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Abstract: Fear of falling (FoF) is a major health problem, especially in elders, which can lead
to falls, injury, loss of independence, and premature needs of nursing and assistance. However,
most of the studies have focused on the psychological aspect of the FoF and there is a significant
lack of technological assistance and methodology to detect and eliminate the effects of this fear
on maintaining balance. In this article, we propose a novel method to detect the FoF as a
quantitative signal. In our proposed novel approach, fear is considered as an internal disturbance
inside a Central Nervous System (CNS) that can affect the generated output torque to each joint
of the psychical body. By assuming the human body in a quiet stance, as an inverted pendulum
model, this disturbance signal is estimated by Moving Horizon Estimation (MHE). For this
purpose, the body kinetics and kinematics measurements of forty-five subjects during upright
stance trails, as well as the psychological FoF falls efficacy test, were collected and utilized for
the estimation and validation of the results. The experimental results show that the subjects
with FoF present a higher variation in the estimated signal. This method can sufficiently detect
the FoF by the posturographic and motion data, which can be utilized on the future assistive
devices for prevention and treatment of the FoF and falls.

Keywords: Fear Estimation, Biomedical System, Quantification of physiological parameters for
diagnosis and treatment assessment, Balance, Estimation.

1. INTRODUCTION

Basophobia or the Fear of falling (FoF) is a feeling related
to the risk of falling that is not necessarily a psychological
result of a fall (Trombetti et al., 2016), while aging
and decline in the postural and musculoskeletal systems
can increase the prevalence of this fear (Scheffer et al.,
2008). Nowadays, the FoF is a significant predictor of
falls, while in the community-dwelling, older adults who
suffer from FoF, are more likely to fall (O and El Fakiri,
2015). Furthermore, FoF contribute to limited mobility
and activities, decline of social interactions that might
cause loss of independence and need for admission into
nursing homes (Stubbs et al., 2014). Since life expectancy
and the number of older adults is increasing worldwide,
FoF is a major clinical and public health problem that
needs considerable attention.

Until now, the diagnosis of FoF has been considered
in many studies (Scheffer et al., 2008). Falls Efficacy
Scale (FES) and a modified version, Falls Efficacy Scale-
International (FES-I), are the most popular tests to de-
tect the fall-related concern during daily psychical and
social activities (Tinetti et al., 1990). In fact, these tests
are mostly questionnaires that evaluate the self-efficacy
to perform daily activities without a balance problem.
In (Dueñas et al., 2016), the authors used posturography
of the subjects in a standing position and found a sig-
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nificant relationship between some of the posturographic
parameters and fall risk factors, such as FoF. Despite this
current interest, and to the best of our knowledge, there
have been no attempts to develop methods measuring fear
as a quantitative value.

On the other hand, in the motor control field of studies, in
the human balance system, the Central Nervous System
(CNS) as the main controller, receives information from
different modalities of the sensory system such as visual,
vestibular, and proprioception in a closed feedback loop.
Based on the integration of these data, it sends the
proper motor command to the musculoskeletal system
to stabilize the body (Horak, 2006; Chiba et al., 2016).
However, any internal or external disturbances can affect
the performance of the human balance system and result
in a fall. Also, fear is a chain reaction that occurs in the
brain startings with stimuli and endings with the release of
chemicals (Kalin, 1993). Therefore, it can be assumed that
FoF is an internal disturbance inside the nervous system
that increases the error in the motor command and can be
estimated by state estimation methods in control theory.

Moving Horizon Estimation (MHE) like other state es-
timation, can rebuild the full states of the system from
noisy measurements as well as the overall model of the
system (Haseltine and Rawlings, 2005). External forces or
disturbances can be also assumed as states of the system.
MHE can solve the estimation problem as an online opti-
mization problem and it is able to handle complex nonlin-
ear dynamic models and inequality constraints (Rao, 2000;
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Findeisen, 1997). Besides, since MHE considers the past
measurements to estimate the current time, the estimation
result is more robust against disturbances and delayed
measurements (Ji et al., 2015). These advantages of MHE
make it more attractive when compared to the classical
state estimators, such as Kalman filter (KF) or Extended
Kalman Filter (EKF). For the past decade, the compu-
tation time of the MHE optimization problem was an
issue; however, with current solvers for nonlinear optimal
control problems, such as Proximal Averaged Newton-type
method for Optimal Control (PANOC), the MHE can be
solved in real-time with high accuracy (Stella et al., 2017;
Sathya et al., 2018).

This article proposes a new technical approach to detect
the FoF by assuming it as an internal disturbance inside
the CNS that is estimated by MHE. Within the framework
of these criteria, the contribution of this work has three
folds. First, to the best of our knowledge, it is the first
attempt to detect FoF as a quantitative value from postur-
ographic and motion data. Second, the FoF is considered
as an internal disturbance inside the CNS which affect
the generated torque to the joints of the human body. The
human body in quiet stance, a posture in which the body’s
Center Of Mass (COM) is regulated around the ankle joint,
is similar to an inverted pendulum model (Winter, 1995).
Thus, this disturbance is estimated by the MHE through
the PANOC solver. Finally, the methodology is validated
by the most common psychological measurements FES-I
and the subjects with high FES-I index have a significantly
higher variation in the estimated signal. This shows the
effectiveness of this method and provides initial works for
a new way to diagnose and treat the FoF.

The rest of the article is structured as follows. Initially,
the methodology is explained in Section 2, followed by an
explanation of the human body model and the fast MHE.
Section 3 describes the experimental protocol and the
overall data collection for further validations. In Section 4,
the simulation results are presented with proper discussion
and analysis on the findings and finally in Section 5 the
limitations are discussed with the corresponding perspec-
tives for future work.

2. METHODOLOGY

The schematic of the human balance system is illustrated
in Fig. 1. As it has been indicated, the CNS receives the
feedback joints kinematics (θ, θ̇), after the integration of
multiple sensory organs, such as vestibular, vision and
proprioception and transmits the proper motor commands
(τj) to stabilize the body, while considering the joints
intrinsic damping and stiffness (Bpass,Kpass). FoF can
be assumed as a unit inside the CNS that generates
disturbance torque (τf ). This disturbance torque is later
estimated by the MHE from the measured kinetics (τj) and
kinematics (θ) of each individual subjects and the inverted
model of the human body.

2.1 Inverted pendulum model

The human upright posture in anterior-posterior direction
can be represented by a single link inverted pendulum

Fig. 1. The human balance scheme with the CNS as
the main controller of the human body. The FoF is
presented as block inside the CNS, which affects the
generated torque τa.

around the ankle joint (Winter, 1995), while the dynamic
equations of motion is described as:

Jθ̈ = mgh sin θ −Kθ −Bθ̇ + τa + τf , (1)

where θ ∈ R and θ̇ are the angular position and angular
velocity of the ankle, m ∈ R+ is the mass of the human
body, h ∈ R+ is the distance between the center of mass
and the ankle joint, J ∈ R+ is the moment of inertia of
the body around the ankle, and g stands for the grav-
itational acceleration. The passive elements representing
the inherent damping and stiffness of the ankle joint are
presented by B ∈ R+ and K ∈ R+ respectively. The active
torque, as an actuator of the system and corrector of the
ankle joint, is represented by τa ∈ R, which is affected by
the disturbance torque τf ∈ R. In this configuration, the

states of the system are X = [θ, θ̇, τf ]>, and the control
input is U = [τj ].

2.2 Moving horizon estimation

The equation of motion, described in Eq. (1), can be
presented in the discrete time form as:

Xk+1 = F(Xk, Uk) +Wk, (2a)

Yk = H(Xk) + Λk, (2b)

where F : Rns × Rnu → Rns is a nonlinear function
describing the dynamics of the system, H : Rns → Rnm

is a linear vector function of the states X, and Y = [θ]
is the measured output. The number of states, inputs and
measurements are presented by ns, nu, nm respectively.
The measurement noise and model disturbances are pre-
sented by Λk ∈ Rnm and Wk ∈ Rns respectively. It is
assumed that the unknown process disturbanceWk, as well
as the measurement noise Λk, are randomly distributed
according to the Gaussian Probability Density Function
(PDF) with the covariance matrix of R ∈ Rnm×nm and
Q ∈ Rns×ns (Ungarala, 2009). Furthermore, the prior
information about the initial condition are assumed to be
available and presented by X̄0. The initial PDF of the state
vector is also assumed to be distributed according to the
Gaussian PDF with the covariance matrix of P ∈ Rns×ns .
Based on the information about random noises, and a set
of available noisy measurements Y = {Yj : j = 1, ..., Np}
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and states of system X = {Xj : j = 0, ..., Np}, MHE can
be solved by the following optimization problem:

min
X(k−Np|k),W

(k−1|k)

(k−Np|k)

cost(k)

s.t.

Xi+1|k = F(Xi|k, Ui|k) +Wi|k

Yi|k = H(Xi|k) + Λi|k i = {k −Np, . . . k − 1}
Wk ∈Wk, Vk ∈ Vk, xk ∈ Xk

(3)

where,

cost(k) = ‖Xk−Np|k − X̄k−Np|k‖
2
P−1︸ ︷︷ ︸

arrival cost

(4)

+

i=k∑
i=k−Np

‖Yi|k −H(Xi|k)‖2R−1︸ ︷︷ ︸
stage cost

+

i=k−1∑
i=k−Np

‖Xi+1|k −F(Xi|k, Ui|k)‖2Q−1︸ ︷︷ ︸
stage cost

In Eq. (3)-(4), Np ∈ N is the size of the estimation

window, W
(k−1|k)
(k−Np|k) = col(W(k−Np|k), . . . ,W(k−1|k)) are the

estimated process disturbance from time k−Np up to k−1,
estimated at time k ∈ Z+.
The first term of the objective function in Eq. (4), is called
arrival cost and it is weighted by P , while it relates to
the uncertainty in the initial states at the beginning of the
horizon and it represents the error between the observation
model and the the predicted initial state X̄(k − Np | k).
In other words, the arrival cost is the memory of the
estimation that summarizes the information about the
previous behavior of the system and the measurements
up to the estimation window. The second and third terms
are called stage cost with ‖Yi|k −H(Xi|k)‖2, weighted by
R, and it is the bias between the measured output and the
estimated state and ‖Xi+1|k−F(Xi|k, Ui|k)‖, weighted by
Q, is the estimated model disturbance.

A corresponding estimated states and external forces
of X?

k−Np|k, . . . X
?
Np|k is obtained at each time instant

from solving MHE optimization. The final estimated state
X?
Np|k is used for further analyses. For the time less than

the horizon window of size k = {0, . . . , Np − 1}, and until
the window is completed, the objective function is replaced
by:

cost(k) = ‖X0|k − X̄0|k‖2P−1 (5)

+

i=k∑
i=0

‖Yi|k −H(Xi|k)‖2R−1

+

i=k−1∑
i=0

‖Xi+1|k −F(Xi|k, Ui|k)))‖2Q−1

In this novel proposed scheme, the smoothing approach (Un-
garala, 2009) is used for transferring the arrival cost term
in Eq. (4), with only one time-step before the window is
used for the arrival cost approximation. In fact, it is desired
to use X?

(k−Np)
= X?(k − Np|k), including the measure-

ments up to time k − Np. Due to the shorter distance
between the initial estimate and the desired estimate, the
smoothing update leads to better performance in stability

and convergence of MHE. The algorithm 1 presents an
overview of implementation of the MHE.

Algorithm 1 The MHE algorithm.

Require: P,Q,R, X̄0, Np;
1: while k ≤ end time of simulation do
2: if k ≤ Np then
3: initialize {X0,W0};
4: solve the Eq. (5) and obtain X?

k ;
5: else
6: Update {Xk−Np|k,W

(k−1|k)
(k−Np|k)};

7: Solve the MHE by Eq. (3)-(4), obtain X?
k ;

8: Save the last measurements;
9: Move the horizon window;

10: end if
11: k = k + 1;
12: end while

Moreover, MHE is solved with PANOC (Sathya et al.,
2018) with a single shooting formulation, where the gra-
dient of objective function is obtained from automatic
differentiation (Dunn and Bertsekas, 1989) in CasADi
(Andersson et al., 2019). In general, PANOC combines
projected-gradient updates with fast Newton-type direc-
tions by L-BFGS (Li and Fukushima, 2001), while it uses
the Forward Backward Envelope (FBE) function. Due to
the use of the FBE-based line search, from any initial guess
PANOC converges globally. This algorithm can handle a
large window size Np and the MHE with dimension of
Np×ns decision variables, can be calculated approximately
in real-time.

3. DATA COLLECTION

Forty-five healthy subjects, 27 women and 18 men, with
mean age 75.2(±4.5) years, mean height 167.2(±9.9)cm,
and mean weight 73.0(±12.2)kg participated in this study.
The experiments were performed at the Human Health
and Performance Lab at Lule̊a University of Technology,
Lule̊a, Sweden. The study was executed in accordance with
the Helsinki declaration and approved by the Regional
Ethical Review Board in Ume̊a , Sweden (ref no. 2015-182-
31). The acquired data is part of a larger project (Pauelsen
et al., 2018; Jafari et al., 2018), where participants were
recruited from a community in Northern Sweden.

The participants were asked to stand up straight, look
at the dot on the wall and stand still as possible for
30s. The kinetic data were measured by a force plate
with a sampling frequency of 3000 Hz. The angular
position of the joints was collected by a Qualisys motion
Capture System with eight cameras and with a 200 Hz
sampling rate. All data were synchronised through a
stationary computer with the Qualisys Track Manager
(QTM) software.

The FES was measured with the Falls Efficacy Scale-
International, Swedish version FES-I, which is a question-
naire instrument with 16 items (Nordell et al., 2009). Each
question has a Likert scale of 1 (not at all concerned) to
4 (very concerned). The results are indexed from 16 to
64, where 16 shows no concern and 64 presents that the
subject is highly concerned of falling. The maximum score
in the data set was 33 with a mean value of 21.
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4. RESULTS

The parameter of the inverted pendulum model, such as
J , m, and h are specified according to the measurements
of each subject. The passive elements are set based on
the average value determined in (Peterka, 2002) with
the value of Bpass = 57.29 N.m.s.rad−1 and Kpass =
85.94 N.m.rad−1. Since in upright stance the body is
swaying around the ankle, the ankle torque (τj) can
be approximated from the force plate. Both the ankle
torque (τj) and the ankle angular position (θ) signals of
each subject are detrended to remove the sensors drifts.
Subsequently, a high correlation between both signals,
from the left and right joints of the body, of each subject,
during the upright stance trails was observed. Therefore,
only the right side of body joints were chosen for the
estimation.

The horizon window of MHE Np is set to 40, while the
weights of the cost terms of MHE were set correspondingly
as: (P = 2 × I3×3, Q = I3×3, R = I) and I presents the
Identity matrix. The results are obtained on a computer
with an Intel Core i7-6600U CPU, 2.6GHz and 12GB
RAM.

4.1 FoF estimation

Figure 2 presents the estimation results for two random
subjects in the experimental data set. As it can be ob-
served from the obtained results, the estimator can suf-
ficiently estimate the measured angular position of the
ankle’s θ, the unknown states of the angular velocity θ̇
and the internal torque disturbance τf . The Root Mean
Square Error (RMSE) of the estimation, for the measured
angular positions for this two subjects, are 0.0007 rad and
0.0001 rad.

The computation time of the MHE, which is implemented
in PANOC is provided in Fig. 3. In this case, the average
computation time is 0.038 sec, which indicates the ability
of the solver to solve the MHE with a large horizon window
of Np = 40.

Figure 4 depicts the estimation of the internal force τf for
the subjects with the lowest concern of falling (FES −
I = 16) and the subjects with higher concern of falling
(FES− I ≥ 27). It can be seen that for subjects with less
score of fear, the estimation of this disturbance torque is
almost zero, while for subjects with higher concern, this
disturbance torque has more variation.

The comparison of Standard deviation (Std) of the esti-
mated internal disturbance torque with the score of FES-I
of all subjects in the data set is provided in Fig. 5. It
can be observed that the Std of the disturbance torque
τf for subjects with FES − I ≥ 24 is higher than most
of the subjects with FES − I < 24. Although there
exist some outliers, the relation between the FES-I and
the disturbance torque τf is roughly linear. However, by
increasing the data samples, a precise mathematical model
of this relation can be obtained as a future study.

4.2 Discussion

Quiet standing is usually considered as swaying around the
ankle and is called “ankle strategy“; in which the ankle
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Fig. 2. Estimation of measured angular position of ankle
θ, angular velocity θ̇ and internal torque disturbance
τf for two random subjects, shown by blue and black
color, in the data sets.
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Fig. 3. The computation time of the solver.

torque maintains the Center Of Mass (COM) over the
base of support. By aging or in case of disturbances, other
joints, such as hip, may involve to maintain the balance
and prevent fall (Pollock et al., 2000). The “Hip strategy“
is characterized by motion at the trunk, which causes the
re-positioning of COM. However, how the brain decides to
activate a joint or a combination of joints is still an open
question (Karniel, 2011).

In this research article we study the effect of FoF on the
variation of the ankle and hip joints of each subject by
finding the ratio of the changes of Std of the angular
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Fig. 4. Estimation of disturbance torque τf for subjects with extreme values for FES-I. The red Dash-dot lines show
subjects with FES − I ≥ 27 and solid black lines are subjects with FES − I = 16.
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Fig. 5. Comparison of the FES-I score and the standard
deviation (Std) of the estimated disturbance torque
τf among all the subjects in the data set.

position of ankle joint (θankle) and hip joint (θhip) as:

Ratio = Stdankle/Stdhip. (6)

Therefore, Ratio ≥ 1 describes a higher variation in the
ankle and represents the ankle strategy, while the Ratio <
1 can be assumed as a hip strategy.

Figure 6 shows the effect of FES-I score on the Std ratio.
This figure reveals also that by increasing the concern and
fear of falling, the majority of the subjects use the ankle
strategy. However, the hip strategy is commonly used for
the majority of subjects with a low score of FES-I. This
reduced utilization of other joints in subjects with FoF,
may be a result of the effect of fear and anxiety on the
joint and muscle tension, while further conclusions in this
direction are beyond the scope of this article and require
further investigation.
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Fig. 6. The effect of FES-I score on the strategy of
each subject to maintain balance. The horizontal axis
presents the ratio of the standard deviation of the
angular motion of the ankle joint to the hip joint. The
blue shaded area shows the ankle strategy ratio ≥ 1
and the white area illustrates the hip strategy.

5. CONCLUSION

In this article, a novel method to estimate FoF has been
established, where the FoF can be considered as an internal
disturbance inside the CNS. With the knowledge about
the dynamics of the body and by measuring the angular
position as the system output and the joint torque as
a control output, this disturbance can be estimated by
MHE through the fast solving of an optimal control
problem PANOC. The results validate the performance
of this estimation and indicate that a higher disturbance
is applied to the joint torque to stabilize the body in
people with a high concern of falling. This study can
be investigated further, by a bigger sample size and in
different age groups and other body postures, such as
walking or stepping. This scientific results could be also a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16737



starting point towards the technical measurement of FoF
that could eventually lead to the design of assistive devices
for intervention and treatment of FoF.
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