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(e-mail:hsira@cinvestav.mx)

Abstract: In this article, the analysis and implementation of an alternative Flat Filtering
Control for a class of partially known fourth order flat systems is given. The Flat filtering
control uses the cascade property of the system, which leads to a simplified control design in
which high order time derivatives are algebraically simplified in terms of low order measurable
states and the subsequent integral compensation. The control proposal is implemented and
validated experimentally in a fourth order mechanical system (rotatory flexible joint) with
accurate tracking results.
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1. INTRODUCTION

Active Disturbance Rejection Control (ADRC Han (2009))
is a robust control methodology against process parameter
variations that has been extensively studied during the last
years. Numerous recent approaches have been developed
to address many academic and industrial problems such
as motion control (Zhao and Gao (2013), Sen et al.
(2019), Hernández-Melgarejo et al. (2019), Touhami et al.
(2019)), power electronics (Wu et al. (2017), Huangfu et al.
(2019), Sun et al. (2019), Zheng and Gao (2018)), robotic
tele-operation (Gutiérrez-Giles and Arteaga-Pérez (2019),
Gutiérrez-Giles et al. (2019)), industrial processes (Zheng
and Gao (2012), Zheng et al. (2018)), underactuated
systems (Ramı́rez-Neria et al. (2016), Sira-Ramirez et al.
(2018), Ramı́rez-Neria et al. (2019)), among others. These
academic and industrial study cases have shown excellent
performance in terms of accuracy, repeatability, energy
efficiency, easy implementation and intuitiveness of each
control term.

The close relation of ADRC and an accurate state and dis-
turbance estimation has motivated the use of alternative
schemes of disturbance approximation. From a practical
perspective, the use of simple controllers with the least
possible information of a complex system is a challenging
control problem. In this sense, Generalized Proportional
Integral (GPI) Control (Fliess et al. (2002)) has provided
the path to obtain a technique of state approximation
which, along with an iterative integral compensation has
let an observer-free output based control. The link between
ADRC and GPI control was stated though the Flat Filter-
ing Control, which constitutes a reinterpretation of GPIC
in the form of classical compensation networks (CCN). (see
Sira-Ramirez et al. (2018), Sira-Ramı́rez et al. (2016)).

? This work was partially supported by the CONACYT México and
SIP-IPN under research grants SIP20201675, SIP20201830.

As a result was developed a tool for output feedback
control design in linear controllable systems. A controllable
linear system exhibits a natural flat output (Brunovsky’s
output) from which the system is also trivially observable.
Flat filtering is based on the fact that a GPI controller
is viewed as a dynamical linear system which exhibits
as a natural flat output a filtered version of the plant
output signal. This property is particularly helpful in the
design of efficient output feedback stabilization schemes
and in solving output reference trajectory tracking tasks.
Flat Filtering approach is naturally extended to efficiently
handling control tasks on significantly perturbed differen-
tially flat SISO nonlinear systems, affected by unknown
endogenous nonlinearities, in the presence of exogenous
disturbances and un-modeled dynamics. Recently, in Sira-
Ramı́rez et al. (2019) is shown that, both, ADRC and flat
filtering control are equivalent by means of an algebraic
procedure involving a reduced order observer structure.
This relation allows to use typical procedures of ADRC
based control in the context of flat filtering control design.
One of the alternative approaches of flatness based ADRC
design deals with the simplification of the controllers
through the use of the cascade flat property (Ramı́rez-
Neria et al. (2014)) which allows to reduce the high order
time derivatives estimation though algebraic equivalence.
This scheme is typically used in a class of fourth order
underactuated systems whose approximate linearization
is flat (controllable). This principle can be also extended
to a general class of fourth order nonlinear feedback lin-
earizable systems (typically underactuated), which also
exhibit the cascade property, reducing the complexity of
the controller and leading to an alternative control design
with the essence of the flat filtering approach.

In this article, the robust control of a class of fourth order
differentially flat systems with partially known structure is
tackled by means of a flat filtering control in combination
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with the cascade property, leading to a simplified family
of controllers of GPI class.

The article is organized as follows: Section 2 presents the
class of systems of study and the general control design.
Section III the mathematical model of a flexible link
arm and controller design details is presented. Section IV
presents the description of a laboratory prototype, as well
as the corresponding experimental results are presented.
A brief discussion of the results and the conclusions are
given in Section V.

2. DYNAMICS OF FOURTH ORDER FLAT
PERTURBED SYSTEMS

Let us denote the flat output as yf . Consider a class of
disturbed fourth order differentially flat systems, whose
dynamics is described by the following equation:

y
(4)
f

= α

(
yf , ẏf , ÿf , y

(3)
f

)
u(t) + Φ̃

(
t, yf , ẏf , ÿf , y

(3)
f
, ϕ(t)

)
(1)

The disturbance function Φ̃(·), lumps all the endogenous
forces such as internal, non modeled or nonlinear dynam-
ics. The exogenous forces are represented by ϕ(t). The
disturbance depend on the time, the flat output and its
time derivatives. It is assumed that only flat output yf
variable is available for measurement. The control again
α(·) is a nonlinear unknown gain depending of the set of
the phase variables associated with the flat output yf . The
nonlinear gain it is represented as follows

α
(
yf , ẏf , ÿf , y

(3)
f

)
= K + α̃

(
yf , ẏf , ÿf , y

(3)
f

)
(2)

Where K is a known constant gain and α̃
(
yf , ẏf , ÿf , y

(3)
f

)
represents the high order terms (HOT). Following the
methodology of the model free control (Fliess and Join
(2013)), and using well established procedures in ADRC
control, the original model (1) is simplified as follows

y
(4)
f = Ku(t) + Φ (t) (3)

where Φ (t) is the total disturbance (see Han (2009))
described as follows:

Φ (t) = α̃

(
yf , ẏf , ÿf , y

(3)
f

)
u(t) + Φ̃

(
t, yf , ẏf , ÿf , y

(3)
f
, ϕ(t)

)
(4)

the total disturbance, in addition to exogenous and en-
dogenous disturbances, it depends now of the control input
itself. Let us define the nominal reference system which
depends on the desired output y∗(t) and its dynamics
(Sira-Ramirez and Agrawal (2004))

y∗(4) = Ku∗(t) (5)

Then, the tracking error is defined as

ey = yf − y∗(t) (6)

whose dynamics is given by the following expression

e(4)y = Keu(t) + Φ(t) (7)

where eu(t) = u(t)− u∗(t). The cascade representation of
(7) is shown in Fig. 1. The integral reconstructors based on
neglecting the total disturbance term Φ(t) in the simplified
model (7) are implemented as follows 1

1 It is adopted, henceforth, the following notation for
multiple integrations on a given time function φ(t)∫ t
0

∫ σ1
0

· · ·
∫ σi−1

0
φ(σi)dσi · · · dσ1 =

(∫ (i)
φ(t)

)
,

(∫ (0)
φ(t)

)
=

φ(t)

Fig. 1. Cascade block representation

ê(3)y = K

∫
eu (8)

ˆ̈ey = K

∫ (2)

eu (9)

ˆ̇ey = K

∫ (3)

eu (10)

The intregal reconstructors are shown in the Fig. 2.

Fig. 2. Integral reconstructors

Since the total disturbance Φ(t) is unknown, the flat out-

put time derivatives ê(3)y, ˆ̈ey and ˆ̇ey depend only of the
control input error eu and the gain of the system K. So,
the time derivatives can not be estimated accurately with
(8)-(10) if they are corrupted by noise. In order to over-
come this problem, the cascade flat property is used (see
Ramı́rez-Neria et al. (2016), Ramı́rez-Neria et al. (2019))
typically found on underactuated mechanical systems. The
error dynamics (7) are represented as a cascade connection
of two independent blocks (see Fig.3): The first one, con-
trolled by the input error eu whose corresponding output is
given as the acceleration error. For flat systems (1) using
the cascade flat property we found that the acceleration
error ˆ̈ey is a function which depends on the measurable
flat output yf the available states of the system and the
desired trajectory ÿ∗f (t). Let us define the acceleration

error ˆ̈ey = e2y, now e2y acts as a measurable auxiliary
input to the second block, which consists of a chain of
two integrators associated, respectively, with the phase
variables: ˆ̇ey and ey. Since e2y is measurable, the time
derivatives of the tracking error (8)-(10) can be estimated
as follows

ê(3)y = K

∫
eu (11)

ˆ̈ey = e2y = ÿf − ÿ∗(t) (12)

ˆ̇ey =

∫
e2y (13)

Notice that only ê(3)y is estimated using the control input
as is shown in Fig. 3. We propose the application of the
following feedback control law

eu = − 1

K

(
k3ê

(3)
y + k2 ˆ̈ey + k1 ˆ̇ey + k0ey

)
(14)

if we apply the control law (14) to the simplified error dy-
namics (7) may not lead to accurate tracking results since
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Fig. 3. Flat output property

the integral reconstructors ê(3)y, ˆ̈ey and ˆ̇ey from equations
(8)-(10) are inaccurate due to the total disturbance Φ(t)
is not compensated. To overcome these facts, as stated
in flat filtering approach, let proceed to compensate both
effects with a finite number m of iterated integrals of the
tracking error (see Sira-Ramı́rez et al. (2016) and Sira-
Ramirez et al. (2018)). The proposed controller (14) is
now expressed as:

eu = − 1

K

(
km+3ê

(3)
y + km+2

ˆ̈ey + km+1
ˆ̇ey + kmey

+km−1

∫ (1)

ey + km−2

∫ (2)

ey + · · ·+ k0

∫ (m)

ey

)
(15)

using the advantage of cascade property, the estimated
states (11)-(13) are substituted in (15)

eu(t) = − 1

K

(
km+3K

∫
eu + km+2e2y + km+1

∫
e2y

+kmey + km−1

∫ (1)

ey + km−2

∫ (2)

ey + · · ·+ k0

∫ (m)

ey

)
(16)

The proposed controller (16) can be represented in the
frequency domain as follows:

eu(s) = − 1

K

(
km+3K

eu(s)

s
+

(
km+2 +

km+1

s

)
e2y(s)

)
− 1

K

(
km +

km−1

s
+
km−2

s2
+ · · ·+ k0

sm

)
ey(s)

(17)

After some algebraic manipulations, the following parallel
controller structure is obtained

eu(s) = − 1

K

(
km+2s+ km+1

s+ km+3

)
e2y(s) (18)

− 1

K
(
kms

m + km−1s
m−1 + km−2s

m−2 + · · ·+ k0
sm−1(s+ km+3)

)ey(s)

The closed loop tracking error system, expressed in the
frequency domain, leads, after using s2ey = e2y(s) to the
following closed loop dynamics for the simplified perturbed
system (7)(
sm+4 + km+3s

m+3 + km+2s
m+2 + km+1s

m+1 + kms
m

+km−1s
m−1 + km−2s

m−2 + · · ·+ k0
)
ey(s) = smΦ(s)

(19)

We select the set of gains [km+3, km+2, . . . , k1, k0] match-
ing the close loop polynomial

P (s) = sm+4 + km+3s
m+3 + km+2s

m+2 + km+1s
m+1

+ kms
m + km−1s

m−1 + km−2s
m−2 + · · ·+ k0 (20)

with a Hurwitz polynomial: if m+ 4 is even

P (s) = (s2 + 2ζcωcs+ ω2
c )((m+4)/2) (21)

if m+ 4 is odd

P (s) = (s+ ωc)(s
2 + 2ζcωcs+ ω2

c )((m+3)/2) (22)

In order to implement the proposed controller in the time
domain, from (18) it is defined a filtered version of the
tracking error eyf (s) and the acceleration e2yf (s).

eyf (s) =
ey(s)

sm−1(s+ km+3)
(23)

e2yf (s) =
e2y(s)

s+ km+3
(24)

we define the following states e0 = eyf , e1 = ėyf , e2 =

ëyf , . . . , em−1 = e
(m−1)
f . The filtered error dynamics (23)

and (24) can be represented in state space as follows:

ėi = ei+1, i = 0, 1, . . . ,m− 2
ėm−1 = ey − km+3em−1

ėm = e2y − km+3em (25)

Finally the flat filtering control is synthesized using (18)
and (25) as follows

u(t) = − 1

K
(km+2e2y + (km+1 − km+2km+3)em + kmey

+(km−1 − kmkm+3)em−1 + km−2em−2 + · · ·+ k0e0)

+
1

K
y∗(4)(t) (26)

3. ROTARY FLEXIBLE JOINT CASE OF STUDY

Consider the Rotary Flexible Joint studied in the work
Ramirez-Neria et al. (2016), it consists of a free arm
attached to two identical springs. The springs are mounted
to an aluminum chassis which is fastened to the rotary
base which is actuated by a DC motor, the Figure 4 shows
a diagram of the system with the following parameters:
θ1 Angular position of the rotating base
θ2 Angular position of the arm
Ja Moment of inertia of the arm
Jb Moment of inertia of the rotating base
m Mass of the arm
l Arm length
ks Spring stiffness
τ Torque applied to the system

The angu-

Fig. 4. Rotary Flexible Joint diagram

lar position of the arm tip is defined by the relation

ϑ = θ1 + θ2
In order to determine the dynamic model of the flexible-
joint robot, the Euler-Lagrange approach was followed.
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Using the Euler Lagrange methodology with generalized
coordinates θ1, θ2, we obtain the dynamic of the system

τ = Jbθ̈1 + Jaϑ̈+
mgl

2
sin(ϑ)

0 = Jaϑ̈+Ksθ2 +
mgl

2
sin(ϑ)

the motor torque is represented with τm and the torque
applied to the system are related as: τ = Nτm, beingN the
mechanical advantage of the pulley system. The voltage
applied to the motor V (t), and the torque generated by
the motor τm, are obtained using the following simplified
relation

τm =
kτ
Rm

V (t)− k2τN

Rm
θ̇1

where Rm denotes the armature resistance, kτ represents
the torque constant of the motor. Using last relation, the
dynamics of the rotary flexible joint, are given by

Nkτ
Ra

V (t) = (Jb+Ja) θ̈1+Jaθ̈2 +
k2τN

2

Ra
θ̇1 +

mgl

2
sin(ϑ)

(27)

0 = Jaϑ̈+Ksθ2 +
mgl

2
sin(ϑ) (28)

In order to obtain a state space representation, the accel-
erations θ̈1 and θ̈2 can be fully determined

θ̈1 = a1θ2 − a2θ̇1 + bV (t) (29)

θ̈2 = −a3θ2 − a4 sin (θ1(t) + θ2) + a2θ̇1 − bV (t) (30)

where a1 =
k2τN

2

JbRm
, a2 = ks

Jb
, a3 = ks(Ja+Jb)

JaJb
, a4 = mgl

2Ja
,

b = kτN
JbRm

. Now, performing the variable change x :=

[x1, x2, x3, x4]T = [θ1, θ̇1, θ2, θ̇2]T then system (29)-(30)
can be rewritten as

ẋ(t) = f(x) + g(x)V (t), (31)

where

f(x) =

 x2
−a2x2 + a2x3

x4
a1x2 − a3x3 − a4 sin(x1 + x3)

 , g(x) =

 0
b
0
−b

 .

Now, the control law design via feedback linearization is
presented. Let define the output of the system as follows

h(x) = x1 + x3, (32)

We compute Lfh(x) the Lie derivatives of h(x) with
respect to f(x) are given as

ḣ(x) = Lfh(x) (33)

ḧ(x) = L2
fh(x) (34)

h(3)(x) = L3
fh(x) (35)

h(4)(x) = L4
fh(x) + LgL

3
fh(x)V (t) (36)

where

Lfh(x) = x2 + x4

L2
fh(x) = (a2 − a3)x3 − a4 sin(x1 + x3)

L3
fh(x) = −a4(x2 + x4) cos(x1 + x3) + (a2 − a3)x4

L4
fh(x) = +a4(a3 − a2)x3 cos(x1 + x3)

+ (a2 − a3)(a1x2 − a3x3) +
[
(x2 + x4)2

−(a2 − a3) + a4 cos(x1 + x3)] a4 sin(x1 + x3)

LgL
3
fh(x) = −(a2 − a3)b.

Since LgL
3
fh(x) 6= 0 in the whole state space, the relative

degree of the system is four. Notice that the flat output
coincides with yf = h(x), so we have

yf = x1 + x3 (37)

ẏf = x2 + x4 (38)

ÿf = (a2 − a3)x3 − a4 sin(x1 + x3) (39)

y
(3)
f = −a4(x2 + x4) cos(x1 + x3) + (a2 − a3)x4 (40)

y
(4)
f = KV (t) + Φ(t) (41)

with K = LgL
3
fh(t) and Φ(t) = L4

fh(x) notice that the
acceleration ÿf is measurable and the cascade flat property
can be used to simplify the control design. Given the flat
output trajectory error defined in equation (6)

ey = yf − y∗(t)

and the tracking error perturbed dynamics (7) for the
Flexible link arm system (37)-(41)

e(4)y = KeV (t) + Φ(t) (42)

with eV (t) = V (t) − V ∗(t). We propose the following flat
filtering controller using (25) and (26) with m = 5

ėi = ei+1, i = 0, 1, 2, 3
ė4 = ey − k8e4
ė5 = e2y − k8e5 (43)

V (t) = − 1

K
(k7e2y + (k6 − k7k8)e5 + k5ey

+(k4 − k5k8)e4 + k3e3 + k2e2 + k1e1 + k0e0)

+
1

K
y∗(4)(t) (44)

the set of gains is chosen matching close loop characteristic
polynomial with a Hurwitz polynomial

P (s) = s9 + k8s
8 + k7s

7 + k6s
6 + k5s

5 + k4s
4 + · · ·+ k0

P (s) = (s+ ωc)(s
2 + 2ζcωcs+ ω2

c )4 (45)

4. EXPERIMENTAL RESULTS

The experimental device is shown in Figure 5. It con-
sists of a DC motor NISCA: model NC5475, which drives
a rotating base through a synchronous belt and pulley
system with a 16:1 ratio. The main arm is attached to
the rotating base by two identical springs, resulting in a
fexible joint. Both, the angular positions of the rotating
base and the arm were measured with incremental optical
encoders of 1000 pulses/revolution. The data acquisition
is carried out through a data card Sensoray model 626.
This board, is responsible to read the signals from the
optical incremental encoders and supplies control voltage
to the power amplifier. The proposed control law was im-
plemented in the Matlab-Simulink environment. Finally,
the sampling time was set to be 0.001[s] with consid-
eration of the dominating dynamics in the mechanical
system under study. The rotary flexible joint parameters,
used to implement the control laws (44) are: l = 0.5[m],
m = 0.1633[Kg],Ja = 0.0136[Kg-m2],Jb = 0.002405[Kg-
m2], ks = 4[N-m/rad] and N = 16, while the motor
parameters are: kτ = 0.0724[N-m/A] and Rm = 2.983 [Ω].
The initial conditions for the test were [θ1(0), θ2(0)] this
implies that the flat output yf (0) = 0, the controller gains
were selected using ζc = 3.3 and ωc = 18. Fig. 6 depicts
the flat output trajectory performance, the tracking error
is showed in Fig. 7 we can observed it is bounded in a
region approximately of [−0.025, 0.025] rad. The control
voltage is presented in Fig. 8.
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Fig. 5. Rotary flexible joint prototype
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Fig. 6. Trajectory tracking flat output

4.1 External disturbance test

Fig. 9 shows the trajectory tracking performance of the
proposed controller when it is affected with a set impulsive
external force applied directly on the arm, the proposed
controller reject the external disturbance with bounded
error showed in Fig. 10, the voltage control is depicted
in Fig. 11, we can notice that when the external force is
applied on the arm the magnitud of the controller increase
canceling out the external disturbance.

5. CONCLUSIONS AND REMARKS

In this article, a Flat Filtering controller scheme was pro-
posed for a fourth order nonlinear feedback linearizable
system which exhibits the cascade property. The effective-
ness of the proposed controller was proved on a rotary
flexible joint prototype exhibited an excellent behavior
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Fig. 7. Tracking error
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Fig. 8. Flat filtering control performance
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Fig. 9. Trajectory tracking flat output

and an remarkable trajectory tracking performance and
robustness in presence of unknown external disturbance
inputs. As a suggestion for further research, an extension of
the flat filtering controller may be addressed for a suitable
high order nonlinear systems.
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Sira-Ramirez, H., Luviano-Juárez, A., Ramı́rez-Neria, M.,
and Zurita-Bustamante, E.W. (2018). Active distur-
bance rejection control of dynamic systems: a flatness
based approach. Butterworth-Heinemann.

Sira-Ramı́rez, H., Zurita-Bustamante, E.W., and Huang,
C. (2019). Equivalence among flat filters, dirty
derivative-based pid controllers, adrc, and integral
reconstructor-based sliding mode control. IEEE Trans-
actions on Control Systems Technology.

Sun, L., Zhang, Y., Li, D., and Lee, K.Y. (2019). Tuning
of active disturbance rejection control with application
to power plant furnace regulation. Control Engineering
Practice, 92, 104122.

Touhami, M., Hazzab, A., Mokhtari, F., and Sicard, P.
(2019). Active disturbance rejection controller with
adrc-fuzzy for mas control. Electrotehnica, Electronica,
Automatica, 67(2), 89–97.

Wu, G., Sun, L., and Lee, K.Y. (2017). Disturbance
rejection control of a fuel cell power plant in a grid-
connected system. Control Engineering Practice, 60,
183–192.

Zhao, S. and Gao, Z. (2013). An active disturbance
rejection based approach to vibration suppression in
two-inertia systems. Asian Journal of Control, 15(2),
350–362.

Zheng, Q. and Gao, Z. (2012). An energy saving, factory-
validated disturbance decoupling control design for ex-
trusion processes. In Proceedings of the 10th world
congress on intelligent control and automation, 2891–
2896. IEEE.

Zheng, Q. and Gao, Z. (2018). Active disturbance rejection
control: some recent experimental and industrial case
studies. Control Theory and Technology, 16(4), 301–313.

Zheng, Q., Ping, Z., Soares, S., Hu, Y., and Gao, Z. (2018).
An optimized active disturbance rejection approach to
fan control in server. Control Engineering Practice, 79,
154–169.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9194


