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Abstract: Remote control systems have advantages in terms of flexibility and efficiency, but
at the same time, they are exposed to cyber-attacks. Zero-dynamics attack is one of the most
lethal model-based cyber attacks due to its stealthiness. In this paper, a new zero-dynamics
attack neutralizing strategy is proposed, which is based on the generalized sampler. By using
generalized sampler, the zeros of the discrete-time system can be placed at arbitrary locations,
and if all zeros are placed inside the unit circle, the attack signal itself is neutralized. This
strategy still works even if all the information is exposed to hackers. Furthermore, the proposed
method is insensitive to shifting the intrinsic zeros comparing to the existing zero-assignment
based methods. A design procedure of generalized sampler is provided, and theoretical findings
are validated through the numerical simulations.
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1. INTRODUCTION

Thanks to advanced communication technologies devel-
oped during the last few decades, it is now possible to
control remote dynamic systems, monitor the status of
geographically distributed systems such as power systems
and smart factories, and make decisions for multi-agent
systems, etc. Although the flexibility in system configura-
tion has been greatly increased, these networked control
systems are inherently exposed to cyber attacks, as re-
ported in real incidents such as the attack on Ukrainian
power plant (Case, 2016). A number of cyber attacks have
been modeled and analyzed (see, e.g., Cárdenas et al.
(2011); Teixeira et al. (2015); Mo and Sinopoli (2009);
Gupta et al. (2010) and references therein), and counter-
measures against those attacks have been developed (Mo
and Sinopoli, 2009; Teixeira et al., 2012; Back et al., 2017).

Among many cyber attacks, the zero-dynamics attack
(ZDA) is one of most dangerous attacks since it is not
possible to detect it. It is a model-based attack, and ex-
ploits the zero-dynamics of a system (Khalil, 2002) which
describes the internal behavior of the system. Suppose
that we have a stable system (or it has been stabilized
by a controller) and that the zero-dynamics is known to
a hacker. The attack signal of ZDA is generated by a
dynamic system which is identical to the zero-dynamics
of the given system. By stability, the output of the system
converges to zero while the internal state corresponding
the zero-dynamics converges to that of ZDA’s dynamics.
Thus, ZDA is fatal to systems which have unstable zero-
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dynamics, i.e., non-minimum phase systems (Park et al.,
2019).

It is noted that most sampled-data systems are vulnerable
to ZDA. In fact, in most sampled-data systems, it is com-
mon to use zero-order hold (ZOH) to convert the discrete
input signal to continuous input and simple sampler to
obtain a discrete signal from the continuous output signal.
Unfortunately, in this case, the discrete-time system has
unstable zero-dynamics if the original (continuous-time)
system has a relative degree greater than two and the sam-
pling time is sufficiently small, regardless of the stability
of the original zero-dynamics (Yuz and Goodwin, 2014).

Several countermeasures against ZDA have been proposed.
Teixeira et al. (2012) characterized geometric properties
of the ZDA and provided solutions to reveal the attack by
modifying the system structure. Hoehn and Zhang (2016)
introduced a (constant or time-varying) modulation ma-
trix in the input channel so that actual input gain matrix
is hidden. Both approaches can reveal the presence of
attack, but the information on modification or modulation
matrix should be hidden. Dual rate control is proposed
by Naghnaeian et al. (2015). The idea is to construct a
lifted discrete-time system by collecting sufficiently large
number of output measurements during a single sampling
interval and it is shown that the lifted system has no un-
stable zeros. Recently, a neutralization strategy employing
generalized hold (GH) (Yuz and Goodwin, 2014) has been
proposed by Back et al. (2017). This approach exploited
the fact that if the hold function of GH is designed prop-
erly, the zeros of discrete-time system can be arbitrarily
assigned. In fact, a design procedure is provided to make
the zeros reside inside the unit circle so that ZDA is not
effective anymore.
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In this paper, we present a new neutralization strategy
against ZDA. We replace the simple sampler (SS) that
takes the output at each sampling time by so-called
generalized sampler (GS) (Yuz and Goodwin, 2014) which
takes several samples during one sampling interval and
generates new output that is defined by a weighted average
of the samples. It is shown that the zeros of the discrete-
time system, with new output, can be placed anywhere
desired, which means that ZDA can be neutralized like
the case with GH. A design procedure to choose the
gains of GS is also presented. It is emphasized that the
proposed approach has several advantages over existing
strategies; firstly no information needs to be hidden,
secondly, the zeros can be arbitrarily assigned, and finally,
it is remarkably insensitive to the shift of intrinsic zeros.
Numerical simulations on a two mass system are conducted
to validate theoretical findings.

The rest of this paper is organized as follows. In Section 2,
we briefly recall the concept of ZDA and several strategies
against it. The generalized sampler as a new zero assign-
ment tool is introduced in detail and discuss the novelty in
Section 3. In Section 4, we show that the proposed tool can
be used as a good countermeasure against ZDA. Section 5
concludes the paper with future research directions.

2. PRELIMINARIES

2.1 Zero-Dynamics Attack on Sampled-Data System

We consider a continuous-time system controlled by a digi-
tal controller which is connected through a communication
network. At each sampling time, measured information
(typically sampled output) is transmitted to the controller
and the controller generates a control signal which is de-
livered to the actuator that applies a control input to the
system. Suppose that the network has been compromised
so that a malicious attack signal can be added in the
control signal. Precisely, the control system under attack
is described by

ẋ = Ax+B(u+ a)

y = Cx
(1)

where x ∈ Rn is the state vector, u ∈ R is the control
input, a ∈ R is the attack signal, and y ∈ R is the
output.A,B and C are constant matrices with appropriate
dimensions. Suppose that the communication between the
plant and controller is done at t = kTs, k = 1, 2, . . . ,
where Ts is the sampling time. In most cases, ZOH and
SS are used to interface the system (1) with digital
controller. ZOH is used in the input side so that the
discrete input signal uk := u(kTs) coming from the
controller is converted to u(t) = uk, kTs ≤ t < (k +
1)Ts, and SS converts the continuous-time signal y(t) to a
discrete-time signal yk := y(kTs) in the output side. It is
assumed that the attack signal ak is injected through the
communication network so that the signal transmitted to
ZOH becomes uk + ak.

With ZOH and SS, the system (1) can be rewritten as a
discrete-time system given by

xk+1 = Adxk +Bd(uk + ak)

yk = Cdxk
(2)

where xk = x(kTs) and

Ad = eATs , Bd =

∫ Ts

0

eA(Ts−τ)Bdτ, Cd = C.

The attack considered in this paper is constructed using
the zero-dynamics of the system (2) which explains the
internal behavior of the system (Khalil, 2002). In order
to construct it, the system is rewritten in Byrnes-Isidori
normal form given by

ηk+1 = Sdηk + PdC̄dξk

ξk+1 = Ādξk + B̄d(ψ>d ηk + φ>d ξk + gd(uk + ak))

yk = C̄dξk.

(3)

The dynamics ηk+1 = Sdηk is called the zero-dynamics and
eigenvalues of Sd correspond to the zeros of the discrete-
time system (2). If the system (2) has a relative degree
µ, then the dimensions of Sd, Pd, ψd, φd and gd are
determined so that ηk ∈ Rn−µ, ξk ∈ Rµ, and we have

Ād =

[
0µ−1 Iµ−1

0 0>µ−1

]
, B̄d =

[
0µ−1

1

]
, C̄d =

[
1

0µ−1

]>
.

For the system (2), ZDA is constructed as

zk+1 = Sdzk, ak = − 1

gd
ψ>d zk. (4)

It is noted that to construct a ZDA, system parameters
should be known.

Suppose the system is stabilized by a static output feed-
back controller given by uk = −Ldyk, i.e., the matrix
Ad−BdLdCd is Schur. This property results in that, under
the attack (4), ηk and ξk admit a bound∥∥∥∥[ηk − zkξk

]∥∥∥∥ ≤ λ0λk ∥∥∥∥[η0 − z0ξ0

]∥∥∥∥ , λ0 > 0, |λ| < 1

where η0, ξ0, and z0 are initial conditions of corresponding
variables, and this relation implies that ηk approaches zk
as k increases. The lethality of ZDA becomes obvious when
Sd is unstable, i.e., the system (2) is of non-minimum
phase. In this case, ηk becomes unbounded whenever zk
is excited by unstable modes of Sd, while yk, that depends
solely on ξk, converges to zero so that the presence of
attack can not be monitored from yk.

It is emphasized that discrete-time systems are vulnerable
to ZDA because of ‘sampling zeros’ appearing from the
sampling procedure. In fact, when the continuous-time
system has a relative degree greater than two and the
sampling time is sufficiently small, it is inevitable that the
discrete-time system has unstable zero-dynamics because
at least one of the sampling zeros lies outside the unit circle
(Yuz and Goodwin, 2014).

2.2 Existing Countermeasures

In order to enhance security against ZDA, several strate-
gies have been developed. Teixeira et al. (2012) analyzed
how the system structure affects the stealthiness property
of ZDA and suggested to modify input gain matrix, output
matrix, and system matrix to reveal the attack. Hoehn
and Zhang (2016) introduced a modulation matrix in the
input channel so that actual input gain matrix is hidden
from hackers. An optimization based design is proposed
and time-varying (periodic) modulation matrix is also
considered. Although these approaches can reveal ZDA
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attack, they have critical drawback that information on
modification or modulation matrix should be hidden.

Instead of modifying the internal structure, Naghnaeian
et al. (2015) proposed to use dual rate control. The idea
is to obtain a sufficiently large number of measurements
during a single sampling interval and consider the collec-
tion of the measurements as a new output. They proved
that the system with new output has no unstable zeros.
It is the main advantage that it is not necessary to hide
any information from hackers. However, substantially large
amount of information should be transmitted.

Recently, a new strategy overcoming the drawbacks men-
tioned above has been introduced by Back et al. (2017).
The key idea is to employ the generalized hold (GH) (Yuz
and Goodwin, 2014) so that all the zeros of discrete-time
system are placed inside the unit circle. Let us recall
briefly. GH involves a function hg(t) called hold function. It
is defined as a piecewise continuous function with hg(t) = 0
for t < 0 or t ≥ Ts. On the time interval [kTs, (k + 1)Ts),
the input u(t) is given by u(t) = ukhg(t − kTs). For the
sake of implementation, one can use piecewise constant
hold function given by

hg(t) = hi,
(i− 1)Ts

N
≤ t < iTs

N
, i = 1, . . . , N (5)

where hi are constant gains and N is the number of subin-
tervals. It is noted that although it has advantages over
other strategies, GH may induce undesirable inter-sample
behaviors (Kabamba, 1987) which will be illustrated in the
subsequent section.

3. ZERO ASSIGNMENT USING GENERALIZED
SAMPLER

In this section, we will introduce a new zero-assignment
approach using GS. At first, we explain the generalized
sampler and then provide a design procedure. Comparison
with a recently reported approach employing GH is also
presented through a numerical example.

3.1 Generalized Sampler

By GS, we mean a device which generates a discrete-time
signal y̆k from a continuous-time signal y(t) in a way that
given measured signals during the time interval [0, kTs],
say y(tk,1), . . . , y(tk,Nk

), tk,1 < · · · < tk,Nk
, the signal

y̆k is defined by y̆k = Sk(y(tk,1), . . . , y(tk,Nk
)) where Sk

is a function (or it can be generalized to include some
dynamics) and Nk is the number of samples to compute
y̆k. The simplest example is SS (Nk = 1, tk,Nk

= kTs,
y̆k = y(kTs)).

Fig. 1. Concept of generalized sampler.

In this paper, we consider the case where the measure-
ments used to construct y̆k are taken from the interval
((k − 1)Ts, kTs] and Sk is a functions which computes a
weighted average of the measurements. Precisely speaking,
let N be the number of measurements to be used and
w1, . . . , wN be weights. As illustrated in Fig. 1, we take
y( 1
N Ts + (k − 1)Ts), y( 2

N Ts + (k − 1)Ts), . . . , y(kTs) and
compute the weighted average of these signals with weights
w1, . . . , wN , i.e.,

y̆k =

N∑
i=1

wiy( iN Ts + (k − 1)Ts). (6)

To proceed, we would like to find a discrete-time system
whose output is y̆k. Noting that

x( iN Ts + (k − 1)Ts)

= eA
i
N Tsxk−1 +

∫ i
N Ts

0

eA( i
N Ts−τ)B dτ uk−1,

we obtain
xk = Adxk−1 +Bduk−1

y̆k = C̆dxk−1 + D̆duk−1
(7)

where

C̆d =

N∑
i=1

wiCde
A i

N Ts

D̆d =

N∑
i=1

wiCd

∫ i
N Ts

0

eA( i
N Ts−τ)Bdτ.

From (7), we can compute the discrete-time transfer func-
tion from uk to yk as

Gd(z) = z−1(C̆d(zIn −Ad)−1Bd + D̆d). (8)

Note that C̆d and D̆d contain the sampler weights wi of
GS which are design parameters. Thus, it is expected that
by choosing wi appropriately, the numerator of Gd(z) can
be assigned as desired. In fact, this is true under mild
assumptions as can be seen in the next subsection.

3.2 Zero Assignment: Design

In this subsection, we show that the zeros of the system
(7) (or (8)) can be placed at desired locations by adjusting
the gains wi. Let zd,1,· · · ,zd,n ∈ C be the desired zeros and
kd is a gain. Define

G∗d(z) = kdz
−1 (z − zd,1) · · · (z − zd,n)

det(zIn −Ad)
. (9)

Lemma 1. Suppose (Ad,Bd) of the system (7) is control-

lable and N ≥ n+ 1. Then, there exist C̆d ∈ R1×n and D̆d

∈ R such that Gd(z) is identical to G∗d(z). Furthermore,

there exist w1, . . . , wN , which realize C̆d and D̆d if the
matrix M defined below has full column rank.

M =



Cde
A 1

N Ts Cd

∫ 1
N Ts

0

eA( 1
N Ts−τ)Bdτ

Cde
A 2

N Ts Cd

∫ 2
N Ts

0

eA( 2
N Ts−τ)Bdτ

...

Cde
ATs Cd

∫ Ts

0

eA(Ts−τ)Bdτ


�
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Proof. Firstly, we rewrite (9) in the control canonical
form given by

xk =

 0n−1 In−1

−d0 · · · − dn−1

xk−1 +

[
0n−1

1

]
uk−1

:= Aconxk−1 +Bconuk−1
yk = [c0 · · · cn−2 cn−1]xk−1 + kduk−1

:= Cconxk−1 +Dconuk−1
where the constants c0,. . . ,cn−1, d0,. . . ,dn−1 and kd are
determined from the relations

det(zIn −Ad) = zn + dn−1z
n−1 + · · ·+ d0

kd

n∏
i=1

(z − zd,i) = kd(z
n + ( cn−1

kd
+ dn−1)zn−1+

· · ·+ ( c1kd + d1)z + ( c0kd + d0))

so that G∗d(z) = z−1(Ccon(zIn −Acon)−1Bcon +Dcon).

The transfer function Gd(z) becomes identical to G∗d(z)

if and only if C̆dA
k−1
d Bd = CconA

k−1
con Bcon, k = 1, . . . , N

(Chen, 1998). Since the pair (Ad,Bd) is controllable, this

relation is equivalent to that C̆dCd = CconCcon where Cd is
the controllablility matrix of (Ad,Bd) and Ccon is that of

(Acon,Bcon). Thus, C̆d is given by

C̆d = CconCconC−1d . (10)

It is trivial to see that D̆d = kd. Thus the existence of C̆d

and D̆d has been proved.

Regarding the weights wi, we first rewrite

C̆d =

N∑
i=1

wiCde
A i

N Ts = w


Cde

A 1
N Ts

...

Cde
ATs

 =: wCd,N (11)

where w = [w1, . . . , wN ]. In addition, we obtain another

relation for the weights from D̆d, i.e.,

kd =

N∑
i=1

wiCd

∫ i
N Ts

0

eA( i
N Ts−τ)Bdτ =: wDd,N . (12)

Collecting the conditions (11) and (12) yields

w
[
Cd,N , Dd,N

]
=
[
C̆d, D̆d

]
(13)

Since M =
[
Cd,N , Dd,N

]
, the proof is complete. �

From Lemma 1 we propose a design procedure for GS as
follows.

Design Procedure 1

(1) Choose the number of subintervals N .
(2) Choose n desired zeros z1, z2, . . . , zn.
(3) Choose the gain kd.
(4) Calculate the weights w1, . . . , wN from (13).

Sometimes, it is desirable that
∑
wi = 1 to ensure that

y̆k = y(kTs) when y(t) is constant during ((k− 1)Ts, kTs].
In this case, solve (13) with kd = 1 and w replaced by w∗,
and then set kd = 1/(

∑
w∗i ) and w = kdw

∗.

Example 1. We consider a two mass system in Fig. 2
taken from Back et al. (2017). The dynamic equation is
given by

Fig. 2. Two mass system under attack a.

m1ẍ1 = b2(ẋ2 − ẋ1) + k2(x2 − x1)− k1x1
m2ẍ2 = u+ a− b2(ẋ2 − ẋ1)− k2(x2 − x1)

y = x1.

In this example, we assume a = 0. With m1 = m2 = 1kg,
k1 = k2 = 1N/m and b2 = 1Ns/m, the transfer function
from u to y becomes G(s) = (s+1)/(s4+2s3+3s2+s+1).
Since we have a stable zero at −1, it is a minimum phase
system. However, the discrete-time system under ZOH and
SS becomes of non-minimum phase for sufficiently small
sampling time since the original system has a relative
degree 3. In fact, with Ts = 0.1s, we have a normal form
representation (3) of this system with

Sd =

[
0 1 0
0 0 1

0.86 2.58 −2.99

]
, Pd =

[
0
0
1

]
, ψd =

[
5.02
20.04
−28.28

]
,

φd = 6.78, gd = 1.62× 10−4, µ = 1. (14)

Since the eigenvalues of Sd are −3.63, −0.26, 0.90, the
discrete-time system is now of non-minimum phase.

As mentioned earlier, zero assignment can be done by
using GH instead of ZOH (Back et al., 2017). We would
like to illustrate that the zero assignment method devel-
oped in this paper has advantages over GH-based ap-
proach. To see this, we follow the procedure proposed
by Back et al. (2017) with N = 4 to place the zeros at
zd,1 = e−Ts and zd,2 = zd,3 = 0, which results in h =
[20.89,−21.97, 3.14, 1.94]>. Similarly, following Design
Procedure 1 with N = 5, we assign the discrete-time
zeros at zd,1 = e−Ts , zd,2 = zd,3 = zd,4 = 0. The weights
are computed as w = [−6.75, 17.49,−1.41,−27.64, 19.30].

Fig. 3 shows step responses of both systems. For the
case with GH, shown in Fig. 3a, it is observed that the
blue line (ξ3: the third component of ξ(t)) fluctuates
severely between sampling instants. It is noted that the
state variables η and ξ mentioned in the figures are those
of continuous-time system represented in normal form
(hence, we have three component of ξ and one of η). This
phenomenon is typically observed when GH is employed
because even if the (discrete-time) input applied to the
system is constant, the actual input u(t) generated by
GH depends on the pattern which is not constant. On
the contrary, for the system using GS, the inter-sample
behavior is significantly improved as shown in Fig. 3b. It
is noted that if GS is used instead of SS, the output signal
y̆k might be different from the output of the continuous-
time system in the transient.

Now, we would like to investigate the sensitivity to the
shift of intrinsic zeros. Suppose the desired zero is shifted
by 0.002% from the intrinsic zero e−Ts corresponding to
the zero at −1 of the continuous-time system. The gains
for GH is obtained as h = [−2.56, 47.76,−66.01, 24.81]>
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(a) Continuous-time state trajectory under GH.
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(b) Continuous-time state trajectory and discrete-time output from
GS.

Fig. 3. Comparison of system behavior: GH versus GS.
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(a) Continuous-time state trajectory under GH, 0.002% shift of intrin-
sic zero.

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

2

3

(b) Continuous-time output and discrete-time output from GS, y̆k,1:
0.002% shift of intrinsic zero, y̆k,2: 5% shift of intrinsic zero.

Fig. 4. Comparison of system behavior under intrinsic zero
shift: GH versus GS.

which is quite different from the case with zd,1 = e−Ts.
It is remarkable that, on the contrary, the weights for
GS is obtained approximately the same as the case with
zd = [e−Ts , 0, 0, 0]. If we shift the intrinsic zero by 5%,
we have w = [0.89,−3.59, 5.43,−3.64, 0.91] × 106, which
illustrates that the weights are less sensitive to the shift

of intrinsic zeros. The effect of intrinsic zero shift is shown
in Fig. 4. As can be seen in Fig. 4a, we have larger
fluctuations between sampling instants and it comes from
larger gains. On the other hand, in the cases under GS,
the system trajectories remain the same because the same
inputs are applied to the system. It is noted that even if
5% shift is considered, the output of GS, y̆k remains near
the continuous-time output signal. From these simulation
results, we can observe that GS-based zero assignment is
more insensitive to the intrinsic zero shift.

4. NEUTRALIZATION OF ZDA: TWO MASS
SYSTEM

As described in the previous section, GS allows us to place
zeros of the discrete-time system at desired locations. This
section explains how to use GS to enhance security against
ZDA.

Consider the situation where a hacker launches ZDA on
a network-controlled system in Fig. 2 where the physi-
cal (continuous-time) system’s dynamics is known to the
hacker. Suppose that using GS, the discrete-time sys-
tem’s zeros are all assigned inside the unit circle (zd =
[e−Ts , 0, 0, 0]), and the control input received over the
network uk is zero. In this situation, two cases are consid-
ered depending on the hacker’s choice of ZDA.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

Fig. 5. Continuous-time state and the sampled output for
Case 1.

Case 1: Suppose a hacker assumes that the network-
controlled system is implemented using ZOH and SS.
Then, the hacker injects the attack signal generated by the
dynamics (4). Fig. 5 shows the response of the system. In
the figure, the red line is the output of the physical system,
and the blue circles and black circles are the output signal
generated by GS and SS, respectively. The signal from SS
remains zero, while the signal from GS is diverging along
with the continuous-time state. One can observe that at
t = 0.8s, we have yk,GS sufficiently away from the nominal
value, and thus conclude that an attack is present. This
illustrates that ZDA can be detected by using GS.

Case 2: Suppose a hacker has full information about the
discrete-time system, including the presence of GS and the
exact location of assigned zeros. In this case, the hacker can
take a more sophisticated ZDA with the full information
on the system, but the situation is still unfavorable to the
hacker. In fact, the hacker will build a ZDA given by

zk+1,GS = Sd,GSzk,GS

ak,GS = − 1

gd,GS
ψ>d,GSzk,GS.

(15)
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(a) Attack signal generated by (15).

(b) Dynamic response to ZDA under Case 2.

(c) Discrete-time output to ZDA under Case 2.

Fig. 6. Attack and response under Case 2.

This attack signal, however, has no significant effect on the
system since Sd,GS is Schur stable so that ak,GS converges
to zero exponentially, as shown in Fig. 6a. When the attack
ak,GS is injected into the system, as expected, the effect of
ZDA on the internal state diminishes to zero as time goes
by, as shown in Fig. 6b. The output signal also converges
to zero as shown in Fig. 6c,

From two cases considered above, we can conclude that
if GS is used and properly designed, ZDA is neutralized
in the sense that if the hacker does not have sufficient
information on the system, the ZDA is detectable and if
the hacker has full information, then the attack will not
be effective anymore.

5. CONCLUSION

In this paper, a new countermeasure against the zero
dynamics attack has been proposed. It employs the gen-
eralized sampler, which takes a weighted average of inter-
samples, instead of simple sampler that is frequently used
in practice. Although this approach shares the same idea of
zero assignment with the generalized hold based approach,
the proposed strategy seems to be more effective since the
unfavorable inter-sample behavior can be avoided. Com-

pared to other approaches, the proposed idea does not need
to hide information on system as well as the generalized
sampler, which is an additional benefit. As future research
topics, we plan to investigate the robust zero assignment
problem using generalized sampler and apply the theory
into real systems.
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