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Abstract: This paper proposes a method to recognize underwater target objects and estimate
their yaw angle using an imaging sonar. First, a light sonar simulator generated template
images of the target objects from various viewing angles. Next, a generative adversarial network
predicted a semantic map by segmenting the real sonar image for reliable recognition. Then,
matching the template images and semantic map identifies the target object and its yaw angle.
We verified the proposed method by installing objects in the indoor water tank. The proposed
method can provide relative pose information of sensing platforms which is useful for pose
control and navigation.
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1. INTRODUCTION

Underwater object recognition is essential to automate
various underwater missions (Kim et al. 2018b, Sualeh and
Kim 2019, and Kim et al. 2016). Autonomous underwater
vehicle (AUV) and sonar sensors are widely used platform
for the underwater object recognition (Joe et al. 2019, Pyo
et al. 2017, Cao et al. 2018, and Maki et al. 2019). The
AUV can cover a large area and cope with harsh under-
water environments. Sonar sensors have a wide scanning
range and tolerance in a turbid stream.

When using these platforms, estimating a yaw angle of
underwater objects is a crucial problem for reliable recog-
nition (Yu 2008). In a sonar image, shapes of the objects
change significantly according to the viewing angles. The
AUV can measure the roll, pitch, and range to the object
using an inertial measurement unit and depth sensor,
however, the angle that the AUV encounters the object
is unpredictable.

Therefore, the AUV can detect the underwater target
objects more reliably after estimating the yaw angle of
an object. Performing cross-validations for multiple an-
gles can improve recognition accuracy (Kim et al. 2019).
Moreover, the estimated relative angles between the AUV
and the underwater landmarks can be applied for various
AUV operations such as recovery, pose control, and navi-
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Fig. 1. Pipeline of the proposed object and angle recogni-
tion method.

gation(Ribas et al. 2008, Muñoz-Vázquez et al. 2017, and
Pyo and Yu 2019).

We herein propose a method to recognize the underwater
known-shape target object and estimate its yaw angle
using a sonar simulator and generative adversarial network
(GAN), as shown in Fig. 1. The shape of objects in a
sonar image is sensitive to the viewing angles. Moreover,
sonar sensors have a low signal-to-noise ratio (SNR).
Therefore, sonar-based object recognition is challenging.
If we know all shapes according to the yaw angle in
advance, identifying class and angle of objects is possible
(Cho et al. 2015). We implemented a ray-tracing-based
sonar simulator to synthesize template images of target
objects for various angles rapidly. We then preprocessed
the real sonar images using GAN-based segmentation to
improve the robustness of the recognition. Finally, we can
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Fig. 2. Shapes of the same object changing according to
the angles.

identify the target object and its yaw angle by matching
the template image with the segmented sonar images.

This paper is organized as follows: Section 2 explains the
proposed sonar simulator, GAN, and template matching
for the object and yaw angle recognition. In Section 3, we
describe the experiments to develop the proposed method.
Section 4 presents the recognition results. The paper ends
with the conclusion in Section 5.

2. PROPOSED METHOD

Two causes can make imaging-sonar-based underwater
object recognition challenging. First, the shape of the
object changes significantly depending on the viewing
angle in the sonar image like Fig. 2, but in what direction
the AUV approaches the underwater object is hard to
predict. Next, the sonar image has low SNR.

We proposed a method to recognize the target object ac-
curately and further identifies its yaw angle by simulating
all the shapes of the target object according to angles and
matching the template images with the sonar images of
an underwater scene. We also removed the degradation
effects and improved the matching reliability by segment-
ing the sonar images using GAN. This section describes
three elements of the proposed method; sonar simulator to
synthesize template images, GAN to preprocess the sonar
images, and template matching.

2.1 Ray-tracing-based Template Image Simulation

The proposed method requires prior information about the
shape of the target object in the sonar images according
to the angles. Therefore, we developed a sonar simulator
which can generate template images of target objects
rapidly, instead of taking sonar images manually.

The sonar simulator emulated the imaging mechanism of
the sonar sensor based on the ray tracing. It first calculated
the reflection point at which the acoustic beam collided
with an object as follows:

−→pθ =

−→
N · −→p1
−→
N · −→vθ

−→vθ , (1)

where −→vθ is a unit direction vector of the acoustic wave

transmitted to azimuth angle θ,
−→
N is the normal vector

of the object surface, −→p1 is a position vector of the object
surface.

We then calculated the intensity of the echo. In the real
world, many parameters, such as salinity, temperature,

Fig. 3. Simulated template images given 3D model of
object.

and beam pattern, affect the intensity of acoustic beams.
However, in the proposed method, fast processing speed
is essential to generate a large number of template images
for various angles. Moreover, the proposed method using
template matching does not require photo-realistic images.
To reduce the computational complexity, we modeled only
transmission loss and calculated the semantic information
such as shape and position of highlights and shadows, as
follows (Etter 1995 and Kim et al. 2018a):

I = k · I0∣∣−→pθ∣∣2 , (2)

where k is a unit conversion constant, and I0 is the initial
intensity of the acoustic wave.

Finally, by mapping the intensity of the echo to the cor-
responding pixel (|pθ| , θ) and cropping the object region,
the sonar simulator synthesized the template images for
various angles like Fig. 3, given a three-dimensional (3D)
model of the objects. The proposed simulator can accu-
rately calculate the shape of the highlight and shadow
of an object, which is essential information for template
matching, in a short time.

2.2 GAN-based Sonar Image Segmentation

We proposed the segmentation of a real sonar image to
recognize the target object more reliably. The real sonar
image has various degradation effects. On the other hand,
the sonar simulator calculates the semantic information
such as the shape of highlights and shadows. Therefore,
segmentation removing degradation effects and generating
semantic maps can improve the accuracy of the target
recognition in the sonar image.

For the segmentation of the sonar image, we employed
the pix2pix model (Isola et al. 2017) based on deep
learning. Pix2pix is a generative model that can translate
an input image into a target domain. We can segment
sonar images by translating the images into a domain
which only has highlights, shadows, and backgrounds using
this model. This approach can accurately segment the
sonar image of a more general scene. Classical methods
of segmentation, including thresholding and boundary
detection, do not show good results due to the high noise
and low resolution of a sonar image. A discriminative
model such as a convolutional neural network (CNN)
is another deep-learning-based segmentation approach by
classifying each pixel, but it can fail to segment when the
image contains objects not included in the training data.

One of the difficulties in using deep-learning-based meth-
ods is the lack of a training dataset. The training dataset
for the segmentation requires much time because each
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pixel in each image should be annotated. The implemented
sonar simulator can calculate the semantic map labeling
each pixel of the underwater scene. Therefore, the pro-
posed method can utilize deep learning easily.

The network consists of a generator and a discriminator.
The generator is U-Net (Ronneberger et al. 2015) with 15
layers. U-Net has an encoder-decoder architecture, which
can make an accurate semantic map of a scene preserving
contextual information of input image. Moreover, the U-
Net has skip-connections which copy the feature map of
nth layers when the (16 − n)th layers restore the image.
Therefore, the network can localize the position of the
features more accurately in the generated semantic map.
Because an advantage of the sonar sensor is to provide
accurate range and azimuth information of the scene, U-
Net, which can localize features using the skip-connections,
is proper for the segmentation of sonar images.

The discriminator checks whether an input image is a
target-domain-like image synthesized by the generator or
a real image of the target domain. Accurate classification
makes the generator produce more target-domain-like im-
ages to deceive the discriminator. Therefore, we employed
a CNN for the discriminator that has shown outstanding
performance in classification. The discriminator has four
convolutional layers, and it observes an input image in
patch units, allowing the generator to represent the detail
better.

We then designed loss function as below, so that the
network can handle more general scene.

LossGAN (G,D) = Ex,y[logD(x, y)]

+ Ex,z[1− logD(x,G(x, z))]

+ λEx,y,z[||N (y − x)−N (G(x, z)− x)||1], (3)

where G is the generator, D is the discriminator, x is the
given sonar image, y is the label, z is a random input
vector, and N (x) is a normalize function that maps x
to [−1, 1]. The last term of the loss function makes the
network to focus on degradation effects added to the
semantic information. As a result, it helps the network
handle sonar images of a more general scene.

2.3 Template Matching for Object and Angle Recognition

The proposed method finally identifies the target object
and its angle by matching the template image with the
segmented image. We employed the two-dimensional (2D)
discrete cross-correlation for template matching. 2D dis-
crete cross-correlation measures the similarity between two
images based on the distribution of pixel values. We set
the window of the same size as the template image in the
segmented image, and calculate Rθ, which indicates the
similarity between a sonar image and the template image
of angle θ, as follows:

Fig. 4. Objects used to construct training data of GAN.

Rθ = max
i,j[ ∑
m,n [S(m+ i, n+ i)− S̄][Tθ(m,n)− T̄θ]√∑

m,n [S(m+ i, n+ i)− S̄]2
∑
m,n[Tθ(m,n)− T̄θ]2

]
,

(4)

for 0 ≤ i ≤ M −Mt, 0 ≤ j ≤ N − Nt, 1 ≤ m ≤ Mt,
1 ≤ n ≤ Nt, where i and j is pixel coordinate of the
window, M and N are the size of the input sonar image,
Mt and Nt are the size of the template image, S is a given
sonar image, Tθ is a template image of the target object
for angle θ, S̄ and T̄θ are the mean of the pixel intensity
of each image.

The Rθ shows the probability that an area similar to the
target template image exists in the sonar image. So, we can
recognize the target object checking how close this value
to one.

We can also identify the yaw angle of the object by
checking which angle template image has the highest
correlation with the segmented image, as follow:

objθ = arg max
θ
{Rθ}, (5)

when maxθ{Rθ} exceeds a predefined threshold value.

3. DEVELOPMENT OF THE NETWORK

3.1 Constructing Training Dataset

The GAN to segment sonar images should be trained first
to develop the proposed method. Training of the GAN
requires image pairs composed of a real sonar image and
their corresponding semantic map.

Constructing the training dataset with various types of
sonar images helps make the GAN handle the sonar image
of the more general scene. We captured sonar images
in a small water tank focusing on two points. First, we
used objects of various shapes and materials, such as
concrete cylinder, plastic ball, and clay bricks, like Fig. 4.
Next, we translated and rotated the object to various
positions and angles. We also changed the tilt angle of
the sonar sensor. For the sonar sensor to capture the
images, we used the dual-frequency identification sonar
(DIDSON) (Belcher et al. 2002). Tables 1 and 2 explains
the capturing environment and the specifications of the
DIDSON, respectively.

In order for the GAN to learn to segment a given sonar
image, the GAN requires a segmentation label for the
captured image. We modeled 3D shapes with the same
shape and dimension as the objects used in the indoor
water tank experiments. Then, we generated the label
semantic map by simulating the images under the same
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Table 1. Settings to capture training images

Parameter Value

Water tank size
1.35 m x 3 m x 1.7 m
(width x length x height)

Sonar position
1.6 m, 0 m, 0.9 m
(x, y, z)

Sonar tilt 15 ◦, 20 ◦, 25 ◦

Object translation
0 m, 0.15 m
(in the x-y plane)

Table 2. Specifications of DIDSON

Parameter Value

Acoustic beam frequency 1.8 MHz
Range field of view 12 m
Azimuth field of view 29 ◦

Vertical beam angle 14 ◦

Image size 512 x 96
Maximum resolution 0.3 ◦

Frame rate 4-21 fps

Fig. 5. Samples of training images pairs for GAN.

condition with the experimental setup. When developing
the deep-learning-based segmentation, this process of cre-
ating segmentation labels is time-consuming because each
pixel of the images should be annotated manually one
by one. The developed sonar simulator could calculate
the corresponding label automatically, reducing time to
construct the dataset.

Finally, we manually cropped around the object for ef-
ficient training. We then applied the random scaling for
data augmentation. Finally, by resizing the image patches
to 128 by 128, we could construct a training data set
consisting of 6,780 image pairs of real sonar images and
its corresponding semantic map, like Fig. 5.

3.2 Training of the GAN for Segmentation

We trained the GAN for 30 epochs with the constructed
training dataset. The total training took about 1.2 hours
when using single Graphics Processing Unit (GPU) Titan
V. During the training, the generator and discriminator
operated adversarially. As the generator generated a better
output image, the discriminator got more accurate to
distinguish between the real and generated images. Again,
the more accurate the discriminator, the higher-quality
image the generator produced to deceive the discriminator.
Once the training is complete, the GAN generated a
semantic map from a given sonar image. Then, the target
object and its yaw angle can be identified by comparing
the predicted semantic map with the prepared template
images.

4. TARGET OBJECT AND YAW ANGLE
RECOGNITION

4.1 Indoor water tank experiments

We evaluated the proposed object and its yaw angle recog-
nition method through indoor water tank experiments, as
shown in Fig. 6. We used two objects to verify whether
the proposed method can identify the target object. The
target and non-target objects were made by piling three
bricks into different shapes, like Fig. 6a. Moreover, to
verify that the proposed object can recognize the yaw
angle of the target object, we designed a turntable using a
stepping motor and captured the sonar images rotating the
object by ten-degree increments, as shown in Fig. 6b. We
captured four sets of sonar images changing the tilt angle
of DIDSON randomly. As a result, 144 sonar images were
obtained for target and non-target objects, respectively.
The proposed method can recognize the target object and
its angle in these sonar images following the pipeline.

4.2 Template Image Simulation

The proposed method first generated the template images
of the target object using the simulator. We can determine
how many template images to generate in degrees, depend-
ing on the desired resolution of the yaw angle estimation.
We herein generated 36 template images in 10-degree in-
crements. Fig. 7 shows samples of the template images.

(a) Target and non-target. (b) Experimental setup.

Fig. 6. Indoor water tank experiments to acquire test
images for the proposed method.

Fig. 7. Samples of simulated template images according to
angles.
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Fig. 8. Results of the GAN-based segmentation of the
sonar images.

4.3 Sonar Image Segmentation

Then, the trained GAN generated the semantic map of
the input images like Fig. 8. For the quantitative analysis
of the GAN-based pre-processing method, we measured
the peak signal to noise ratio (PSNR) for one set of target
sonar images. The PSNR increased by 10.36 dB from 25.57
dB to 35.93 dB after applying the proposed method. It
shows that the degradation effects of the sonar images were
removed effectively. Thus, we could extract more reliable
information from the generated semantic map.

We also measured the segmentation intersection over union
(IOU) of the generated semantic map. Since a sonar sensor
can provide reliable information about the range and
azimuth of underwater terrain, it is essential whether the
proposed method can localize the semantic information
of the scene well. The calculated segmentation IOU was
0.638. It means that more than two-thirds of the actual
semantic information and the generated semantic maps
overlapped, indicating that the generated semantic map
represents the shape and position of the object well.

4.4 Recognition Results

Finally, we can identify the underwater target object and
its angle through template matching. Table 3 compares
the correlation with the template image of the target sonar
image and the non-target sonar images. The table shows
the average correlation values in four test sets between
the specific angle of sonar images and template images,
and the thresholding method proposed by Otsu (Otsu
1979) was applied. The highest correlation is measured
when the actual angle of the object and the angle of the
template image match. The overall correlation values of
the non-target object were lower than the value of the
target object. As a result, the proposed method recorded
the target and yaw angle identification accuracy of 92.01
% by setting the optimal threshold.

We then compared the results of the template matching
before and after applying the segmentation to verify the
effect of the proposed GAN-based preprocessing method
like Table 4. The correlation values are much noisy when
the GAN is not applied. A cause that the correlation
is noisy before applying segmentation can be the low
SNR of the sonar image. The proposed GAN can remove
the degradation effects and generate semantic maps that
contain only essential information of a scene. Therefore,
the proposed method can obtain more reliable information

Table 3. Matching results between the template images
and the segmented images

Template Image
0 ◦ 90 ◦ 180 ◦ 270 ◦

Target

0 ◦ 0.6837 0 0 0
90 ◦ 0 0.7697 0 0
180 ◦ 0 0 0.5776 0
270 ◦ 0 0 0 0.7162

0 ◦ 0.5715 0.4892 0.5201 0.5537
Non- 90 ◦ 0 0.5463 0 0
target 180 ◦ 0 0.5238 0.5328 0.4867

270 ◦ 0 0.4884 0.5134 0

Table 4. Matching results before applying the GAN-based
segmentation

Template Image
0 ◦ 90 ◦ 180 ◦ 270 ◦

Target

0 ◦ 0.5972 0.4570 0 0
90 ◦ 0.4480 0.6446 0 0.4597
180 ◦ 0.4689 0.4709 0.4726 0
270 ◦ 0.4398 0 0.4530 0.5735

from the images and improve the accuracy of the recogni-
tion.

5. CONCLUSION

This paper proposed a method to detect the target object
from the underwater sonar image and further to estimate
the yaw angle at which the object is placed through
template matching and the GAN-based segmentation. The
proposed method can recognize the target object and esti-
mate its yaw angle in sonar images captured in the water
tank. Moreover, the GAN-based segmentation can improve
the accuracy of the proposed method. The estimated angle
information is helpful to recognize the target object more
reliably and can be applied for operations of a sensing
platform such as localization and navigation.
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