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Abstract: We exploit the potentials of Clifford algebra to present a singularity free, compact,
and computationally efficient scheme for kinematic control of serial manipulators. We introduce
and implement the new special proportional-derivative control scheme. The introduced control
scheme facilitates a fast motion control for the manipulators and enables them to react to the
changes in their set points quickly. Such conditions are common in the context of dynamic
working environments and collaborative manipulation scenarios. We describe the kinematics of
the manipulators with unit dual quaternions using screw theory. The Lie-group properties of
quaternions and dual quaternions are presented and discussed. By means of Lyapunov theory,
it will be shown that the controller is globally exponentially stable.
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1. INTRODUCTION

This paper presents the kinematic control of serial manip-
ulators using Clifford algebra of unit dual quaternions. To
describe a kinematic chain, one needs the transformation
tools. Unit dual quaternions have the potential to encapsu-
late the translation and rotation in a simple and compact
form. This fact enables us to embed the position of the
joints beside their state.

There has been a number of comparative studies over
different descriptions of transformation, which report the
unit dual quaternions as the most compact and efficient
one (see for instance Funda et al. (1990) and Wang and
Zhu (2014)). For an overview on different representation
attitudes we refer to Diebel (2006). A geometrical overview
on the dual quaternions besides the attitude control of a
quad-rotor have been presented by Wang et al. (2012).

In a recent work Özgür and Mezouar (2016) presented a
model for forward position kinematics of serial robot using
dual quaternions and compared the mathematical cost
of different transformation methods. Olsson et al. (2003)
used unit dual quaternions to model the camera and end-
effector in a hand-eye calibration to track the position of
objects. Stolt et al. (2012) utilized the orientation repre-
sentation of quaternions to avoid singularities in assembly
tasks. Attitude control of objects using dual quaternions
is discussed by Han et al. (2008) and Dapeng et al. (2007).
Clifford algebra for synthesis of serial spatial chains also
has been discussed by Perez-Gracia and McCarthy (2006).

We present a self-sufficient and comprehensive paper in
kinematic control using Clifford algebra. Mathematical

? The Authors would like to thank for the kind support of Ger-
man Research Foundation DFG (Deutsche Forschungsgemeinschaft)
under Germany’s Excellence Strategy – EXC-2023 Internet of Pro-
duction – 390621612.

background of quaternions and dual quaternions will be
presented and their properties as group will be intro-
duced (for more in these topics we refer to Wang et al.
(2012); Dapeng et al. (2007)). In this paper we adopt
this mathematical operation in the context of robotics. We
also present a new special proportional-derivative control
scheme for kinematic control of the manipulators. The
stability of the controller will be discussed via Lyapunov
method using the norm function of logarithmic mapping
of the pose-error as Lyapunov function candidate.

NOMENCLATURE

Q̂ Quaternion
Q̂ = [q̂, q̂] ∈ H ' R4

q̂ Pure Quaternion
q̂ = (q̂x i + q̂y j + q̂z k) ∈ HV ' R3

i, j& k; Quaternionic units,
i2 = j2 = k2 = i j k = −1

d̄ Dual Number
d̄ = 〈dp, dd〉 = dp + ε dd, d̄ ∈ D
ε; Nilpotent Clifford unit, ε2 = 0

D̆ Dual Quaternion
D̆ =

〈
d̆, d̆

〉
∈ H2

Ď Dual Quaternion
Ď = [ď, ď] ∈ D4

Ď, D̆ ∈ DH (DH ≡ D × H)

d̆ Dual Vector
d̆ =

(
d̄1 , d̄2 . . . , d̄n

)
∈ Dn ' R2n

d̆ = 〈d̆p , d̆d〉

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10127



Note that in this paper, we distinguish between different
representation structures of dual quaternions, that is, a
dual whose primal and dual parts are quaternions (D̆) and
a quaternion with dual members (Ď). The reason behind
this separation is the simplicity of mathematical operation
in different forms (cf. Appendix C ).

2. MATHEMATICAL BACKGROUND

The Clifford algebra is well known for its potential for
generalization in different fields, e.g. real and complex
numbers, quaternions, and other hyper-complex numbers.
Clifford algebra over a set O is described by C`x,y,z(O),
with x, y and z denoting the number of generators e that
square to 1, −1 and 0 respectively and O indicating the set
on which the algebra is being defined. The generators of
Clifford algebra anti-commute, that is

enem + emen = 0.

Obviously C`0,0,0(R) refers to geometric algebra and is iso-
morphic to R. We refer to Hestenes and Sobczyk (2012) for
more on Clifford algebra. In the following the Clifford al-
gebra for quaternions and dual quaternions are discussed,
which we use to describe the kinematic structure of the
manipulators.

2.1 Quaternions

Quaternions, introduced by Hamilton (1848), are 4−tuples
over the set of real numbers associated to C`0,2,0(R) with
the generators e1 and e2,

e2
1 = −1, e1

∼= i,

e2
2 = −1, e2

∼= j,

e1 e2 e1 e2 = −e1 e1 e2 e2 = −e2
1 e

2
2 ∴

(e1 e2)2 = −1, e1 e2
∼= k.

Some mathematical properties of the quaternions are
presented in Appendix A.

Definition 2.1.1. Quaternions with
∣∣∣Q̂∣∣∣ = 1 are known as

unit quaternions, forming the set HU ⊂ H.
Definition 2.1.2. The unit quaternions of the form

R̂ =

[
cos

(
θ

2

)
, sin

(
θ

2

)
l̂

]
, θ ∈ [−π , π), (1)

are known as angle representation, R̂ ∈ HU , where l̂ (unit
pure quaternion) represents the rotation axis (cf. Section
3)
Lemma 2.1. HU is a Lie-group.

Proof: HU is a group under ◦.

Identity element : Î = [1, 0̂].
Inverse element : the conjugate of a unit quaternion
is its inverse.
Closure: for Q̂1 and Q̂2 ∈ HU , Q̂1 ◦ Q̂∗1 = Q̂2 ◦ Q̂∗2 =

Q̂1 ◦ Q̂2 ◦ Q̂∗2 ◦ Q̂∗1 = (Q̂1 ◦ Q̂2) ◦ (Q̂1 ◦ Q̂2)∗ = Î,
hence (Q̂1 ◦ Q̂2) ∈ HU .
Associate: for Q̂1, Q̂2, and Q̂3 ∈ HU , after algebraic
expansion and simplification, it is straightforward to
investigate that (Q̂1 ◦ Q̂2) ◦ Q̂3 = Q̂1 ◦ (Q̂2 ◦ Q̂3).

It can be shown that HU is diffeomorphic to manifold
S3 (cf. Marsden and Ratiu (2013)), hence HU is a three
dimensional manifold, thus a Lie-group. 2

Definition 2.1.3. The exponential form of angle represen-
tation R̂ reads as

R̂ = exp

([
0,
θ

2
l̂

])
(2)

(note the analogy to the Euler formula in complex set C).
Definition 2.1.4. Following the Definition 2.1.3, given an
angle representation R̂, one can define its logarithmic
mapping as

lnH(R̂) =

[
0, cos−1 (r̂)

r̂

|r̂|

]
, (3)

with |•| denoting the euclidean norm. Obviously lnH :
HU → HV .
Lemma 2.2. logarithmic mapping of unit quaternions is
the Lie-algebra of HU .

Proof: Picking v̂1, v̂2, and v̂3 ∈ HV , arbitrary constants
λ1 and λ2 ∈ R and defining Lie-bracket as:

[v̂n, v̂m] = v̂n × v̂m, n,m ∈ {1, 2, 3},
we test the following conditions:

Bilinearity :
[λ1 v̂1 + λ2 v̂2, v̂3] = λ1 [v̂1, v̂3] + λ2 [v̂2, v̂3] .

Antisymmetric: [v̂1, v̂2] = − [v̂2, v̂1] .
Jacobi identity :
[[v̂1, v̂2] , v̂3] + [[v̂2, v̂3] , v̂1] + [[v̂3, v̂1] , v̂2] = 0̂.

The tangent of HU at unity Î is defined as
˙̂
Q =

1

2
ω̂ ◦ Q̂|Q̂=Î =

1

2
ω̂ ∈ HV ' R3, (4)

where ω̂ = [0, θ̇l̂] denotes the angular velocity. Hence
logarithmic mapping is the Lie-algebra of HU . 2

Definition 2.1.5. The adjoint mapping of quaternions
AdQ̂X̂ is defined as

AdQ̂X̂ = Q̂ ◦ X̂ ◦ Q̂∗. (5)

2.2 Dual Quaternions

Dual quaternions, introduced by Clifford (1873), are
8−tuples over the set of real numbers associated to
C`0,2,1(R) with generators e1, e2 and e3,

e2
1 = −1, e1

∼= i,

e2
2 = −1, e2

∼= j,

(e1 e2)2 = −1, e1 e2
∼= k,

e2
3 = 0, e3

∼= ε.

Some mathematical properties of the dual quaternions are
presented in Appendix B.
Definition 2.2.1. Dual quaternions with unit norm are
known as unit dual quaternions, forming the set DHU ⊂
DH.
Definition 2.2.2. The angle representation of unit dual
quaternions, denoted by Ř ∈ DHU , is defined as

Ř =

[
cos

(
θ̄

2

)
, sin

(
θ̄

2

)
`

]
,

with θ̄ known as dual angle of screw and ` represents the
Plücker coordinate of the screw axis line (see Section 3).
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Lemma 2.3. DHU is a Lie-group.

Proof: DHU is a group under �.

Identity element : Ĭ =
〈
Î , 0̂
〉
.

Inverse element : the conjugate of a unit dual quater-
nion is its inverse.
Closure: for D̆1 and D̆2 ∈ DHU , D̆1 � D̆∗1 =

D̆2 � D̆∗2 = D̆1 � D̆2 � D̆∗2 � D̆∗1 = (D̆1 � D̆2) � (D̆1 �
D̆2)∗ = Ĭ, hence (D̆1 � D̆2) ∈ DHU .
Associate: for D̆1, D̆2 and D̆3 ∈ HU , after algebraic
expansion and simplification, it is straightforward to
investigate that (D̆1 � D̆2) � D̆3 = D̆1 � (D̆2 � D̆3).

According to Lemma 2.1, HU is a three dimensional
manifold. Expanding D̆ � D̆∗ = Ĭ it can be shown that
d̆ ∈ HU and d̆ ∈ HV . Hence DHU is a six dimensional
manifold, thus a Lie-group. 2

Lemma 2.4. The exponential form of angle representation
of Ř ∈ DHU in Definition 2.2.2 reads as

Ř = exp

([
0̄,
θ̄

2
� `
])

. (6)

Proof: See Appendix C. 2

Definition 2.2.3. Following the Lemma 2.4, given an angle
representation Ř, one can define its logarithmic mapping
as

lnDH (Ř) =

[
0̄,
θ̄

2
� `
]

=
〈
l̂′p , l̂

′
d

〉
. (7)

Obviously lnDH : DHU → DHV , i.e. l̂′p & l̂′d ∈ HV .
Lemma 2.5. logarithmic mapping of unit dual quaternions
is the Lie-algebra of DHU .

Proof: Picking v̌1, v̌2 and v̌3 ∈ DHV , arbitrary constants
λ1 and λ2 ∈ R and defining Lie-bracket as:

[v̌n, v̌m] = v̌n � v̌m − v̌m � v̌n, n,m ∈ {1, 2, 3},
we test the following conditions.

Bilinearity :
[λ1 v̌1 + λ2 v̌2, v̌3] = λ1 [v̌1, v̌3] + λ2 [v̌2, v̌3] .

Antisymmetric: [v̌1, v̌2] = − [v̌2, v̌1] . This result can
be followed by expanding the dual multiplication of
v̌1 = 〈v̂1,p, v̂1,d〉 and v̌2 = 〈v̂2,p, v̂2,d〉 and applying
the quaternions multiplication ◦ (cf. Appendix A).
Jacobi identity : Algebraic expansion and simplifica-
tion, using Appendix B, it can be seen

[[v̌1, v̌2] , v̌3] + [[v̌2, v̌3] , v̌1] + [[v̌3, v̌1] , v̌2] = 0̌.

The tangent of DHU at unity Ĭ is defined as
˙̆
D =

1

2
Ξ̆ � D̆|D̆=Ĭ =

1

2
Ξ̆ ∈ DHV ' R6.

Hence logarithmic mapping is the Lie-algebra of DHU .
(Note: Ξ̆ =

〈
ω̂ ,

˙̂
d + p̂ × ω̂

〉
denotes the twist – cf.

Section 3.) 2

Definition 2.2.4. The adjoint mapping of dual quaternions
Adk

D̆
X̆ is defined as

Adk
D̆
X̆ = D̆ � X̆ � D̆∗k , k ∈ {0, 1, 2}. (8)

If k = 1, we drop the superscript for simplicity of notation
(see Appendix B for definition of k).

Definition 2.2.5. The norm of the logarithm mapping of
unit dual quaternions in Definition 2.2.3 can be defined as
(cf. Wang et al. (2012))∥∥∥lnDH(Ř)

∥∥∥ = α
∣∣∣l̂′p∣∣∣ + β

∣∣∣l̂′d∣∣∣ , (9)

with α and β ∈ R+.
Definition 2.2.6. Plücker coordinate of a line: A line ` in
the space can be determined by its direction l̂ and an
arbitrary point p̂ on it. The lines can be presented as a
dual quaternions

` =
〈
l̂ , p̂× l̂

〉
, (10)

where p̂× l̂ is known as the moment of the line m̂.

3. KINEMATIC MODELING

3.1 Rigid Body Transformation

It is well known that the rotation by θ ∈ [−π , π) about
the unit axis of a line direction l̂ can be formulated by the
angle representation R̂ ∈ HU . This rotation is defined via
adjoint mapping of quaternions, Definition 2.1.5, that is,
given a point p̂1 ∈ R3, its rotation is described as

p̂2 = AdR̂ p̂1.

To investigate the transformation, we need to integrate
the translation. This can be done in dual quaternions
representation. To this end, we need to define the point
in dual quaternion form, P̆1 = 〈Î , p̂1〉. The rotation R̂
followed by translation t̂ can be lumped as transformation
dual quaternion

T̆ =

〈
R̂ ,

1

2
t̂ ◦ R̂

〉
, (11)

and the transferred point is obtained via adjoint mapping
of dual quaternions, Definition 2.2.4, as

P̆2 = Ad2
T̆
P̆1.

A similar transformation can be applied to a line `1 (cf.
Definition 2.2.6)

`2 = AdT̆ `1. (12)
According to Chasles’ theorem (cf. Murray (2017)), this
transformation can be described as a screw motion. A
screw is defined by its parameters of axis line `, the rota-
tion parameter around the screw axis θ and the pitch of the
screw µ = d

θ , where d denotes the translation parameter
along the axis of the screw. The former two parameters
are the same in the two methods of representation. The
challenge of this duo lies under extracting d from t̂. Ex-
ploiting Rodrigues’ rotation description, Daniilidis (1999)
shows

p̂× l̂ =
1

2

(
t̂× l̂+

(
t̂− dl̂

)
cot

(
θ

2

))
.

Defining dual angle θ̄ = 〈θ , d〉, it can be shown

Š =

[
cos

(
θ̄

2

)
, sin

(
θ̄

2

)
`

] (
≡ Ř

)
, (13)

with Š defining the screw and Ř from Definition 2.2.2.
Tacking Lemma 2.4 and Definition 2.2.6 into account, we
have
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Š = exp

([
0̄,
θ̄

2
� `
])

= exp

(
θ

2

[
0̄, 〈1 , µ〉 �

〈
l̂ , p̂× l̂

〉])
.

(14)

3.2 Manipulator Kinematics

We exploit the mathematical procedure in Sections 2 and
3.1 to formulate the kinematics of manipulators consisting
of n joints. For this description, without loss of generality,
we choose the base coordinate of the robot as the reference
coordinate system. The axis l̂ee shall be chosen as the di-
rection of the approach of the end-effector (conventionally
ẑee). The point p̂ee would be selected as the position of the
end-effector. For the joint screws, the action direction of
joint (i.e. rotation axis for the revolute joints and sliding
axis for prismatic joints) are chosen as l̂m. The point p̂m
shall be chosen as a point located on the joint. The control
variable in the joint state are the dual angles of the joint
screws

θ̆ =
(
θ̄1, θ̄2, · · · , θ̄m, · · · , θ̄n

)
. (15)

For revolute joints d = 0 and for prismatic joints θ = 0.

Note the pose of end-effector of the robot by P̌ee. We
define the home pose of the end-effector as P̌ee,home with
θ̆ = θ̆home. Besides, the screws of the joints of robot are
defined as (m ∈ {1, 2, · · · , n})

J̌m =

[
cos(

θ̄m
2

) , sin(
θ̄m
2

) � Ad{J̌m−1}`m,home

]
, (16)

where

{J̌k} =

1∏
i=k

J̌i = J̌k � J̌k−1 � · · · � J̌1. (17)

Thus
P̌ee = Ad{J̌n}P̌ee,home. (18)

Of course this manner of representation, which is singular-
ity free (cf. Funda and Paul (1990); Funda et al. (1990)),
can be generalized to any other joint J̌m of the robot.

4. CONTROLLER

Given new set points for the end-effector of the robot
from the motion planner (P̆ee, see Fig. 1) the pose error
should be determined. Using the mathematical properties
of the dual quaternions, we define the pose error in global
coordinate system via

Ěrr = P̌set � P̌ ∗ee, (19)
with Ěrr and P̌set denoting the pose error and set pose
respectively.

4.1 Control Law

Considering the twist dual vector Ξ̆ =
〈
ω̂ ,

˙̂
d + p̂ × ω̂

〉
,

we define the special proportional-derivative Ξ̆ kinematics
control law as
Ξ̆ = −2K̆ �

(
lnDH

(
Ěrr
)
− K̆D �∇{θ,d} lnDH

(
Ěrr
))
,

(20)
where K̆ =

〈
k̂o , k̂p

〉
and K̆D =

〈
k̂Do , k̂

D
p

〉
represent

dual vectors of positive real constants and � denotes

Hadamard product operator. A schematic of the control
loop is presented in Fig. 1. In the following we consider
the controller in two formats: Ξ1 with K̆D = 0̆ and Ξ2

with K̆D > 0̆. The advantage of the Ξ̆2 over Ξ̆1 is the
sensitivity to the error evolution that results in higher
speed of convergence, thus less CPU effort (see Section
5.1). To apply the controller, we use (7) and (14) to
simplify the lnDH

(
P̌
)
as

lnDH
(
P̌
)

=

[
0̄,
θ̄

2
� `
]

=
1

2

〈
θl̂ , θ

(
p̂× l̂

)
+ dl̂

〉
=

1

2

〈
θl̂ , θm̂ + dl̂

〉
=

1

2

〈
θ̂l , θ̂m + d̂l

〉
.

(21)

4.2 Stability Analysis of the Controller

Equation (9) (which clearly is positive definite) would be
chosen as Lyapunov function candidate V to investigate
the stability of the controller, i.e.

V =
∥∥∥lnDH

(
Ěrr
)∥∥∥ = α

∣∣∣θ̂l,err∣∣∣ + β
∣∣∣θ̂m,err + d̂l,err

∣∣∣
(22)

=
∥∥∥lnDH

(
Ěrr
)∥∥∥ = α

∣∣∣θ̂l,err∣∣∣ + β
∣∣t̂′err∣∣ . (23)

Note that t̂′err = θ̂m,err + d̂l,err is parallel to translation
vector t̂err (cf. Section 3.1). Hence, we can safely replace
it in (23) with t̂err, substituting β with γ ∈ R+ (for the
sake of simplicity of notation we drop the subscript err
hereafter)

V =
∥∥∥lnDH

(
Ěrr
)∥∥∥ = α

∣∣∣θ̂l∣∣∣ + γ
∣∣t̂∣∣ . (24)

Differentiating (23) yields

V̇ = αθ̂l · ˙̂
θl + γt̂ · ˙̂t. (25)

To investigate the stability of Ξ̆, we expand the gradient
part of (20) using exponential form of Ěrr (cf. Lemma
2.4) and considering the fact that the inverse of a unit
dual quaternion is its conjugate (cf. Kavan et al. (2008))

∇{θ,d} lnDH
(
Ěrr
)

=∂ exp
([

0̄ , θ̄2 � `
])

∂θ
+
∂ exp

([
0̄ , θ̄2 � `

])
∂d

 � Ě∗rr.
(26)

Using the derivation rule of exponential functions and
chain rule, we have
∇{θ,d} lnDH

(
Ěrr
)

=∂
([

0̄ , θ̄2 � `
])

∂θ
+
∂
([

0̄ , θ̄2 � `
])

∂d

 � Ěrr � Ě∗rr︸ ︷︷ ︸
Ĭ

=
1

2

(
〈1, 0〉 �

〈
l̂, p̂× l̂

〉
+ 〈0, 1〉 �

〈
l̂, p̂× l̂

〉)
� Ĭ

=
1

2

〈
l̂, p̂× l̂+ l̂

〉
.

(27)
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−2K̆ �
(

lnDH
(
Ěrr
)
− K̆D �∇{θ,d} lnDH

(
Ěrr
))

System

K(θ̆) ≡ P̌ee = Ad{J̌n}P̌ee,home

˙̆
θ

θ̆

P̌set
Ěrr = P̌set � P̌ ∗ee

∂K(θ̆)

∂θ̆

Fig. 1. Schematic of the motion control loop, as described in Section 4

Therefore Ξ̆ can be written as

Ξ̆ = −2K̆ �
(

lnDH
(
Ěrr
)

+ K̆D � 1

2

〈
l̂, p̂× l̂+ l̂

〉)
= −K̆ �

(〈
θ̂l , θ̂m + d̂l

〉
+ K̆D �

〈
l̂, p̂× l̂+ l̂

〉)
.

(28)
From (20) and (28) we have

ω̂ =
˙̂
θl = −k̂o � θ̂l − k̂o � k̂Do � l̂, (29)

˙̂t = −k̂p � t̂′ − k̂p � k̂Dp �
(
m̂ + l̂

)
. (30)

Substituting (29) and (30) in (25), we have

V̇ = αθ̂l ·
(
−k̂o � θ̂l

)
+ αθl̂ ·

(
−k̂o � k̂Do � l̂l

)
+ γt̂ ·

(
−k̂p � t̂′

)
+ γt̂ ·

(
−k̂p � k̂Dp �

(
m̂ + l̂

))
,

(31)
which proves V̇ is negative definite. Besides, V̇ ≤ −k∗V,
with k∗ denoting the smallest constant in k̂o and k̂p, which
guarantees Ξ̆ is globally exponentially stable.

5. DISCUSSION

The motion planning algorithm delivers the desired poses
of end-effector P̌ee, based on the dynamic and the shape
of the environment. In case of wide-distance set points,
interpolation techniques (such as spherical interpolation
for position (see e.g. Buss and Fillmore (2001)) or SLERP
for orientation (see e.g. Shoemake (1985))) shall be applied
to guarantee a smooth motion control. To do so, we need
to extract the amount of angle of rotation θerr and the
vector l̂err, about which the rotation should take place,
from Ěrr

P̂err = ĕrr, (32)
θerr = 2 cos−1 (p̂err) , (33)

l̂err =

(
sin

(
θerr

2

))−1

p̂err. (34)

Then the interpolation can simply be carried out on the
angle element θerr. The interpolated angle representations
of rotation along the path are the adjoints of P̆ee along the
interpolated quaternions.

5.1 Implementation - Computational Cost

To examine the introduced controllers a 2-path task
has been modelled. Two serial manipulators Universal
Robots UR5 and KUKA Agilus KR6 are chosen to val-
idate the results of the proposed controllers. We con-
sider θ̆home−UR5 =

(
−π4 ,−

π
4 ,−

π
2 ,−

3π
4 ,

π
4 ,

π
4

)
for Univer-

sal Robots UR5 and θ̆home−KR6 =
(
0,−π2 ,

π
2 , 0,

π
2 , 0
)
for

KUKA Agilus KR6. The robots in their home position (in

Table 1. Total CPU Time [µs]

Ξ̆1 Ξ̆2

Path 1 Path 2 Path 1 Path 2
UR5 1161284 1123023 882962 842149
KR6 1189224 1118307 893816 842153

bold) and the 2-path task are shown in Fig. 2 (Note: l̂ee is
shown in blue and m̂ee is shown in red).

The two controllers are implemented to control the kine-
matic of robots and generate the motion in joint space θ̆.
Application oriented time functions and trajectory plan-
ning methods can be applied to the generated motion in
joint space to compute the trajectory for the manipulators.
The evolution of the pose errors are shown in Fig. 4. The
errors are split into translation errors t̂err and rotation
errors θ̂err = θerr l̂err (cf. (1) and (11)). The horizontal
axis of the plots represent the amount of the iteration
over the control loops. The picks on the error diagram
happen on introduction of the new set point from the
motion planner to the motion controller.
The computational efficiency of dual quaternions is proven
through numerous studies (see for instance Funda and
Paul (1990); Wang and Zhu (2014)). There has been dif-
ferent reports about the amount of computational effort
of different representation attitudes (homogenous trans-
formation matrices, unit dual quaternions, transformation
angle axis, etc.) though. Differences arise mainly from
the implementation of the algorithm. Here we discuss the
efficiency of the Ξ̆1 and Ξ̆2. The computational effort
for the later is obviously more than the former, but the
convergence rate of Ξ̆2 is higher than Ξ̆1. The total CPU
(Intelr CoreTM i7-4600M 2.90GHz×4 ) time to compute
the complete motion in joint space as well as the mean
CPU time for each of the via points in microseconds are
reported in Table 1 and Fig. 3 respectively.

6. CONCLUSION

The main result of this paper is the presentation of kine-
matic control of serial manipulators using Clifford algebra
of unit dual quaternions operations and introduction of the
new control scheme special proportional-derivative Ξ̆. The
necessary mathematical background to model the serial
manipulators using dual quaternions and screw theory are
presented.

The stability of the controller is proven by means of a
proper Lyapunov function candidate. The performance of
the controller is examined via an exemplary 2-path motion.
The CPU effort over these implementations are presented.
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Fig. 2. The home position of the manipulators (in bold) and the middle and end positions (transparent)
Left; KUKA Agilus KR6 and path 1, Right; Universal Robots UR5 and path 2

Fig. 3. The average CPU time over iterations to compute the joint space motion at each via point - see Fig. 4 for amount
of iterations and evolution of error
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Appendix A. QUATERNIONS

Quaternions Q̂, four dimensional pseudo vectors over the
elements of an algebraic field like real numbers set H w R4,
consist of real q̂ and lateral (pure quaternion) q̂ parts

Q̂ = [q̂, q̂] . (A.1)
Addition over the set of quaternions is carried out compo-
nent wise,

Q̂1 + Q̂2 = [q̂1 + q̂2, q̂1 + q̂2]. (A.2)
Multiplication in quaternions, denoted by ◦, is defined by
Q̂1 ◦ Q̂2 = [q̂1 q̂2 − q̂1 · q̂2, q̂1 q̂2 + q̂2 q̂1 + q̂1 × q̂2]. (A.3)

The conjugate, the norm and the inverse of quaternions
are defined as

Q̂∗ = [q̂,−q̂], (A.4)∣∣∣Q̂∣∣∣ =

√
Q̂ ◦ Q̂∗, (A.5)

Q̂−1 =
∣∣∣Q̂∣∣∣−2

Q̂∗. (A.6)
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Note that (
Q̂1 ◦ Q̂2

)∗
= Q̂∗2 ◦ Q̂∗1. (A.7)

We can obtain the dot and cross multiplications of pure
quaternions as

q̂1 · q̂2 = − 1

2
(q̂1 ◦ q̂2 + q̂2 ◦ q̂1) ,

q̂1 × q̂2 =
1

2
(q̂1 ◦ q̂2 − q̂2 ◦ q̂1) .

(A.8)

Appendix B. DUAL QUATERNIONS

B.1 Dual Numbers

Dual numbers d̄ are two dimensional numbers over the
elements of an algebraic field like real numbers set

d̄ = d̄p + εd̄d =
〈
d̄p , d̄d

〉
∈ D w R2, (B.1)

with ε as nilpotent Clifford unit that squares to 0 and
subscripts p and d denoting primal and dual parts respec-
tively. The addition and multiplication, denoted by �, of
dual numbers are defined as

d̄1 + d̄2 =
〈
d̄p,1 + d̄p,2 , d̄d,1 + d̄d,2

〉
, (B.2)

d̄1 � d̄2 =
〈
d̄p,1 d̄p,2 , d̄p,1 d̄d,2 + d̄p,2 d̄d,1

〉
. (B.3)

The conjugate and the inverse in dual numbers are defined
as

d̄∗ =
〈
d̄p , −d̄d

〉
, (B.4)

d̄−1 =
〈
d̄−1
p , −d̄−1

p d̄d
〉
. (B.5)

B.2 Dual Quaternions

Dual quaternions D̆ are the duals over the elements of
quaternion field H, thus D̆ ∈ DH w H2:

Q̆ =
〈
d̆ , d̆

〉
, d̆& d̆ ∈ H. (B.6)

Therefore, combining the mathematical arithmetic of
quaternions and those of dual numbers, one can explore
the operations on the set of dual quaternions. For dual
quaternions 3 different conjugates shall be defined

D̆∗0 =
〈
d̆ , −d̆

〉
, (B.7)

D̆∗ = D̆∗1 =
〈
d̆∗ , d̆∗

〉
=
[
ď , −ď

]
(B.8)

D̆∗2 =
〈
d̆∗ , −d̆∗

〉
. (B.9)

If not noted explicitly, the D̆∗ is considered as the standard
form of the conjugation of dual quaternions. We have(

D̆1 � D̆2

)∗
= D̆∗2 � D̆∗1 . (B.10)

The norm of dual quaternions are defined as∣∣Ď∣∣ =
√
Ď � Ď∗. (B.11)

The dot and cross multiplication for the dual quaternions
composed of pure quaternions, also known as dual vectors,
are defined as

D̆1 · D̆2 =
〈
d̆1 · d̆2 , d̆1 · d̆2 + d̆2 · d̆1

〉
,

D̆1 × D̆2 =
〈
d̆1 × d̆2 , d̆1 × d̆2 + d̆2 × d̆1

〉
.

(B.12)

Appendix C. PROOF OF LEMMA 2.4

We expand the exponential form of Ď = exp
([

0̄, θ̄2 � `
])

via Taylor series

Ď = exp

([
0̄,
θ̄

2
� `
])

= 1 +

[
0̄,
θ̄

2
� `
]

+
1

2!

(([
0̄,
θ̄

2
� `
])
�
([

0̄,
θ̄

2
� `
]))

+
1

3!

(([
0̄,
θ̄

2
� `
])
�
([

0̄,
θ̄

2
� `
])
�
([

0̄,
θ̄

2
� `
]))

+ · · · .
(C.1)

Knowing θ̄ = 〈θ , d〉 and ` =
〈
l̂ , p̂ × l̂

〉
we have

θ̄

2
� ` =

θ

2
〈1 , µ〉 �

〈
l̂ , p̂ × l̂

〉
=

θ

2

〈
l̂ , p̂ × l̂ + µ l̂

〉
︸ ︷︷ ︸

Z̆

.

(C.2)

with µ = d
θ denoting the pitch of screw. Denote

Ž = [0̄, Z̆]. We have

Ž � Ž =
[
−Z̆ · Z̆ , Z̆ × Z̆

]
.

Using the rules in Appendices A and B we obtain
Ž1 = Ž � Ž =

[
〈−1 , −2µ〉 , 0̆

]
,

Ž2 = Ž1 � Ž = [0̄, 〈−1 , −3µ〉 � `] ,
Ž3 = Ž2 � Ž =

[
〈1 , 4µ〉 , 0̆

]
,

Ž4 = Ž3 � Ž = [0̄, 〈1 , 5µ〉 � `] ,

(C.3)

and so on. The Taylor’s series expansion of the functions
sin(θ) and cos(θ) are known as

cos(θ) = 1− 1

2!
(θ)

2
+

1

4!
(θ)

4 − · · · ,

sin(θ) = θ − 1

3!
(θ)

3
+

1

5!
(θ)

5 − · · · .
(C.4)

Substituting (C.2) and (C.3) into (C.1), after factorization
and using (C.4) we obtain

Ď = exp

([
0̄,
θ̄

2
� `
])

= cos

(
θ

2

)
+ sin

(
θ

2

)
`

− ε µ θ

2
sin

(
θ

2

)
+
ε µ θ

2
cos

(
θ

2

)
`,

(C.5)

Ď = exp

([
0̄,
θ̄

2
� `
])

=

[〈
cos

(
θ

2

)
, − µ θ

2
sin

(
θ

2

)〉
, sin

(
θ

2

)
` +

ε µ θ

2
cos

(
θ

2

)
`

]
.

(C.6)

After algebraic simplification we obtain

Ď = exp

([
0̄,
θ̄

2
� `
])

=

[
cos

(
θ̄

2

)
, sin

(
θ̄

2

)
`

]
. (C.7)

For similar proofs see Kim et al. (1996); Wang et al.
(2012).
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