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Abstract: In this paper, the attitude controller of spacecraft tracks the time-energy near-
optimal angular velocity generated by the Legendre Pseudospectral method (LPSM). The near-
optimal reference trajectory is obtained offline by applying the LPSM on the nominal spacecraft
dynamics, which is without noises and disturbances. The proposed tracking control scheme
works online, and along with the tracking of the near-optimal path, it also rejects the external
disturbances and noises. The composite control law is developed by combining the sliding mode
control (SMC) and the output of a finite-time disturbance observer. The SMC ensures the finite
tie results whereas the disturbance observer helps in avoiding the chattering in control. The
stability analysis of relative dynamics under the proposed scheme guarantees the convergence
of sliding surface and relative states in finite-time. The simulation analysis further illustrates
the effective performance of the proposed strategy.

Keywords: Pseudospectral method, finite time theory, disturbance observer, sliding mode
control, rigid spacecraft

1. INTRODUCTION

In the past few decades, various control techniques have
been applied to the challenging spacecraft problems ow-
ing to its complex and nonlinear dynamics (Krstic and
Tsiotras, 1999; Luo et al., 2005a; Sahoo et al., 2016;
Amrr et al., 2019; Amrr and Nabi, 2019). Moreover, the
spacecraft missions require features like higher accuracy,
faster convergence, better steady-state precision, and fuel
efficiency, etc., which makes the controller design more
challenging. Disturbance rejection property in the attitude
control design is also an essential aspect of the space
mission. Different robust control techniques have also been
used to attenuate the disturbances in the spacecraft like
sliding mode control (SMC) schemes (Tiwari et al., 2018;
Ma, 2013), adaptive control (Sahoo et al., 2016; Zhu et al.,
2011), disturbance observer-based control (Yan and Wu,
2017), and references therein. These schemes have not
explored the optimal aspect of the control system.

The optimal control strategies have been proposed for
the spacecraft system in (Luo et al., 2005b; Feng et al.,
2016; Taheri and Junkins, 2018). However, the formula-
tion of optimal control design in these approaches are
complex and need comprehensive mathematical analysis.
A relatively new optimal control method called Legendre
Pseudospectral method (LPSM) has been applied to solve
a wide range of nonlinear real-time problems, including the
problem related to the spacecraft missions (Zhou et al.,
2012; Ge et al., 2017; Banerjee et al., 2019a,b, 2020).
This method converts the original continuous-time optimal
control problem into its equivalent nonlinear programming
problem, which then becomes much more easier to tackle.

The ease of implementation and a relatively faster con-
vergence rate makes it the method of choice for a wide
range of problems (Garg et al., 2010; Banerjee et al.,
2020). In Banerjee et al. (2019a), the LPSM has been
applied to the rigid spacecraft to obtain the time-energy
optimal state response, and this same strategy has been
used in this work to generate time-energy near-optimal
reference trajectories. This reference trajectory generation
is produced offline.

The proposed algorithm incorporates both robust and
optimal strategies to achieve better disturbance rejection
and optimal convergence of the closed loop system. There-
fore, a robust control law is proposed, whose objective
is to track that reference trajectories while rejecting the
noises and disturbances it encounters on its path. The
proposed tracking control law is designed by combining
the robust nonlinear disturbance observer (RNDO) with
a non-singular terminal SMC (NSTSMC) scheme (Eshghi
and Varatharajoo, 2018; Qiao et al., 2020). The output
of RNDO estimates the actual disturbance, then supplies
it to the controller for compensating the disturbance in
the spacecraft dynamics. Most of the disturbance gets
attenuated by the output of the RNDO. Thus, the RNDO
also helps in reducing the use of high gain switching control
in the SMC design, which in turn alleviates the chattering
problem.

The key contributions of this work are outlined as

• The attitude tracking of time-energy near-optimal
trajectory obtained from LPSM as a reference tra-
jectory for the attitude regulation of spacecraft sub-
jected to the disturbances and noises.
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• The RNDO, used as a disturbance rejection, esti-
mates the disturbance in finite-time and also helps
in alleviating the chattering phenomenon.
• The proposed composite control, which consists of

RNDO and NSTSMC, guarantees the finite-time con-
vergence of sliding surface as well as the closed-loop
system states.
• The numerical simulation analysis validates the effi-

cacy of the designed scheme.

2. PROBLEM FORMULATION

The kinematic and dynamic equations of the spacecraft is
modelled as (Wu and Cao, 2017)

q̇0 = −0.5qTvw, q̇v = 0.5(q0I + q×v )w, (1a)

Jẇ = −w×Jw + u + d. (1b)

where q0 ∈ R, qv = [q1 q2 q3]T ∈ R3 are the scalar and
vector quaternion, respectively and q ∈ R×R3 = (q0, q

T
v )T

is the unit quaternions representation, which satisfies the
unity constraint q20 + qTv qv = 1. The variable w ∈ R3

denotes the angular velocity, I ∈ R3×3 describes the
identity matrix, J ∈ R3×3 is the inertia matrix, d ∈ R3

represents the external disturbance, and u ∈ R3 is the
control input. The notation (·)× ∈ R3×3 represents the
skew symmetric matrix acting on a vector.

Similar to (1a), the motion of near-optimal reference
attitude is governed by q̇r0 = −0.5qTrvwr and q̇rv =
0.5(qr0I + q×rv)wr, where qr0 and qrv are the scalar and
vector near-optimal reference quaternions, respectively
and qr = (qr0, q

T
rv)

T ∈ R×R3. The near-optimal reference
angular velocity is denoted by wr, which is obtained offline
from the LPSM (Banerjee et al., 2019a).

The relative attitude quaternion between the body frame
and the near-optimal reference frame is expressed as
qe = (qe0, q

T
ev)

T ∈ R × R3. The relative quaternion are
determined as (Tiwari et al., 2018)

qe0 = qTrvqv + q0qr0; qev = qr0qv − q×rvqv − q0qrv. (2)

The relative quaternion also satisfies the unity constraint
(Tiwari et al., 2018). The relative angular velocity is
defined as

we = w −wr. (3)

In view of (1), (2), and (3), the relative error dynamics
can be written as

q̇e0 = −0.5qTevwe, (4a)

q̇ev = +0.5(qe0I + q×ev)we, (4b)

Jẇe = −w×Jw − Jẇr + u + d. (4c)

2.1 Problem Statement

The objective of this work is to propose a robust attitude
controller scheme for the tracking of reference trajectory
generated by the LPSM (Banerjee et al., 2019a). The
performance index minimized after application of LPSM
is given as:

J = tf +

∫ tf

0

uTRudτ, (5)

where R ∈ R3×3 denotes a weight matrix, which is
positive definite, and tf represents the final time. The cost

function (5) minimizes the combination of time and energy
consumption by the spacecraft.

While tracking this time-energy near-optimal reference
trajectory, the proposed control law must also provide the
robustness against disturbances and converge the relative
system states to the origin in finite-time. Mathematically,
it can be expressed as:

lim
t→tf

qe0 = 1; lim
t→tf

qev = [0 0 0]T ; lim
t→tf

we = [0 0 0]T .

The following assumption has been considered for the
problem.

Assumption 1. The disturbance in the dynamics is consid-
ered to be bounded, but with unknown bound. Further, the
ḋ is also considered to be bounded, i.e., ‖ḋ‖ ≤ $, where
$ > 0 is a constant.

3. PROPOSED ATTITUDE CONTROL STRATEGY

The overall control scheme for the attitude tracking of
near-optimal reference trajectory from the LPSM is shown
in Fig. 1. The attitude control is designed by combining
the output of the RNDO and the SMC. The RNDO scheme
estimates the disturbance in the system and feed forward it
to the composite controller for disturbance compensation.
Therefore, not using the high gain switching control for
disturbance rejection helps in avoiding the chattering
problem. Moreover, the SMC approach is adopted to
establish the finite-time results of system states. The
proposed RNDO and SMC approaches are given in the
subsequent section.

Fig. 1. Schematic diagram of the developed scheme.

3.1 Disturbance observer design

The proposed RNDO (6) produces the estimate of d in

terms of d̂ ∈ R3 using an auxiliary dynamics of variable
z ∈ R3 (6b). The RNDO model is expressed as

d̂ = z + µ1Jwe − µ2

∫ t

0

sgnρ(Ω) dτ, (6a)

ż = −µ1{−w×Jw − Jẇr + u + d̂}, (6b)

where ρ ∈ (0, 1), µ1 > 0 and µ2 ≥ $ are the RNDO gains.
Moreover, variable Ω ∈ R3 is given as:

Ω = d̂− Jẇe −w×Jw − Jẇr + u, (7)

and function sgnρ(Ω) ∈ R3 is expressed as:

sgnρ(Ω) =
[
|Ω1|ρ sign(Ω1), |Ω2|ρ sign(Ω2), |Ω3|ρ sign(Ω3)

]T
The finite-time convergence of the proposed RNDO is
proved using the following Lemma.
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Lemma 1. (Yu et al., 2005) Consider a continuous function

ϑ̇ = g(ϑ), ϑ ∈ Rn with 0 as equilibrium point, and a
Lyapunov function V (ϑ) : Rn → R defined in an open
neighbourhood U0 ⊆ Rn of the origin. For γ1 > 0, γ2 > 0,
and ρ ∈ (0, 1), if the following inequality holds

V̇ (ϑ) ≤ −γ2V (ϑ)− γ1V ρ(ϑ), ϑ ∈ U0, (8)

then variable ϑ will be forced to 0 in finite-time with

tsettling ≤ 1
γ2(1−ρ) ln

{
γ2V

1−ρ(0)+γ1
γ1

}
.

Theorem 1. Considering the tracking dynamics (4) under
the Assumption 1. The output of RNDO (6) will estimate
d in finite-time. In other words, the disturbance estimation
error (d̃ = d̂− d) will be forced to zero in finite-time.

Proof. The value of Ω can be equate to d̃ by substituting
Jẇe from (4c) into (7). Moreover, the differentiation of d̃
w.r.t. time can be obtained using (6a) as

˙̃d = ˙̂d− ḋ = {ż + µ1Jẇe − µ2sgnρ(d̃)} − ḋ. (9)

The equation (9) can further be simplified by putting the
expression of ż and Jẇe in it to obtain

˙̃d = −µ1d̃− µ2sgnρ(d̃)− ḋ. (10)

Now, select a Lyapunov candidate, which is a positive

definite function of variable d̃, as V0 = 1
2 d̃

T
d̃. The time

derivative of V0 using (10) yields

V̇0 = d̃
T ˙̃d = d̃

T
(−µ1d̃− µ2sgnρ(d̃)− ḋ),

= −µ1d̃
T
d̃− µ2‖d̃‖‖d̃‖ρ − d̃

T
ḋ,

≤ −µ1‖d̃‖2 − µ2‖d̃‖1+ρ + ‖d̃‖‖ḋ‖. (11)

Using ‖ḋ‖ ≤ $ from Assumption 1 in (11) to obtain

V̇0 ≤ −µ1‖d̃‖2 − µ2‖d̃‖1+ρ +$‖d̃‖,

≤ −2µ1V0 − 2
1+ρ
2 µ2V

1+ρ
2

0 +
√

2 $V
1
2
0 ,

= −ϑ1V0 − ϑ2V
1+ρ
2

0 + ϑ3V
1
2
0 ,

= −ϑ1V0 −

{
ϑ2 −

ϑ3

V
ρ
2

0

}
V

1+ρ
2

0 . (12)

where ϑ1 = 2µ1 > 0, ϑ2 = 2
1+ρ
2 µ2 > 0, ϑ3 =

√
2 $ > 0,

and µ2 > $. Correspondingly, in (12),

{
ϑ2 − ϑ3

V
ρ
2

1

}
> 0.

Thus, equation (12) satisfies the inequality of Lemma 1.

Therefore, variable d̃ will converge to origin in finite-time

and the residual bound of d̃ is ≤
√
2ϑ

1/ρ
3

ϑ
1/ρ
2

. Moreover, the

selection of gain µ2 such that ϑ2 > ϑ3 will ensure narrower
residual set of d̃.

3.2 Composite Control Design

The proposed controller is designed by employing d̂ from
the previous subsection and a non-singular terminal sliding
surface (NSTSS). The structure of NSTSS is proposed as:

s = we + a1sgn%(qe0qev) + a2(qe0qev), (13)

where s ∈ R3 is a sliding manifold vector, a1, a2 are
positive constants, and % ∈ (0, 1).

The time derivative of Js yields

Jṡ = −w×Jw − Jẇr + u + d + J{a1% diag(|qe0qev|%−1)

+ a2I}{−0.5qevq
T
ev + 0.5qe0

(
qe0I + q×ev

)
}we. (14)

The proposed composite attitude tracking control law is
defined as:

u = w×Jw + Jẇr − ks− J{a1% diag(|qe0qev|%−1) + a2I}
× {−0.5qevq

T
ev + 0.5qe0

(
qe0I + q×ev

)
}we − d̂ (15)

− γ sign(s).

where k > 0 is a gain constant and γ > 0 is a small
switching gain constant. The switching gain is designed
to restrict the random high-frequency noises of small
magnitude for which the RNDO is not competent enough
to estimate the high-frequency noises.

4. STABILITY ANALYSIS

In this section, the stability analysis is divided into two
parts. In the first part, the finite-time convergence of slid-
ing manifold is presented, and the second part guarantees
the finite-time convergence of relative states. The given
property is used in the stability proof.

Property 1. (Strang, 1993): For any vector v ∈ R3 and
symmetric matrix J ∈ R3×3, the following inequality al-
ways fulfilled: λmin(J) ‖v‖2 ≤ vTJv ≤ λmax(J) ‖v‖2 ∀ v,
where λmax(J) and λmin(J) are the max. and min. positive
eigenvalues of J .

Theorem 2. Consider the relative dynamics of spacecraft
(4), NSTSS (13), and the proposed composite control (15).
The closed-loop system achieves

(i) the finite-time convergence of sliding manifold to zero,
(ii) as s→ 0, the relative system states are also forced to

their equilibrium point in finite-time.

Proof (i). Selecting a new Lyapunov candidate V1 as

V1 =
1

2
sTJs. (16)

Substituting (14) in the time derivative of V1 gives

V̇1 = sTJṡ,

V̇1 = sT {−w×Jw − Jẇr + u + d + 0.5J [a2I + a1%

× diag(|qe0qev|%−1)][−qevqTev + qe0(qe0I + q×ev)]we}.
Substituting u from (15) in the above equation to obtain

V̇1 = sT {−ks− d̂− γ sign(s) + d},
= −ksTs− γ ‖s‖+ sT (d− d̂),

≤ −ksTs− γ ‖s‖+ ‖s‖‖d̃‖,
= −k‖s‖2 − (γ − ‖d̃‖)‖s‖. (17)

By selecting the gain γ such that (γ − ‖d̃‖) = σ > 0, the
equation (17) can be written as

V̇1 ≤ −k‖s‖2 − σ‖s‖. (18)

Using the Property 1, ‖s‖2 and ‖s‖ can be represented as

‖s‖2 ≤ 2

λmin (J)

(
sTJs

2

)
; ‖s‖ ≤

√
2

λmin (J)

(
sTJs

2

) 1
2

.

Applying (16) in the upper bound values of ‖s‖2 and ‖s‖
and then substituting it in (18) to obtain
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V̇1 ≤ −
2k

λmin (J)
V1 − σ

√
2

λmin (J)
V

1
2
1 ,

V̇1 ≤ −υ1V1 − υ2V
1
2
1 , (19)

where υ1 = 2k
λmin(J) > 0, υ2 = σ

√
2

λmin(J) > 0. The

equation (19) satisfies the relation given in Lemma 1.
Therefore, the sliding surface will converge to zero in finite-
time, i.e., the sliding mode will achieve in finite-time.

Proof (ii). Once s = 0, then the following equation can
be obtained from (13) as

we = −a1sgn%(qe0qev)− a2(qe0qev). (20)

Lets consider another Lyapunov function V2 = qTevqev.
The time derivative of V2 yields

V̇2 = 2qTevq̇ev. (21)

Putting the value of q̇ev from (4b) in (21)

V̇2 = qTev{(qe0I + q×ev)we}. (22)

Substituting the value of we from (20) in (22) to get

V̇2 = qTev(qe0I + q×ev){−a1sgn%(qe0qev)− a2(qe0qev)}. (23)

Applying the skew-symmetric matrix property in (23), i.e.,
qTevq

×
ev = 0 (Tiwari et al., 2018), which gives

V̇2 = qe0q
T
ev{−a1sgn%(qe0qev)− a2(qe0qev)},

= −a1qe0qTevsgn%(qe0qev)− a2(qe0)2qTevqev,

= −a1
3∑
i=1

qe0qei|qe0qei|%sign(qe0qei)− a2(qe0)2qTevqev,

= −a1
3∑
i=1

|qe0qei|%+1 − a2(qe0)2qTevqev,

≤ −a1|qe0|%+1
3∑
i=1

|qei|%+1 − a2(qe0)2V2,

≤ −a1|qe0|%+1V
%+1
2

2 − a2(qe0)2V2,

≤ −η1V
%+1
2

2 − η2V2, (24)

where η1 = a1|qe0|%+1 > 0, η2 = a2(qe0)2 > 0. It is
important to note that qe0 = 0 is not a stable equilibrium
point (Jin and Sun, 2008). Again, according to Lemma 1,
it shows that the relative vector quaternions are also con-
verging to zero in finite-time. From the unity constraint, as
qev → 0, qe0 → 1. Since qev is converging to zero, therefore
from the relation (20), we also goes to zero in finite-time.
The proof is complete. �
Remark 1. The actuator input torque has the upper limit,
i.e., |ui| ≤ 10 N.m where i = 1, 2, 3.

5. SIMULATION RESULTS

In this section, the proposed attitude tracking control is
employed using numerical simulation to the rigid space-
craft model whose inertia matrix is

J = [147 6.5 6; 6.5 158 5.5; 6 5.5 137] kg.m2.

The external disturbances with random noises are consid-
ered as:

d(t) = 10−2 ×

[
+1 + 2 sin(0.5t)
−1− 5 cos(0.5t)
+2− 4 sin(0.5t)

]
+ 5× 10−4

[
r
r
r

]
N.m.

where r represents the white noise with variance 1.

Table 1. Initial conditions of states system & RNDO.

States Value States Value

qr(0) [1 0 0 0]T q(0) [0.806 0.5587 0.105 − 0.1647]T

wr(0) [0 0 0]T w(0) [0 0 0]T

d̂(0) [0 0 0]T z(0) [0 0 0]T

Table 2. Parameters of the proposed control scheme.

Parameters Value Parameters Value

µ1 40 µ2 2

ρ 0.9 % 0.9

a1 0.6 a2 0.5

k 150 γ 0.005

All the initial conditions of system and RNDO dynamics
are tabulated in Table 1. The parameters of the proposed
control scheme are given in Table 2.

The performance of the RNDO is presented in Fig. 2 and
3. In Fig. 2, the actual disturbance d and the estimated
disturbance d̂ from the RNDO are illustrated. As it can
be seen from the zoomed-in plot of Fig. 2, the estimated
disturbance d̂ converges to the actual disturbance within
0.15s. Furthermore, the above observation is also visible
in Fig. 3, where the error between the actual and the esti-
mated disturbance is plotted. The disturbance estimation
error converges to the small bound of zero within 0.15s.
After 0.15s, there are residual errors in d̃, and this is be-
cause of the high frequency noises in the disturbance. The
discontinuous control of NSTSMC attenuates the effects
of high-frequency noises on the closed-loop system.
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Fig. 2. Actual and estimated disturbances.

The plots of time-energy near-optimal reference angular
velocity wr and the body angular velocity w are shown
in Fig. 4. The trajectory of wr is generated using the
LPSM technique, as discussed in Banerjee et al. (2019a).
The reference trajectory wr starts from rest and converges
to zero in 37.13s. The body angular velocity tracks the
reference trajectory within 14s while experiencing the
disturbances and noises. The plot of relative angular
velocity we is presented in Fig. 5. It is evident from the
zoomed-in plot of Fig. 5 that we is converging to a small
bound of 5 × 10−4 rad/s after 14s. Moreover, the steady-
state convergence bound of we is 5× 10−7 rad/s.
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Fig. 4. Time-energy efficient reference angular velocity and
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Trajectories of the relative quaternion are presented in
Fig. 6. As it can be seen from Fig. 6 that the qe is
effectively converging to [1 0 0 0]T with the steady-state
convergence bound of 5 × 10−7. The sliding manifold of
the NSTSS is demonstrated in Fig. 7. The settling time of
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Fig. 7. Trajectories of sliding manifold.
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s is within 8s, and the convergence bound of s during the
steady-state is within 2.5× 10−6.

Plot of the proposed control torque is shown in Fig. 8. The
torque has a saturation value of 10 N.m, and even under
the saturated input, the proposed controller is effectively
tracking the reference trajectory. The settling time of the
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control response is 38s, and during the steady-state, the
control input has a small magnitude of the order 10 ×
10−2 N.m for rejecting the disturbances and noises in the
system. Moreover, due to the use of RNDO, the proposed
controller significantly alleviates the chattering from its
control response by avoiding the use of high gain in the
switching control.

Therefore, in light of the aforementioned performance
results and discussions, the proposed controller (15) is
effectively tracking the time-energy near-optimal reference
attitude while rejecting the disturbances and alleviating
the chattering.

6. CONCLUSION

This paper presents a robust composite control using an
RNDO and NSTSMC for the spacecraft to track a time-
energy near-optimal attitude generated by the LPSM. The
spacecraft system, which is subjected to the disturbances,
employs the RNDO for estimating the disturbance in
finite-time and then feed it to the proposed controller for
disturbance attenuation. The NSTSMC helps in ensuring
the convergence of sliding manifold in finite-time and also
forces the relative attitude states to their equilibrium
points in finite-time. The numerical analysis of the closed-
loop system validates the proposed strategy and illustrates
the effective performance of the developed methodology.
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