Flift
√
L2
0 + d2

)
if (d, η) ∈ S1,

−ψmax if (d, η) ∈ S3,
(7)

This controller has been shown to be asymptotically stabi-
lizing with global domain of attraction S, i.e. the domain
of validity of the local dynamical model of the kite (Silva
et al., 2019).

3. MODEL PREDICTIVE CONTROL

3.1 Sampled-data Model Predictive Control Framework

Consider a sequence of sampling instants π := {tk}k∈N
with a constant sampling period δ > 0 and ti+1 = ti + δ
for all k ∈ N.

The sampled-data feedback is constructed using an MPC
strategy, which involves solving a sequence of open-loop
optimal control problems (OCPs) at each sampling instant
tk ∈ π, every time using the currently measured state of
the plant xtk . The OCPs P(xtk) considered are as follows.

P(xtk) : Minimize

∫ T

0

L(x(t), u(t))dt+G(x(T )),

subject to ẋ(t) = f(x(t), u(t)) a.e.t ∈ [0, T ],

x(0) =xtk ,

x(t) ∈ X all t ∈ [0, T ],

x(T ) ∈ Xf ,

u(t) ∈ U a.e.t ∈ [0, T ].

The MPC algorithm constructs a sampled-data feedback
control by concatenating the initial parts of the optimal
control functions obtained as solution to each problem
P(xtk) along each tk ∈ π. Starting at tk = t0, the following
steps are carried out.

1. Measure the current state of the plant xtk .
2. Solve problem P(xtk) obtaining the optimal control

function ū : [tk, tk + T ] 7→ Rm (as well as the
corresponding trajectory x̄ : [tk, tk + T ] 7→ Rn).

3. Apply to the plant the control u∗(t) := ū(t) in the
interval [tk, tk + δ) (the remainder of the control
function ū(t), t > tk + δ is disregarded).

4. Repeat for the next sampling time tk = tk + δ.

The stability guarantees of a sampled-data MPC frame-
work have been studied in Chen and Allgöwer (1998);
Fontes (2001); Findeisen and Allgöwer (2002), among
others. Following (Fontes, 2001), stability is guaranteed
if the design parameters T, L,G and Xf satisfy certain
conditions, chief of which is the Lyapunov decrease of the
cost functions pair of the OCP, namely the existence of a
feedback κ such that

∇G(x) · f(x, κ(x)) ≤ −L(x, κ(x)), (9)

with κ(x) ∈ U , for all x ∈ Xf .

We show below that this inequality is satisfied for the AWE
path-following problem using the feedback control devised
in the previous section in the role of κ.

3.2 Model Predictive Control of AWES

Our goal is to guarantee that the trajectory converges
to the reference path. This is achieved if the coordinates
(d, η), relative to the path, converge to the origin. Alter-
natively, convergence is also achieved if (d, η2) converges
to the origin, where η2 is the angle between the current
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Fig. 5. Motion relative to path in the (d, η) or (d, η2)
coordinates.

velocity vector and the tangent to the desired path at the
nearest point (see Fig. 5). Consider the following equations
of motion

ḋ = v sin η2 and η̇2 = −as
v
. (10)

Consider also the following lateral acceleration, that cor-
responds to the control KGL defined in equation (7)

as(t) =



2v2

L1
sin(η) if (d, η) ∈ S1,

2v2

L1
sin(η̄) if (d, η) ∈ S2,

−2v2

L1
sin(η̄) if (d, η) ∈ S3,

(11)

Using this acceleration, it is shown in Silva et al. (2019)
that:

(1) when in the regions S2 and S3 the states are driven
to the region S1,

(2) the region S1 is invariant,
(3) within S1, we can find a Lyapunov function to estab-

lish convergence of (d, η2) to the origin,

which guarantees convergence to the path. The last step
used the following Lyapunov function

V(d, η2) =
1

2
(v sin η2)

2
+ v2

(
ln (L2

0 + d2)− ln (L2)
)
,

which has time derivative

V̇(d, η2) = −2v3

L1
sin2 η2 cos η.

Now, using MPC on top of the previous stabilizing law,
with adequately selected design parameters, preserves the
stability for this system. The MPC data used for this
specific problem is as follows

x = (d, η2), f(x, u) =

(
v sin η2,−

as + u

v

)
, (12)

X = S, Xf = S1, (13)

G(x) = V(x), L(x) = V̇(x), (14)

U = {u : u+ as ∈ [−ās,+ās]} with ās =
2v2

L1
sin(η̄) (15)

For these data, the control u ≡ 0 is used as an initial guess
and it is a solution to the optimal control problem that
stabilizes the system (the feedback (11) is applied to the
system). Therefore, solving the optimal control problem
can only improve upon the initial guess, considering the
objective function as a performance criterion. Since the
objective function (running cost L(·) and terminal cost
G(·)) were selected to form a control Lyapunov pair, the

Lyapunov decrease condition (9) is satisfied, and so the
MPC framework is stabilizing.
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