
     

Model-Based End of Discharge Temperature Prediction for Lithium-Ion Batteries 
 

Mona Faraji-Niri*, Truong M.N. Bui*,  

Tung Fai Yu**, James Marco * 
 

* Energy innovation Centre, Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, United Kingdom, 

(Emails: Mona.Faraji-Niri@warwick.ac.uk, T.Bui.2@warwick.ac.uk, and James.Marco@warwick.ac.uk)  

** Advanced Battery Engineering, Jaguar Land Rover Ltd, Coventry, CV3 4LF, United Kingdom tyu5@jaguarlandrover.com 

Abstract: Battery fast charging is one of the key techniques that affects the public acceptability and 

commercialization of electric vehicles. Temperature is the critical barrier for fast charging as at low 

temperatures an increased risk of lithium plating and at high temperatures safety concerns limits the 

charging rate. To facilitate a fast charging mechanism, preconditioning the battery and maintaining its 

temperature is vital. Battery temperature prediction before a fast charging event can help reducing the 

energy consumption for battery preconditioning. In this paper, we propose a method for battery end of 

discharge temperature prediction for fast charging purposes.  Firstly, a Gaussian mixture data clustering is 

performed on battery load data characterisation, subsequently a Markov model is trained for load 

prediction, and finally a battery lumped parameter equivalent circuit and thermal model is developed and 

employed for end of discharge time and ultimately end of discharge temperature prediction. Cylindrical 

lithium-ion battery is selected to prove the concept and both simulations and experiments show the 

capabilities of the proposed method for temperature prediction of batteries under load profiles obtained 

from real-world drive cycles of electric vehicles.  

Keywords: Gaussian mixture data clustering, Markov model, transient load, Lithium-ion battery, 

Temperature prediction, Fast Charging. 

 

1. INTRODUCTION 

Recent years have witnessed considerable development in the 

lithium-ion based electric vehicles (EVs). Compared to the 

combustion engine vehicles that can be refuelled very quickly, 

charging the battery pack of electric vehicles may require 

several minutes and even hours depending on the vehicle and 

ambient conditions. Longer charging time of EVs is one of the 

items causing range anxiety, the fear of not reaching the 

destination due to the lack of charge, as the vehicle gets out of 

service during the charging. Having access to fast chargeable 

EVs and their relevant infrastructures may ease the range 

anxiety. Studies show a 25% increase in the annual mileage 

travelled by EVs in areas with fast charging stations (Lutsey, 

et al., 2015). Therefore, reduced charging time and guaranteed 

safe procedure is one of the highly significant features in 

modern EVs. Even though charging process can be accelerated 

by high currents but it has a negative effect on the battery 

energy efficiency and cause power and capacity fade as well 

as impedance rise. That’s why fast charging is considered a 

multiscale problem and atomic, micro, cell, pack and system 

level studies are required to address it (Tomaszewska, et al., 

2019). 

The rate of the energy fed into the lithium-ion battery is 

critically dependent to the temperature. When the temperature 

is low, charging events may increase the risk of lithium plating 

(Cabañero, et al., 2019), (Wandt, et al., 2018). The most 

considerable outcome of lithium plating is the capacity loss, 

the possibility of internal short circuit, safety issues, and 

reduced durability and reliability of the battery pack. On the 

other hand, when the temperature is high, feeding the external 

energy into the battery is faster but this may accelerate the 

internal side reactions, change thermal runaway characteristics 

and increase the risk of fire or even an explosion.  

Generally charging speed and efficiency reduces at lower 

temperatures (Yang & Wang , 2018). For example, charging 

Nissan LEAF with a 40-62 kWh battery pack and a 50kW 

charger can take from 30 to 90 minutes depending on the 

temperature (Tech. rep., 2014) and the fast charging is only 

applicable up to 80% of state of charge (SoC) as at higher SoCs 

the current slightly decreases to avoid hitting the upper voltage 

limits of the battery which in turn leads to longer charge times 

(Mussa, et al., 2017). The efficiency of fast charging can 

reduce from 93% to 39% when the temperature goes from 25 

C to -25 for a 50 kW charger (Trentadue, et al., 2018). 

Accordingly, it is truly challenging to make the lithium-ion 

battery charging independent of the temperature (Yang, et al., 

2018). While the battery charging protocols are mostly defined 

by the manufacturers, the battery discharge and its temperature 

is affected by the driver behaviour and the ambient conditions. 

For fast charging it is important to keep the battery temperature 

above a limit to avoid lithium plating and below a maximum 

to keep it safe. Generally in EVs, first the battery temperature 

is transformed to an optimal temperature and then the charging 

event starts. This is performed by the battery heating device 

and usually by applying an external current to the battery 

(Yang, et al., 2018). 

In fast charging rapid internal heating of the battery is essential 

to keep the charging time between 10 to 15 minutes. However 
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rapid heating may lead to a non-uniform heat distribution in 

the cell with local overheated patches near the cell surface 

(Yang, et al., 2017). This limits the heating rate to 1ᵒC per 

minute (Ji & Wang, 2013) which means heating up the battery 

from 0 to 20 ᵒC will take 20 minutes which added to the 15 

minutes of charging itself, takes the whole process out of the 

fast charging category.  

Considering the abovementioned challenges, thermal 

management strategies for preheating the battery have a 

crucial impact on fast charging process efficiency. Preheating 

the battery via external currents requires energy consumption 

and also accelerates the battery ageing. Specifically, if the 

battery temperature can be predicted before a fast charging 

event then the thermal management system can adjust the 

battery temperature via a suitable heating rate to reach the 

optimal temperature.  In fact instead of cooling the battery 

continuously and then heating it up immediately before a fast 

charge, knowing the end of discharge temperature, the cooling 

mechanism can be controlled such that the battery temperature 

increase naturally as it is cycled until a fast charge start. In this 

case the battery will be already warm and will require less 

energy for reheating. Motivated by this requirement, this paper 

focuses on the end of discharge (EoD) temperature prediction 

for thermal management purposes. To the best of the authors’ 

knowledge, this problem has not been addressed so far in the 

field of battery studies. 

Here, first a load prediction algorithm is designed based on the 

load data clustering and stochastic modelling to obtain the 

most possible future trend for the battery. The algorithms is 

based on Markov decision processes which have been 

addressed for many applications of load prediction in vehicular 

technology (Jiang & Fei, 2015; Zou, et al., 2016; Faraji Niri, 

et al., 2020; Faraji Niri, et al., 2019). Markov process have 

strong prediction capabilities for highly transient data subject 

to uncertainty. The proposed algorithm utilises the historical 

data of the battery usage and adds levels of uncertainty to it to 

cover future stochastic conditions. The predicted load is 

applied to a battery electrical-thermal model to get the end of 

discharge time and the end of discharge temperature. To 

further show the advantages of the temperature prediction 

algorithm, the results are compared with the moving average 

load prediction method as well. The algorithm is verified via 

simulations and experiments under two loading scenarios 

coming from real drive cycles of electric vehicles at different 

temperatures. The organization of paper is as follows: in 

Section 2 the battery electrical-thermal model is developed. 

Load prediction algorithm via Gaussian mixture model and 

Markov process is given in Section 3. Section 4 gives the 

simulation and experimental results as well as comparisons. 

Finally, Section 5 concludes the paper. 

2. BATTERY ELECTRICAL-THERMAL MODEL 

DEVELOPMENT 

While the present battery current, voltage and temperature are 

measurable via sensors, an accurate battery model is required 

to obtain the future values of these signals. Battery electrical 

model helps to predict the voltage and get its end of discharge 

time and a battery thermal model helps to forecast the battery 

temperature. Equivalent circuit model (ECM) is widely used 

in on-board state estimation applications due to its affordable 

computational complexity (Hu , et al., 2012). Based on (Wu, 

et al., 2010), (Zhang & Peng, 2017) it is concluded that a 

second order ECM, Fig.1, is a suitable candidate for battery 

management system (BMS) applications. The model contains 

an internal resistance of R0, two polarization resistances of R1, 

R2 and two polarization capacitances of C1, C2. 
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Fig.1. Schematic of second order ECM 

The output voltage of the battery is described via the following 

equations, where vp1 and vp2 are the RC branch polarization 

voltage, Voc is the open circuit voltage, I is the battery load 

current and T1, T2 are model time constants. 
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(1) 

To address the thermal behaviour of the battery in this study 

the model developed by (Kim, et al., 2013) is employed. The 

model considers the radially distributed heat in a cylindrical 

cell with convective heat transfer boundary conditions. 

Assuming a uniform heat generation, the governing 

temperature distribution and boundary conditions are given by 
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where ρ, cp, kt and h are volume averaged cell density, specific 

heat coefficient, thermal conductivity and convection 

coefficient. R, Vb and T∞ are the cell radius, bulk volume and 

the ambient temperature.  

To overcome the computational complexity of the partial 

differential equation (PDE) of (2) a polynomial is used to 

approximate the PDE solution (Subramanian, et al., 2005). 

Considering the polynomial approximation along r-direction 

as well as the volume-averaged temperature, �̅� and 

temperature gradient �̅� as, 
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a two state temperature model can be obtained by the 

following state space form where α = kt/ρcp is thermal 

diffusivity and Q is the generated heat with Vb as the bulk cell 

volume. 
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The battery heat generation is expressed by (5). It only 

considers irreversible heat generation mechanisms and 

assumes a negligible heat generation due to reversible 

mechanisms, entropy of mixing, phase and heat capacity 

change (Bernardi, et al., 1985). 

( )oc TQ I V V   
(5) 

3. END OF DISCHARGE TEMPERATURE 

PREDICTION 

In order to find the EoD temperature, the load profile from the 

present time point t to the EoD time of the battery is required. 

In real operation conditions the future load profile is uncertain. 

To deal with the ubiquitous future conditions a load prediction 

mechanism is required. Here systematic load prediction is 

performed which utilises the historical data to identify the 

charge/discharge trend and generate future realizations of load 

via a stochastic model.  

The stochastic load prediction mechanism is formed by a 

coupled Gaussian mixture and Markov model. The block 

diagram of the prediction algorithm is given at Fig. 2.  

The Markov model in this algorithm is consisted of a finite 

number of states St, in set of N={1, ... , N}, the switching 

between these states follows the probabilities of (6). 

 Pr | , N
st T t ijS j S i i j      (6) 

Here,
N

0, 1,ij ijj
 


   is the transition probability (TP) 

from state i at time t to state j at time ,st T where Ts is the 

sampling time. 
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Fig.2. General EoD temperature prediction mechanism 

In order to specify the states of the Markov model, a Gaussian 

mixture clustering algorithm is utilised. Gaussian mixture 

clustering classifies the load data, x, in finite number of 

clusters with a normal probability distribution. Via this 

algorithm the probability density function (PDF) of whole  

 

data, p(x), can be modeled by a mixture of Gaussian PDFs as:  

1

( ) ( ; , )
M

m m m

m

p x w N x  


  (7) 

where M is the number of clusters and ( ; , )m mN x   is the 

Gaussian distribution function of cluster m, with mean 
m

covariance
m and weight .mw Here for simplicity the data of 

the historical load are quantized into two possibles clusters of 

Slow and Shigh, which specify the low and high energy 

cosumption states of the Markov model between t to t+TL, 

where TL is the update interval for training the model. For each 

training interval the TPs are computed via maximum-

likelihood (Brooks, et al., 2011) and used for generating the 

future load state and load value. 

Based on the information of future load profiles, the EoD time 

and EoD temperature are obtained following the definitions of 

(8), where VTlim is the cut-off terminal voltage usually specified 

by the battery manufacturer. It is the voltage threshold below 

which the battery may face serious safety and performance 

issues. The Fig. 3 shows the steps of the proposed algorithm. 
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4. SIMULATION AND EXPERIMENTAL RESULTS 

For experimental validations a commercial lithium-ion 21700 

cylindrical cell with nickel manganese cobalt oxide cathode 

and graphite node is utilised. The cell nominal capacity is 

5.00Ah and its nominal voltage is 3.63V. The maximum and 

minimum allowable voltages are 4.2 and 2.5V respectively. 

 

Fig. 3. The proposed algorithm steps 

The Voc as well as the parameters of the cell ECM are 

dependent to the battery SoC and estimated optimally via the 

experimental characterization procedure developed in 

(Chouchelamane, et al., 2015). The characterization test is run 

at 5, 10, 25 and 40 ᵒC and the temperature averaged battery 

parameters are given in Fig. 4 for SoC intervals of 4%. 

 
Fig.4. Temperature averaged battery model parameters 

The parameters of battery thermal model are tuned based on 

the recommendations in the literature and the cooling 

mechanism in the thermal chamber. Thermal model 

parameters are given in Table I. 

Table I. Battery thermal model parameters 

Parameter kt [w m-1 K-1] Cell mass [kg] 
Value 0.48 (Drake, et al., 2014 ) 0.068 
Parameter Cp  [J kg-1 K-1] h [w m-2 K-1] 
Value 1050 (Loges, et al., 2016) 15 

The root mean square error (RMSE) of the ECM and the 

thermal model is 40mV and 0.5 ᵒC respectively. The cell 

temperature is measured at its surface via a thermocouple, 

while the modelled temperature is a volume averaged value, 

therefore the accuracy is believed to be acceptable for 

prediction purposes.  

Notably, the load prediction mechanism is built based on a 

stochastic model and provides distinctive realizations in 

different runs. Here the number of realizations is set to 5 to 

characterise the future usage more confidently. Further 

analysis on the effect of the number of realizations on the 

accuracy of the results will be conducted in future studies.  

Here, 4 cells are taken into account to minimise the cell to cell 

inconsistencies. In experiments the battery is preconditioned 

and fully charged (VT = 4.2V, SoC=100%) at a desired 

temperature and then cycled by a loading profile. The 

experiments are ran with batteries inside a thermal chamber to 

mitigate the effect of ambient condition fluctuations. The 

experimental set up is shown in the fig.5. 

 

Fig.5. Experimental set up of the study 

In order to investigate the capability of the method for EoD 

temperature prediction two loading scenarios are addressed. 

Both load profiles are obtained via time-velocity data and a 

vehicle model including a battery pack developed in (Taylor, 

et al., 2015). As a reference case the load prediction method is 

also compared with the moving average prediction of the load, 

which is called mean-based method here, considering similar 

length of historical data of 300 samples and update interval of 

100 samples. 

4.1. Case I: Artemis motorway load profile at 25ᵒC 

Artemis motorway load profile, Fig. 6, is one of the standard 

loading scenarios for automotive application studies.  

     
Fig. 6. Artemis motorway load profile 
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Fig.7. Histogram for Artemis motorway load profile 

The histogram of the load data is given at Fig. 7 which shows 

a normal to intensive charge/discharge style. 

The battery output voltage and its temperature is shown in the 

following figures 8 and 9 confirming the accuracy of the 

model. In this case the battery discharge process takes 12600 

seconds. It is worth noting that thermal model also covers the 

cell cooling period (the time after 12600 seconds) which starts 

immediately after the discharge is terminated. 

       
Fig.8. Battery terminal voltage under Artemis cycle 

 
Fig.9. Measured and modeled temperature for Artemis cycle 

The predicted EoD time and temperature is plotted at Fig. 10. 

As the figure shows the RMSE of temperature prediction is 

0.84ᵒC for Gaussian-Markov model-based prediction (GMPr) 

and 1.18 ᵒC for mean-based prediction (MPr). This is due to 

increased accuracy of the predicted EoD time.  

  

  
 Fig.10. EoD time and temperature prediction for Artemis 

motorway cycle 

To separate the modelling error from the load prediction 

algorithm error, Fig. 11 is developed which contains the 

prediction results assuming a perfect model availability. 

According to this figure the EoD temperature prediction error 

is 0.55 ᵒC for GMPr method, i.e 65% of EoD temperature 

prediction error comes from load prediction algorithm and 

34.2% is due to the battery modelling error. 

 

 

Fig.11. EoD temperature prediction for Artemis motorway 

cycle assuming a perfect model availability 

4.2. Case II: Load profile of real driver at 10ᵒC 

This case study investigates a drive cycle recorded from a real 

driver at Coventry UK. The battery is cycled with this profile 

at 10 ᵒC. The battery input current, output voltage and 

temperature is given in the Fig.12-15. The histogram of the 

input shows a rather intensive charge/discharge style and the 

battery voltage and temperature show the model accuracy. 

  

Fig.12. Battery input current for Coventry driving cycle 

 
Fig.13. Histogram for Coventry driving cycle 

 
Fig.14. Battery terminal voltage under Coventry driving cycle 

The EoD temperature prediction results are depicted in Fig. 16. 

In this case, the RMSE of temperature prediction is 2.26ᵒC for 

Time (seconds) 
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GMPr and 5.88 ᵒC for MPr. Assuming a perfect model 

identification results are given in Fig. 17. For the GM Pr 

method 95.27 % of the error corresponds to load prediction 

algorithm while only 4.72% is due to the battery electrical-

thermal modelling error. 

 

 Fig.15. Measured and modeled temperature for Coventry 

driving cycle 

 

 
Fig.16. EoD time and temperature prediction for Coventry 

driving cycle 

  
Fig.17. EoD temperature prediction for Coventry driving cycle 

assuming a perfect model availability 

To understand the connection between the load style and the 

accuracy of the prediction method, example load profiles are 

applied to the battery with the same mean value but different 

peak limits; the results are reported in Table II. The table 

shows that the higher the discharge peak, the larger the 

prediction error. The reason is that higher peaks move the 

cluster centres away from average value and ultimately 

generate profiles with higher peaks that cause inaccurate 

determination of the EoD time and in turn the EoD 

temperature. For both scenarios the improvement over the 

mean-base prediction method is obvious. This is due to the 

capability of the proposed algorithm to deal with transient 

loads. 

Table II: The effect of load style on the prediction 

accuracy 

EoD RMSE 

Temperature (ᵒC) Time (minutes) 

  GMPr MPr GMPr MPr 

Loading Profile 1 -3 A 0.55 1.63 16.17 52.49 

Discharge Peak limit -3.5 A 0.56 1.63 16.53 51.95 

 -4 A 0.57 1.61 16.92 51.92 

Loading Profile 2 -5 A 1.95 4.83 88.70 119.78 

Discharge Peak limit -5.5 A 2.13 5.65 88.31 119.61 

 -6 A 2.32 5.88 89.74 119.57 

The time span of the whole simulation is 213 minutes for the 

profile 1 and 133 minutes for profile 2.  

5. CONCLUSIONS 

Battery thermal behaviour depends on its energy density as 

well as its charging C-rate. While both extremely high and low 

temperature can damage the battery, fast charging shifts the 

temperature balance of the cell towards higher temperature. 

Preheating the battery before a fast charging event is a solution 

for increasing the charge acceptability. Prediction of the 

battery temperature at the EoD and before fast charging can 

help the energy management for battery preconditioning. The 

algorithm in this paper facilitates an EoD temperature 

prediction validated by experiments. Further studies to 

improve the load prediction mechanism by selecting an 

optimal set of design parameters, including the training data 

interval as well as update interval is still required.  
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