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Abstract: The aim of this paper is to develop a new observer-based stabilization strategy for
a class of Lipschitz uncertain systems. This new strategy improves the performances of existing
methods and ensures better convergence conditions. The observer and the controller are enriched
with sliding windows of measurements and estimated states, respectively. This technique allows
to increase the number of decision variables and thus get less restrictive and more general LMI
conditions. The established sufficient stability conditions are in the form of Bilinear Matrix
Inequality (BMI). The obtained constraint is transformed, through a useful approach, to a more
suitable one easily tractable by standard software algorithms. Numerical example is given to
illustrate the performances of the proposed approach.
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1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Robust stabilization of nonlinear uncertain systems have
been extensively investigated in recent years and numer-
ous design methodologies have been established to filter
disturbances and uncertainties and ensure good degree of
noise sensitivity, good performance and robustness (Ho
and Lu (2003); Kheloufi et al. (2014); Song and S.He
(2015); Kheloufi et al. (2015); Ito and Dinh (2018)).

Many researchers focus on the observer-based controller
design for nonlinear continuous or discrete-time systems.
Interesting results are presented in Ibrir (2008); Grand-
vallet et al. (2013); Kheloufi et al. (2016). For example,
an LMI condition for observer-based controller design of
Lipschitz systems is given in Ibrir (2008). In this pa-
per, the author proposes to compute the controller and
the observer gains in two steps. Then, an other design
methodology is proposed in Grandvallet et al. (2013). This
method uses a diagonal Lyapunov matrix and allows to
compute the observer and the controller gains simulta-
neously via the same optimization problem. Recently, an
interesting publication of Kheloufi et al. (2016) presents a
new and useful design procedure to synthesize a robust
observer-based stabilization for nonlinear systems using
a symmetric Lyapunov function. In order to handle the
? Corresponding author : N. GASMI (noussaiba.gasmi@univ-
lorraine.fr).

difficulty of Non-deterministic Polynomial-time hard (NP-
hard) nature of the problem, the authors propose to use
a slack variable technique inspired from Heemels et al.
(2010) with the standard Young’s inequality. All these
interesting results use only the last available state and
measurement to synthesis the observer and the controller
gains.

In this paper, a new observer-based control design method-
ology for a class of Lipschitz discrete-time systems in the
presence of bounded disturbances and parametric uncer-
tainties is proposed. This work is motivated by the recent
results on observer design of Grandvallet et al. (2014);
Gasmi et al. (2018). The main contribution lies in the
use of a sliding window of measurements in a Luenberger
observer and a sliding window of delayed states in the
control law which allows to introduce additional decision
variables to enhance the constraint to be resolved. The
use of a sliding window approach, in the synthesis of the
robust observer-based controller, improves the disturbance
rejection by involving a fixed number of previous states
and measurements and allows to improve the robustness of
control. This new formulation is a significant contribution,
contrary to conventional approaches that consider only
the last available measurement for the observer and the
last available state estimate for the controller (Kheloufi
et al. (2016)). A judicious use of a slack variable technique
(Heemels et al. (2010)) with a useful reformulation of the
Young’s inequality (Zemouche et al. (2017)) allows to add
more degree of freedom.
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This contribution is organized as follows: In the next part
of this section, useful preliminaries are presented. The
problem statement is introduced in the second section.
The third section details the synthesis procedure of the
robust sliding window observer-based controller. Numeri-
cal example is provided, in the last section, to demonstrate
the validity of the proposed results for the considered class
of nonlinear systems.

1.2 Notation

The notation used in this paper are as following:

• ep(i) =

 ith

0, ..., 0,
︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

p− components


T

∈ Rp , p > 1, is a

vector of the canonical basis of Rp;
• UT is the transposed matrix of U ;
• U is a square matrix. U > 0 (U < 0) designates a

positive definite (negative definite) matrix U ;
• Blocks induced by symmetry in a matrix are repre-

sented by the symbol (?).

1.3 Preliminaries

Lemma 1. (Zemouche et al. (2017)). Consider a nonlinear
function f : Rn → Rq. Then the following two items are
equivalent :

• f is globally Lipschitz with respect to its argument,
i.e.:

‖ f(U)−f(V ) ‖6 γf ‖ U−V ‖, ∀ U, V ∈ Rn. (1)

• there exist finite and positive scalar constants γ
fij

and γfij so that for all ∀ U, V ∈ Rn there exist

zi ∈ Co(U, V ), zi 6= U , zi 6= V and functions
fij : Rn −→ R satisfying the following equality:

f(U)− f(V ) =

q,n∑
i,j=1

fij(zi)Hij(U − V ) (2)

and γ
fij
6 fij(zi) 6 γfij where fij(zi) =

∂fi
∂xj

(zi) and

Hij = eq(i)eTn (j). �
Lemma 2. (Zemouche et al. (2017)). Given two matrices
U and V of appropriate dimensions, then the following
inequality holds for any symmetric positive definite matrix
S of appropriate dimensions:

UTV + V TU 6
1

2
[U + SV ]

T
S−1 [U + SV ] (3)

�
Lemma 3. (Petersen (1987)). Given three matrices U , V
and S of appropriate dimensions with STS ≤ I. Then, the
following inequality holds ∀ η > 0:

USV + V TSTUT ≤ ηUUT +
1

η
V TV (4)

�

2. PROBLEM STATEMENT

The class of nonlinear uncertain systems under study is
described by:

{
xk+1 =

(
A+ ∆Ak

)
xk +Buk +Df

(
xk
)

+ E1ωk

yk =
(
C + ∆Ck

)
x(k) + E2ωk

(5)

where xk ∈ Rn, uk ∈ Rm, ωk ∈ Rs and yk ∈ Rp

represent the state, the input, the disturbance and the
output vectors, respectively. A, B, D, E1, C and E2 are
constant matrices. f : Rn → Rq is a Lipschitz nonlinear
vector. The unknown matrices ∆Ak and ∆Ck represent
the time-varying parameter uncertainties with

∆Ak = M1FkN1 (6a)

∆Ck = M2FkN2 (6b)

where Fk is an unknown matrix satisfying the following
condition :

FT
k Fk ≤ I. (7)

For system (5), let us consider the following observer:

x̂k+1 = Ax̂k +Buk +Df
(
x̂k
)

+ L


yk − Cx̂k

yk−1 − Cx̂k−1
...

yk−r+1 − Cx̂k−r+1


(8)

where x̂k and L represent the estimated state and the
observer gain matrix, respectively. r is the size of the
sliding window.

To integrate the delayed states into the state equation, (5)
is rewritten as follows :

zk+1 =
(
A+ ∆Ak

)
zk + Buk +Df

(
IT zk

)
+ E1νk (9)

with

zk =


xk
xk−1

...
xk−r+1

, νk =


ωk

ωk−1
...

ωk−r+1

,

A =


A 0 · · · · · · 0
In 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 In 0

, B =


B
0
...
0

, D =


D
0
...
0

,

∆Ak =


∆Ak 0 · · · 0

0 0 · · · 0
...

. . .
. . .

...
0 · · · 0 0

 =M1FkN1, M1 =


M1

0
...
0

,

N T
1 =


NT

1
0
...
0

, I =


In
0
...
0

, E1 =


E1 0 · · · 0
0 0 · · · 0
...

. . .
. . .

...
0 · · · 0 0

.

Likewise, the sliding window observer (8) can be rewritten
as follows:

ẑk+1 = Aẑk+Buk+Df
(
IT ẑk

)
+ILCζk+IL∆Ckzk+ILE2νk

(10)
where ζk = zk − ẑk represents the estimation error,

L = (L1 L2 · · · Lr),

C = block-diag

 r times︷ ︸︸ ︷
C, . . . , C

,
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∆Ck = block-diag

 r times︷ ︸︸ ︷
∆Ck, . . . ,∆Ck

 =M2FkN2,

M2 = block-diag

 r times︷ ︸︸ ︷
M2, . . . ,M2

,

Fk = block-diag
(
Fk, . . . , Fk−r+1

)
,

N2 = block-diag

 r times︷ ︸︸ ︷
N2, . . . , N2

,

E2 = block-diag

 r times︷ ︸︸ ︷
E2, . . . , E2

.

Then, let us consider the following state estimate feedback
controller:

uk =

r∑
i=1

Kix̂k−i+1 (11)

where Ki for i ∈ {1, · · · , r} are the control gain matrices.

The controller (11) can be rewritten as follows:

uk = Kẑk (12)

with K = (K1 K2 · · · Kr).

In the rest of the paper, the objective is to determine the
observer gain L and the control gain K while ensuring
the asymptotic stability of the closed-loop system and
satisfying the H∞ criterion.

Let ζk = zk − ẑk. The dynamic of this estimation error is
given by

ζk+1 =
(
∆Ak − IL∆Ck

)
zk + (A− ILC)ζk

+D
(
f
(
IT zk

)
− f

(
IT ẑk

))
+ (E1 − ILE2)νk.

(13)
Using equation (12), the closed-loop system is given by:

zk+1 =
(
A+ ∆Ak + BK

)
zk − BKζk +Df

(
IT zk

)
+ E1νk.

(14)
Then, by applying lemma 1 to the nonlinear vector f(.),
we obtain

f
(
IT zk

)
=

q,n∑
i,j=1

ϕijHijIT zk (15)

f
(
IT zk

)
− f

(
IT ẑk

)
=

q,n∑
i,j=1

φijHijIT ζk (16)

with γ
fij
6 ϕij 6 γfij , γ

fij
6 φij 6 γfij , Hij = eq(i)eTn (j).

Using equations (13), (14), (15) and (16), the following
augmented system is defined:

z̃k+1 =
(
Ã+ Ξ(Θ)

)
z̃k + Ẽνk (17)

with

z̃k =

(
zk
ζk

)
, Ξ(Θ) =

(
DΞ1(Θ)IT 0

0 DΞ2(Θ)IT
)

,

Ã =

(
A+ ∆Ak + BK −BK
∆Ak − IL∆Ck A− ILC

)
, Ẽ =

(
E1

E1 − ILE2

)
,

Ξ1(Θ) =
q,n∑

i,j=1

ϕijHij and Ξ2(Θ) =
q,n∑

i,j=1

φijHij .

The parameter Θ belongs to the bounded convex set Hqn

for which the set of vertices is defined by

VHqn
= {ϕ, φ ∈ Rq×n et ϕij , φij ∈ {γfij , γfij}}. (18)

3. NEW H∞ OBSERVER-BASED CONTROLLER
DESIGN METHOD

In this section, the design procedure of the proposed
observer-based controller is detailed.

3.1 Stability analysis

The observer and the controller gains are calculated while
respecting the following H∞ norm:

‖G
(
x− x̂

)
‖l2 ≤ λ‖ω‖l2 (19)

where λ > 0 is the disturbance attenuation level to be
minimized and G is a known and constant matrix.
Therefore, We must look for a Lyapunov function Vk such
that

∆Vk + z̃Tk ĨGĨT z̃k −
λ2

r
νTk νk < 0. (20)

with Ĩ = block-diag(I, I), G = block-diag(0, GTG), xk =
IT zk and x̂k = IT ẑk.

The selected candidate Lyapunov function is defined as
follows:

Vk = z̃Tk P z̃k (21)

with P = PT > 0 is the matrix of Lyapunov.

Usually, to solve this kind of problem, most existing
works on observer-based controller design for linear and
nonlinear systems, use a particular form of the matrix
P = block-diag(P1, P2). To improve the existing results,
we choose to use the following non-diagonal Lyapunov
matrix in order to get a more relaxed LMI conditions:

P =

(
P1 P3

PT
3 P2

)
. (22)

Let ∆Vk = Vk+1 − Vk. Then, by developing the inequality
(20), we obtain (23):(

z̃k
νk

)T

Ω

(
z̃k
νk

)
< 0. (23)

with

Ω =

((1, 1)
(
Ã+ Ξ(Θ)

)T
P Ẽ

(?) ẼTP Ẽ − λ2

r
Is×r

 .

and (1, 1) = Ã+ Ξ(Θ)
)T
P
(
Ã+ Ξ(Θ)

)
− P + ĨGĨT .

Note that the inequality (23) is satisfied if Ω < 0. Then,
using Schur’s lemma, the following inequality is obtained:

−P−1 Ã+ Ξ(Θ) Ẽ
(?) −P + ĨGĨT 0

(?) (?) −λ
2

r
Is×r

 < 0. (24)

The inequality (24) still unresolved due to its bilinear
nature caused by the existence of an unknown matrix
with its inverse (P and P−1). To overcome this major
obstacle, a slack variable technique is used with a judicious
reformulation of Young’s lemma. Thus, we obtain sufficient
and less conservative conditions ensuring the asymptotic
stability of the considered system. Corollary 1 introduce
the main contribution of the paper.
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Corollary 1. For a disturbance attenuation level λ > 0, the
robust H∞ observer-based stabilization design problem,
corresponding to the system (5), the controller (11) and
the observer (8), is solvable if for positive scalars η2 and

η3, there exist positive scalar η1 and matrices P̂1, P2, P̂3,
Q̂1 > 0, Q2 ∈ RnM×nM , L ∈ Rn×pM and K ∈ Rm×nM

such that the following BMI is feasible for all Θ ∈ VHqn
:

min λ subject to



Π11 P̂3 Π13 0 E1 Π16

(?) Π22 0 Π24 Π25 0

(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) Π44 0 In×r
(?) (?) (?) (?) Π55 0

(?) (?) (?) (?) (?) −1

2
Q̂1


Υ1

(?) Υ2


< 0

(25)

with
Π11 = P̂1 − Q̂1 − Q̂T

1 + η1M1MT
1

Π13 =
(
A+DΞ1(Θ)IT + BK

)
Q̂T

1

Π16 = −BKQ̂T
1

Π22 = P2 −Q2 −QT
2

Π24 = Q2

(
A+DΞ2(Θ)IT − ILC

)
Π25 = Q2(E1 − ILE2)
Π44 = −P2 + IGTGIT

Π55 = −λ
2

r
Is×r

Υ1 =


0 0 0 0 0

Q2M1 Q2ILM2 0 0 0

0 0 Q̂1N T
1 Q̂1N T

1 Q̂1N T
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Υ2 =



− 1

η2
I 0 0 0 0

(?) − 1

η3
I 0 0 0

(?) (?) −η1I 0 0
(?) (?) (?) −η2I 0
(?) (?) (?) (?) −η3I


.

�

Proof. A slack variable Q is introduced to eliminate
P−1. Pre-multiplying (24) by block-diag(Q, I, I) and post-
multiplying it by block-diag(QT , I, I). Then, using the
inequality −QP−1QTT ≤ P −Q−QT , (24) is equivalent
to 

P −Q−QT Q
(
Ã+ Ξ(Θ)

)
QẼ

(?) −P + ĨGĨT 0

(?) (?) −λ
2

r
Is×r

 < 0. (26)

The slack variable Q is defined by:

Q =

(
Q1 Q3

Q4 Q2

)
. (27)

Using (22) and (27), the inequality (26) can be written as
follows:


Π11 P2 −Q3 −QT

4 Π13 Π14 Π15

(?) P2 −Q2 −QT
2 Π23 Π24 Π25

(?) (?) −P1 −P3 0
(?) (?) (?) Π44 0

(?) (?) (?) (?) −λ
2

r
Is×r

 < 0 (28)

with

Π11 = P1 −Q1 −QT
1

Π13 = Q1

(
A+ ∆Ak + BK +DΞ1(Θ)IT

)
+Q3

(
∆Ak − IL∆Ck

)
Π14 = −Q1BK +Q3

(
A− ILC +DΞ2(Θ)IT

)
Π15 = Q1E1 +Q3(E1 − ILE2)
Π23 = Q4

(
A+ ∆Ak + BK +DΞ1(Θ)IT

)
+Q2

(
∆Ak − IL∆Ck

)
Π24 = −Q4BK +Q2

(
A− ILC +DΞ2(Θ)IT

)
Π25 = Q4E1 +Q2(E1 − ILE2)
Π44 = −P2 + IGTGIT .

As can be seen from (28), the observer gain is coupled
with the unknown matrices Q3 and Q2. While, the gain
K is coupled with the unknown matrices Q1 and Q4. To
overcome this problem, we can choose Q3 = Q4 = 0. Then,
the new structure of the matrix Q is given by:

Q =

(
Q1 0
0 Q2

)
. (29)

Pre-multiplying (28) by block-diag(Q̂1, I, I, Q̂1, I) and

post-multiplying it by block-diag(Q̂T
1 , I, Q̂

T
1 , I, I) with

Q̂1 = Q−11 . Then, using the notations P̂3 = Q̂1P3 and

P̂1 = Q̂1P1Q̂
T
1 , we get the following inequality:

P̂1 − Q̂1 − Q̂T
1 P̂3 Π13 −BK E1

(?) Π22 Π23 Π24 Π25

(?) (?) −P̂1 −P̂3 0
(?) (?) (?) Π44 0

(?) (?) (?) (?) −λ
2

r
Is×r

 < 0 (30)

with

Π13 =
(
A+ ∆Ak + BK +DΞ1(Θ)IT

)
Q̂T

1

Π22 = P2 −Q2 −QT
2

Π23 = Q2(∆Ak − IL∆Ck)Q̂T
1

Π24 = Q2

(
A− ILC +DΞ2(Θ)IT

)
Π25 = Q2(E1 − ILE2)
Π44 = −P2 + IGTGIT .

To couple the gain K, in Π14, with the matrix Q̂T
1 , we

rewrite the inequality (30) as follows:
P̂1 − Q̂1 − Q̂T

1 P̂3 Π13 0 E1
(?) Π22 Π23 Π24 Π25

(?) (?) −P̂1 −P̂3 0
(?) (?) (?) Π44 0

(?) (?) (?) (?) −λ
2

r
Is×r



+


0
0
0

In×r
0


︸ ︷︷ ︸

UT

(
−(BK)T 0 0 0 0

)︸ ︷︷ ︸
V

+V TU < 0.

(31)
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Then, by applying lemma 2 on (31) with S = Q̂1, the
following inequality is obtained:

P̂1 − Q̂1 − Q̂T
1 P̂3 Π13 0 E1 −BKQ̂T

1
(?) Π22 Π23 Π24 Π25 0

(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) Π44 0 In×r

(?) (?) (?) (?) −λ
2

r
Is×r 0

(?) (?) (?) (?) (?) −1

2
Q̂1


< 0

(32)
Note that in order to be able to apply lemma 2 on (31),

the matrix Q̂1 should be symmetric and positive.

Using lemma 3 and equations (6), we obtain

P̂1 − Q̂1 − Q̂T
1 P̂3 Π13 0 E1 −BKQ̂T

1
(?) Π22 0 Π24 Π25 0

(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) Π44 0 In×r

(?) (?) (?) (?) −λ
2

r
Is×r 0

(?) (?) (?) (?) (?) −1

2
Q̂1


+η1U1U

T
1 +

1

η1
V T
1 V1 + η2U2U

T
2 +

1

η2
V T
1 V1 + η3U3U

T
3

+
1

η3
V T
2 V2 < 0

(33)
with

Π13 =
(
A+ BK +DΞ1(Θ)IT

)
Q̂T

1

Π24 = Q2

(
A− ILC +DΞ2(Θ)IT

)
U1 =

(
MT

1 0 0 0 0 0
)T

U2 =
(
0 MT

1Q
T
2 0 0 0 0

)T
U3 =

(
0 MT

2 LTITQT
2 0 0 0 0

)T
V1 =

(
0 0 N1Q̂

T
1 0 0 0

)
V2 =

(
0 0 N2Q̂

T
1 0 0 0

)
.

Finally, by applying Schur’s lemma, we obtain the con-
straint (25). This ends the proof of corollary 1.

3.2 Converting BMI into LMI

To linearize the BMI given by (25), the following change
of variables for the terms coupled with the control gain K
is defined:

K̂ = KQ̂T
1 , (34)

but this is not the case for the terms coupled with the
observer gain L because of the matrix I. Therefore, a
particular solution is proposed to linearize this BMI.
We consider the following particular form of the matrix
Q2:

Q2 =


Q11

2 α1Q
11
2 · · · · · · α1Q

11
2

β1Q
11
2 Q22

2 α2Q
22
2 · · · α2Q

22
2

... β2Q
22
2

. . .
. . .

...
...

...
. . .

. . . Qr−1,r
2

β1Q
11
2 β2Q

22
2 · · · Qr,r−1

2 Qrr
2

 (35)

with Qr−1,r
2 = αr−1Q

r−1,r−1
2 , Qr,r−1

2 = βr−1Q
r−1,r−1
2 ,

0 ≤ αi < 1 and 0 ≤ βi < 1 for i ∈ {1, · · · , r − 1}.
Then, the following changes of variables is defined:

L̂i = Q11
2 Li, for i ∈ {1, · · · , r} (36)

So, the BMI (25) is transformed into a convex problem.

Finally, the controller and the observer gains can be
computed through the following equations:

K = K̂T Q̂−T1 (37)

Li = (Q11
2 )−1L̂i, for i ∈ {1, · · · , r} (38)

4. NUMERICAL EXAMPLE

Let us consider the system studied in Kheloufi et al.
(2016). This system is described by the state model (5)
with

A =

(
0.2 0.1 0.4
0.6 1 0.5
−0.3 0 0.3

)
, B =

(
1 3
−0.4 0.5
0.6 −0.4

)
, D =

(
1 0 0
0 1 0
0 0 1

)
,

E1 =

(
1
1
1

)
, C =

(
0 1 1
1 0 1

)
, E2 =

(
0.2
0.2

)
, M1 =

(
0 0

0.1 0.3
0 0.2

)
,

N1 =

(
0 0 0

0.2 0 0.4

)
, M2 =

(
0 0.3
0 0.8

)
, N2 =

(
0 0 0
0 0 0.2

)
,

f
(
xk
)

=

0.1 sin
(
x2k
)

0.2 sin
(
x3k
)

0.3 sin
(
x1k
)
, Fk = sin(k4).

f
(
xk
)

satisfy lemma 1 such that the set of vertices is
defined by

VH33 =

{(
0 ±0.1 0
0 0 ±0.2
±0.3 0 0

)}
.

The obtained gain matrices using the sliding window
approach with r = 2 and α = β = 0.01 are as follows:

L1 =

(
0.4181 −0.1258
1.1749 −0.3818
0.2278 −0.0960

)
, KT

1 =

(
0.3357 −0.2507
−0.0392 −0.1028
−0.1523 −0.1311

)
,

L2 =

(
0.0055 −0.0030
0.0036 −0.0025
−0.0012 0.0003

)
, KT

2 =

(
0.0000 0.0000
0.0000 −0.0000
0.0005 −0.0042

)
,

and λ = 1.4551.
The simulation results using the proposed approach are

given by figure 1 such that x0 = (10 7 −5)
T

, x̂0 =

(−1 4 1.5)
T

and ω = 1 for t ∈ [2, 3].

5. CONCLUSION

A robust sliding window controller for Lipschitz nonlinear
systems with parametric uncertainties in a noisy context is
proposed in this paper. The proposed strategy introduces
two sliding windows of delayed measurements and states,
respectively, into the Luenberger observer and the control
law in order to get less restrictive LMI conditions. A
judicious use of Young’s lemma combined with a particular
slack variable allows to enhance the obtained optimization
problem. Numerical example is presented to validate the
proposed LMI conditions.
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