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Abstract: The control of flying qubits is crucial for the interconnection of quantum information
processing units in the future applications. Physically, this class of problems can be modeled by
the radiation of optical fields from a standing qubit (natural or artificial atoms). The photon
statistics of the output field emitted from a quantum system coupled to multiple waveguides is
complicated when the exciton number is not conserved, especially in presence of coherent driving
that is crucial for control and optimization. In this paper, we use quantum stochastic differential
equation (QSDE) to describe the photon generation process, and derive the dynamical jumps
induced by photon emission. Numerical simulations show that this model can be applied to
analyze the manipulation process of single qubits.
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1. INTRODUCTION

The emergence of quantum computing technology has
been attracting intense researches all over the world Ben-
nett and H. (1995). As the elementary unit of quantum
information processing, quantum bits (qubits) are to be
precisely controlled and measured so as to accomplish com-
putational tasks that are superior over classical computers.

As is well-known in the famous Divincenzo’s criteria Di-
vincenzo (1995), the large-scale quantum computation re-
quires both standing qubits (realized by natural or arti-
ficial atoms Kane (1998); Kielpinski et al. (2002); Blais
(2004)) and flying qubits. The latter delivers quantum in-
formation among quantum computing units (e.g., between
QPU and quantum storage). The natural carrier of flying
qubits is the photon states of radiation fields emitted from
or absorbed by the standing qubits.

It is recognized that control technology is crucial to the
industrialization of quantum computers that has been
believed to be possible in a foreseeable future. So far,
most studies are casted to the control of standing qubits,
but very few studies are seen for flying qubits. Finding a
general solution to this problem is difficult. There are some
methods by tracing out the fyling qubits based on the
canonical Lindblad master equation Carmichael (1991),
which is under the assumptions that (1) the states of the
atom and the waveguide are separated at any time and (2)
the driving field is much weaker than atom’s frequency.
In 1985, Cardinger and Collett solved the output photon
state Gardiner and Collett (1985), which can be calculated
through correlation functions. Recently, the solutions are
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obtained in various different approaches. For example, the
calculations of few-photon scattering states can be done
with low-dimensional coherently-driven quantum emitter-
s Fischer et al. (2018b,a); Hanschke et al. (2018); Trivedi
et al. (2018) via stochastic master equations using coarse-
grained field vector Shi et al. (2015); Baragiola et al. (2012)
or continuous Matrix Product States Verstraete and Cirac
(2010); Cuevas et al. (2018).

In this paper we will explore this problem based on
the Quantum Stochastic Differential Equation (QSDE)
driven by time-dependent coherent fields, which models
the control of emission process of flying qubits in atom-
waveguide systems. We find that, although the model
is essentially infinite-dimensional, the solutions to the
output photon states can be obtained from that of a
dissipative finite-dimensional differential equation. This
makes it possible to build up a control model for the
optimization of flying qubits in waveguide. The remainder
of this paper is organized as follows.

2. RADIATION PROCESS IN ONE-DIMENSIONAL
WAVEGUIDES

Suppose that we have a general open quantum system in
which the Hamiltonian involves coherent controls:

Ĥ(t) = Ĥ0 +

m∑
k=1

uk(t)Ĥk, (1)

where Ĥ(t) is the internal Hamiltonian of the atom (pho-
ton generator) that may involve time-varying coherent
controls uk(t)’s that are posed through Hk’s.

As is shown in Fig. 1, the flying qubits are randomly emit-
ted to the (multiple) waveguides coupled to the emitter.
The corresponding QSDE then reads
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Fig. 1. A snapshot of multiphoton emission from an N -
level atom to r waveguides. The photons are randomly
emitted to each waveguides and can be detected in the
waveguide.

dÛ(t) =

−
iĤ(t) +

1

2

r∑
j=1

L̂†j(t)L̂j(t)

 dt

+

r∑
j=1

(
dÂ†j(t)L̂j(t)− L̂

†
j(t)dÂj(t)

) Û(t),

where L̂j(t) represents the coupling operator of the atom
to the jth waveguide, which may also vary with time.

dÂ†j(t) is the quantum noise operator of the jth waveguide.

Suppose that the system’s Hilbert space isH = span{|0〉, |1〉, · · · , |N〉}
(N could be infinity). Let |Ψ(t)〉 be the entire state of the
atom-waveguide system, and assume the composite system
is initially at |Ψ(0)〉 = |Ω〉 ⊗ |ψ(0)〉, i.e., the waveguide is
empty. As the definition of the increments B(t), B†(t) that
point to the future, [U(t), dB(t)] = [U(t), dB†(t)] = 0 that
will result in dB(t)|Ψ(t)〉 = 0. Then the QSDE of |Ψ(t)〉
can be simplified as

d|Ψ(t)〉 =

−iĤeff(t)dt+

r∑
j=1

dÂ†j(t)L̂j(t)

 |Ψ(t)〉, (2)

where Heff(t) = H(t)− i
2

∑r
j=1 L̂

†
j(t)L̂j(t).

To resolve this equation, according to the temporal mode
basis we expand |Ψ(t)〉 as follows:

|Ψ(t)〉 =|Ω〉 ⊗ |ψ0(t)〉+

∞∑
`=1

∑
j1,··· ,j`

∫ t

0

∫ z1

0

· · ·
∫ z`−1

0

dÂ†j1(z1) · · · dÂ†j`(z`)|Ω〉 ⊗ |ψ
j1,··· ,j`
z1,··· ,z`(t)〉, (3)

where the (unnormalized) state vectors associated with
each multi-photon states are defined as follows:

|ψ(t)〉=
N∑
k=0

ξ0(t, k)|k〉, (4)

|ψj1,··· ,j`z1,··· ,z`(t)〉=
N∑
k=0

ξj1,··· ,j`z1,··· ,z`(t, k)|k〉, (5)

in which the function ξj1,··· ,j`z1,··· ,z`(t, k) indicates the probabil-
ity amplitude density of observing ` photons at positions
z1 > · · · > z` (assuming c = 1) in the j1th,· · · ,j`th
waveguides, respectively, at time t and when the system is
at state |k〉.
The differential of |Ψt〉 on the left hand can be expanded
as

d|Ψ(t)〉= |Ω〉 ⊗ |ψ̇0
t 〉+ dt

∞∑
`=1

∑
j1,··· ,j`

∫ t

0

∫ z1

0

· · ·
∫ z`−1

0

dA†z1 · · · dÂ
†
z`
|Ω〉 ⊗ |ψ̇j1···j`z1,··· ,z`(t)〉

+dÂ†t

∞∑
`=1

∑
j1,··· ,j`

∫ t

0

∫ z2

0

· · ·
∫ z`−1

0

dÂ†z2 · · · dÂ
†
z`
|Ω〉 ⊗ |ψj1,j2,··· ,j`t,z2,··· ,z` (t)〉,

where the “dot” represents partial derivative with respect
to time t. Replacing Eq. (2) on the right hand and com-
pare the atomic states associated with each multiphoton
state dÂj1†z1 · · · dÂ

j`†
z`
|Ω〉, we obtain the following group of

equations on the wave vectors:

|ψ̇j1,··· ,j`z1,··· ,z`(t)〉=−iHeff(t)|ψj1,··· ,j`z1,··· ,z`(t)〉, (6)

for all ` = 0, 1, · · · and 1 ≤ j1, · · · , j` ≤ r, and the
boundary conditions:

|ψj1,j2,··· ,j`t,z2,··· ,z` (t)〉= L̂j1(t)|ψj2,··· ,j`z2,··· ,z`(t)〉, (7)

i.e., the order of the tensor can be reduced by contracting
z1 when z1 = t.

Notice that Eq. (6) is uniform for all j1, · · · , j`, and hence
we introduce the N ×N dissipative propagator

˙̂
P (t) = −iHeff(t)P̂ (t), (8)

where P̂ (0) = IN , which can be always numerically

solved for given time-varying Ĥ(t) and L̂j(t). We denote

the Green function (or transition operator) Ĝ(t, τ) =

P̂ (t)P̂−1(τ) from τ to t, then

|ψj1,··· ,j`z1,··· ,z`(t)〉 = Ĝt,τ |ψj1,··· ,j`z1,··· ,z`(τ)〉, (9)

for ` = 0, 1, · · · , and any t ≥ τ .

Repeatedly using Eq.(6) and Eq.(8), we obtain the follow-
ing recursive solution:

|ψj1,··· ,j`z1,··· ,z`(t)〉
= Ĝ(t, z1)|ψj1,··· ,j`z1,··· ,z`(z1)〉
= Ĝ(t, z1)L̂j1(z1)|ψj2,··· ,j`z2,··· ,z`(z1)〉
= · · ·
= Ĝ(t, z1)L̂j1(z1)Ĝ(z1, z2)L̂j2(z2)

· · · Ĝ(z`−1, z`)L̂j`(z`)Ĝ(z`, 0)|ψ(0)〉,

(10)

which clearly describes the process of observing a photon
in the jpth waveguide at position zp. The emission of

photons (indicated by L̂jp(zp) into the jpth waveguide)
are separated by nonunitary evolutions.

In terms of the propagators defined in (8), the above
solution can also be written in a more compact form:

|ψj1,··· ,j`z1,··· ,z`(t)〉 = P̂ (t) ˆ̃Lj1(z1) · · · ˆ̃Lj`(z`)|ψ(0)〉, (11)

where each ˆ̃Ljp(zp) = P̂−1(zp)L̂jp(zp)P̂ (zp).

3. THE OUTGOING FLYING QUBITS

The radiation state of the field in the waveguides after
leaving the atom can be simply obtained by pushing
t→∞:

|ψj1,··· ,j`z1,··· ,z`(∞)〉 = P̂ (∞) ˆ̃Lj1(z1) · · · ˆ̃Lj`(z`)|ψ(0)〉. (12)
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Under most circumstances, the atom will decay to the
ground state |0〉 and thus P̂ (∞) = |0〉〈0|, and only the

ground-state component of |ψj1,··· ,j`z1,··· ,z`(∞)〉 survives, i.e.,

|ψj1,··· ,j`z1,··· ,z`(∞)〉 = ξj1,··· ,j`z1,··· ,z`(∞, 0)|0〉, (13)

for all jp and zp. Therefore, the asymptotic state |Ψ(∞)〉
can be decomposed as

|Ψ∞〉 =

ξ(∞, 0) +

∞∑
`=1

∑
j1,··· ,j`

∫ t

0

∫ z1

0

· · ·
∫ z`−1

0

ξj1,··· ,j`z1,··· ,z`(∞, 0)dÂj1†z1 · · · dÂ
j`†
z`

]
|Ω〉 ⊗ |0〉.

(14)

Now it is clear that the scalar functions ξj1,··· ,j`z1,··· ,z`(∞, 0)
characterizes the shape of `-photon states emitted to the
waveguides.

In the case that the atom decays to some superposition
state, the waveguides and the atom will be entangled and
thus there are no explicit waveforms for each `-photon
components. The role of flying qubits is to transfer quan-
tum information between standing qubits. It is natural to
interpret the above process as the sending of flying qubits,
via which the standing qubit state is transferred to the
radiation field.

4. A SIMULATION EXAMPLE

Consider the case of a two-level emitter driven by coherent
control fields. In the rotating-frame, the coherent part of
the Hamiltonian is as follows:

Ĥ(t) =
u(t)

2
σ̂+ +

u∗(t)

2
σ̂−, (15)

where σ̂± are the standard Pauli matrices. Suppose the
emitter is coupled to only one waveguide with coupling
operator being L̂ =

√
2γσ̂−.

We first look at the spontaneous emission that can be
directly derived from our model. In this case, the system
starts from the excited state |ψ(0)〉 = |1〉 and the driving
field u(t) = 0, under which the effective Hamiltonian
becomes

Ĥeff(τ) = −iγσ̂+σ̂−. (16)

It is easy to calculate the transition operator

P̂ (t) =

[
e−γt 0

0 1

]
, (17)

under the basis

|0〉 =

[
0
1

]
, |1〉 =

[
1
0

]
. (18)

The asymptotic transition operator

P̂ (∞) =

[
0 0
0 1

]
= |0〉〈0| (19)

indicates that the atomic state eventually decays to the
ground state.

According to Eq. (12), we can calculate the outgoing
single-photon wavepacket

ξ1
z(∞, 0) =

√
2γe−γz, (20)

and ξ1,··· ,1
z1,··· ,z`(∞, 0) = 0 for all multi-photon processes. The

probability of emitting single-photon is

N1 =

∫ ∞
0

|ξ1
z(∞, 0)|2dz = 1, (21)

which agrees with the well-known results of spontaneous
emission.

Now let us turn to the realistic case of generating flying
qubits. The emitter is initially prepared at the ground
state |ψ(0)〉 = |0〉 and flipped to |1〉 by a π-pulse, after
which the photon is emitted. If the duration of the π-
pulse is sufficient short (under high-power driving fields),
the emitter is instantaneously pumped and then decays,
and this is equivalent to the above spontaneous emission
process.

When the pulse width is not sufficiently short, the radiated
field will not be at a perfect single-photon state, and the
single-photon part can be precisely solved by our derived
model. Let u(t) = Ωeiφ for 0 < t < T , and u(t) = 0
for the rest of time, where Ω is the power of the Rabi
driving field. Since the phase φ dosen’t affect the statistical
distribution of emitted photons, we chose φ = 0 in the
following calculations. The effective Hamiltonian

Ĥeff(t) = Ĥ(t)− iγσ̂+σ̂−, (22)

in which the non-vanishing Ĥ(t) during 0 < t < T injects
energy to the atom. According to the strength of the
power Ω, we discuss the emitted single-photon state in
the following three classes.

In the strong-driving regime, i.e., when Ω > γ, the
energy’s injection is faster than its dissipation rate. Let

ω =
√

Ω2 − γ2 , we have

P̂ (t) =

e−
γt
2

cos
ωt

2
− γ

ω
sin

ωt

2

−iΩ
ω

sin
ωt

2
−iΩ
ω

sin
ωt

2
cos

ωt

2
+
γ

ω
sin

ωt

2

 , (23)

for 0 < t < T and

P̂ (t) =

[
e−γ(t−T2 )

e−
γT
2 )

]
×cos

ωT

2
− γ

ω
sin

ωT

2

−iΩ
ω

sin
ωT

2
−iΩ
ω

sin
ωT

2
cos

ωT

2
+
γ

ω
sin

ωT

2

 , (24)

for t > T .

According to Eq. (12), we can calculate the outgoing zero-
photon wavepacket

ξ(∞, 0) = e−
γT
2 (cos

ωT

2
+
γ

ω
sin

ωT

2
), (25)

the outgoing single-photon wavepacket

ξ1
z(∞, 0) = − i

√
2γΩ2e−

γT
2

ω2
sin

ωz

2

cos

(
ωT

2
− ωz

2
− ϕ

)
,

(26)

with ϕ = arctan γ/ω ,for z < T and

ξ1
z(∞, 0) = −

i
√

2γΩe
γT
2 sin ωT

2

ω
e−γz, (27)

for z > T .

In the balanced-driving regime, i.e., when Ω = γ, the
energy is injected equally fast with its dissipation rate.
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Under this circumstance, the zero-photon wavepacket can
be calculated to be

ξ(∞, 0) = e−
γT
2 (1 +

γT

2
), (28)

the single-photon packet can be derived to be

ξ1
z(∞, 0) = − i

√
2γe−

γT
2 γz

2

(
1 +

γT

2
− γz

2

)
, (29)

for z < T and

ξ1
z(∞, 0) = − i

√
2γγTe

γT
2

2
e−γz, (30)

for z > T .

In the weak-driving regime, i.e., when Ω < γ, the energy
injection is slower than its dissipation rate. Let ω =√
γ2 − Ω2 , we can derive the single-photon packet (by

simply replacing the triangular functions in the strong-
driving case with the corresponding hyperbolic functions)
as follows: the zero-photon wavepacket can be calculated
to be

ξ(∞, 0) = e−
γT
2 (cosh

ωT

2
+
γ

ω
sinh

ωT

2
), (31)

the single-photon packet can be derived to be

ξ1
z(∞, 0) =

√
2γΩ2e−

γT
2

ω2
sinh

ωz

2

cosh (
ωT

2
− ωz

2
− ϕ),

(32)

with ϕ = artanh γ/ω, for z < T and

ξ1
z(∞, 0) =

√
2γΩe

γT
2 sinh ωT

2

ω
e−γz, (33)

for z > T .

Figure 2 displays the profiles of the single-photon wavepack-
ets generated by rectangular strong, balanced and weak
driving π pulses, respectively Ω = 0.4γ, γ and 2γ, with
γ = 2π × 5MHz. The single-photon wavepacket could be
calculated from Eqs. (25-26), (28-29) and (31-32). It indi-
cates that single-photon wavepacket is sinusoidal, quadrat-
ic curve and hyperbolic functions during the pulse, and
there is a peak before the end of the pulse. After the pulse
is over, the wavepacket exponentially decays at the rate of
spontaneous radiation.

We also display the probability of single photon emission
and zero-photon’s in Fig. 3. The probability can be calcu-
lated by integrating the single-photon pulse, i.e.,

N1 =

∫ ∞
0

|ξ1
z(∞, 0)|2dz, (34)

N1 and zero-photon’s can be calculated by Eqs. (24), (27)
and (30)

N0 = |ξ(∞, 0)|2, (35)

N0. It can be seen that the single-photon probability
approaches 1 when the driving power is strong, which
leads to a perfect single-photon that can be employed as a
flying qubit. On the contrary, the zero-photon probability
approaches 1 when the driving power is feeble. Otherwise,
the waveguide will have certain probability of being empty
(corresponding to zero-photon case) and multi-photon
state.
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Fig. 2. The driving π pulses (above) and the correspond-
ing emitted single-photon wavepackets (below) under
weak, critical and strong drivings.
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Fig. 3. The dependence of single-photon emission proba-
bility (N1) and 0-photon’s (N0) under weak, critical
and strong driving pulses.
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5. DISCUSSIONS AND CONCLUSIONS

To conclude, we build up a dynamical model for the control
of flying qubits via analysis of the underlying coherent-
ly driven QSDE. We show that this essentially infinite-
dimensional equation can be reduced to the solution of
a finite-dimensional ordinary differential equation [see E-
q. (8)], from which one can calculate the single- and multi-
photon wavepackets.

This work lays the foundation for analysis, observation and
control of flying qubits. However, we note that the derived
model should be cautiously used as the multi-photon
state expansion may diverge under certain circumstances.
For example, we found in the numerical example that
the multi-photon expansion violates the conservation of
probability in the weak-driving regime where the pulse
duration is longer than the coherent time. We conjecture
that the model should be valid under sufficiently short
pulses. Under what condition can the expansion converge,
or whether one can alternate the expansion for better
convergence, are open problems.

Upon the validation of expansion, many techniques can be
introduced to the control of flying qubits, such as optimal
control and robust control. We expect that this model can
be used to synthesize shaped single-photons and entangled
photons, for the launch and absorption of flying qubits.
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