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Abstract: We study a novel control problem in the context of network coordination games:
the individuation of the smallest set of players capable of driving the system, globally, from one
Nash equilibrium to another one. Our main contribution is the design of a randomized algorithm
based on a time-reversible Markov chain with provable convergence guarantees.
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1. INTRODUCTION

In a binary (0-1) network coordination game, where ini-
tially all agents are in the Nash equilibrium 0, what is
the minimum number of agents that if forced to 1 will
push the system to converge to the Nash equilibrium of all
1’s under best response dynamics? This paper is devoted
to the analysis of this problem and to the design of an
algorithm for an efficient solution.

The considered problem can be framed in the more gen-
eral setting of studying minimal strategies of intervention
needed to drive a multi-agent system, governed by agents’
myopic utility maximization, from a Nash equilibrium to
a more desirable one. Typically, in game theory, interven-
tions have been modeled as perturbations of the utility
functions, e.g. taxes and prices in economic models or
tolls in transportation systems. Here we take a different
viewpoint: we select as small as possible a subset of nodes
that if suitably controlled will lead the entire system to the
desired configuration. The minimum cardinality of this set
can also be interpreted as a measure of resilience of the
system: the larger it is, the more difficult is for an external
shock to destabilize it.

The problem of determining the best set of nodes to
exert the most effective control in a networked system
has recently appeared in other contexts: for instance, for
linear opinion dynamics models, Acemoglu et al. (2013),
Yildiz et al. (2013), Vassio et al. (2014), and Como and
Fagnani (2016) study the effect of stubborn nodes and the
related problem of optimal selection of nodes to maximize
influence on the rest of the network.

Binary coordination games have received a great attention
in the recent years as one of the basic models for games
with strategic complementarities, see Jackson and Zenou
(2015). Its various applications include modeling of social
and economic behaviors like the adoption of a new tech-
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nology, the participation in an event or the participation
to provide a public good effort.

This game is analyzed in detail in Morris (2000) where the
key concept of cohesiveness of a set of players is introduced
and then used in characterizing all NE’s. The question of if
an initial seed of influenced players (that maintain action
1 in all circumstances) is capable of propagating to the
all network is also addressed in that paper including an
equivalent characterization of this spreading phenomenon,
expressed in terms of cohesiveness.

This contagion phenomenon is exactly what we want to
analyze: subset of nodes from which propagation to the
all network is successful are called sufficient control sets
and our goal is to find such sets of minimum possible
cardinality. However, the condition proposed in Morris
(2000) is computationally quite demanding and cannot be
used to directly solve our optimization problem. Indeed,
even to determine if a single set is a sufficient control
set, their approach requires a number of checks growing
exponentially in the cardinality of the complement of any
such set.

The dual problem of choosing a fixed number of players
to have the maximum possible spread of the state 1
was studied in a seminal paper by Kempe et al. (2003).
While their problem and ours are related, solving one
does not provide a solution of the other. Another point
worth stressing is that, in their setting, Kempe et al.
(2003) consider agents equipped with random independent
activation thresholds and take as the objective function
the average size of the maximum spread. They prove
that such function is sub-modular and then they design
a greedy algorithm using this property. The randomness
that they introduce is actually crucial in their approach,
as the function considered would not be sub-modular for
deterministic choices of thresholds. Different approaches to
address related questions were considered, among other, in
Rossi et al. (2019) in the large-scale limit.

In this paper we consider a scenario when all agents
have a fixed threshold 1/2, thus not covered in Kempe
et al. (2003), and we design an iterative search randomized
algorithm with provable properties of convergence towards
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sufficient control sets of minimum cardinality. The core of
the algorithm is a time-reversible Markov chains over the
family of all sufficient control sets that starts with the
full set, moves through all of them in an ergodic way, and
concentrates on the smallest sets.

We conclude this introduction with a brief outline of the
paper. In the final part of this section we report some
basic notation used throughout the paper. Section 2 is
dedicated to the formal introduction of the problem. The
main technical parts are Sections 3 and 4. In Section 3,
we introduce the important notion of monotone crusade
(appeared for other purposes in Drakopoulos et al. (2014,
2016)) and we give an equivalent (but more operative)
characterization of sufficient control sets. In Section 4 we
introduce a family of reversible Markov chains whose in-
variant probability is proven to concentrate on the optimal
sufficient control sets. Section 5 describes the algorithm,
based on the Markov chains introduced in the previous sec-
tion, and presents some simulation results. Finally, Section
6 points out to some directions for further studies.

1.1 Notation

Vectors are indicated in bold-face letters x, y, z. For x, y,
two vectors of the same dimension, the notation x <y
indicates that x is lower or equal component-wise than
y. We define as usual the binary vectors d;: (d;); = 1
and (0;); = 0 for every j # 4. If S < {1,...,n}, we
put 1s = >, _.g0d;. Every x € {0,1}" can be written as
x = 1g for some S < {1,...,n}. We call such a subset S
the support of x and we denote it Sx. We use the notation
and 1 to denote, respectively, the vector of all 0 and the
vector of all 1.

2. CONTROLLED MAJORITY DYNAMICS

We consider a set of players V = {1,...,n} connected by
a simple graph G = (V,€), where the link set £ € V x V
is such that (i,i) ¢ € for any ¢ and (¢, 5) € € if and only if
(j,1) € £. We shall denote by N; = {j € V: (i,7) € £} the
neighborhood of agent 7 in G.

Let A = {0,1} be the binary set of possible actions for all
players. We denote by X = A" the set of strategy profiles
and we define the majority game on G as the game where
each player ¢ € V has utility uf : X — R given by

ui (%) = [{j € Ni |z = w3}
In other words, the utility uf(x) of player 7 is given by the
number of neighbors of ¢ with which she is in agreement.

As usual in game theory, given a strategy profile x € X
and a player i, we indicate with x_; the strategy profile
restricted to all players but ¢ and we consequently write
x = (x;,%x—;). Th best response sets are then defined as
B;(x) = argmax ug (o, X_) .
acA
Using the notation
nia(X) =[{j € Nilz; =a}f, a=0,1 (1)
to indicate the number of neighbors of an agent ¢ playing
action « in the strategy profile x, such best response sets
can be more explicitly described as
{0}, if Tli’o(X) > TLiyl(X)
B (x) = { {0,1}, ifn;o(x) =n;1(x)
{1}, if nw(x) < nm(x) s
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where

N ={xeX: zeB(x)VieV}
denotes the set of Nash equilibria. Notice that the set of
Nash equilibria A/ depends on the topology of the graph G.
However, for every graph G, the constant strategy profiles
and 1 are always Nash equilibria.

It is well known that the majority game is a potential game
with potential function

De(x) = [{(i,4) € &, [ x5 = @i} (2)

This simply says that, for every two strategy profiles
X,y € X such that x_; = y_; for some player i € V,

De(y) — Pe(x) = ui(y) — ui(x) - (3)
(See Monderer and Shapley (1996).)

The (asynchronous) best response dynamics is a discrete
time Markov chain X; on the strategy profile space X
where, at every time ¢, a player ¢ is chosen uniformly at
random and she modifies her action choosing an element
uniformly at random within B§((X;)_;). Denote with Px y
the transition matrix (on X x X) of the Markov X; and
note that, given x € X and y = (a,x_;), it holds that

Pry >0 & Oc(a,x_;) = Pe(x) (4)

From the fact that the potential is not decreasing along
the trajectories of X, it follows the classical result that,
with probability 1, X; converges in finite time to the set
N of Nash equilibria.

The question we pose is: what is the minimal number of
agents that if forced to 1 will ensure almost surely that
the best response dynamics reach the state 1.

Given a subset C € V, we indicate with X¢ the Markov
chain where only the agents in V\C update their action
according to the best response rule defined above, while
agents in C maintain action 1. This new Markov takes
values in the subset of strategy profiles

XO —{zeX|z;=1VieC}

This restricted game remains a potential game. This new
dynamics will converge too to its set of Nash equilibria

NC =N AXO .

The following is our main object of study in this paper.

Definition 1. (Sufficient control set). A subset of players
C €V is a sufficient control set if

P(3t: X{=1,]X§ =) =1 (5)

for every initial strategy profile zp € X(©). A sufficient
control set is minimal if none of its strict subsets is a
sufficient control set. A sufficient control set is optimal if
no sufficient control set has strictly smaller cardinality.

Our objective is to find optimal sufficient control sets. To
give a more intuitive idea of what control sets resemble, a
few illustrative examples are displayed in Figures 1-3.

3. MONOTONE CRUSADES AND VALID CONTROL
SETS

In this section, we introduce the concept of monotone
crusade, that will play a crucial role in our theory.
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Fig. 1. Example: On trees, the set of the leaves (in green)
is always a valid control set. In red you can see
another valid control set, of size 2 and optimal for
this particular tree

Fig. 2. An example of a clique, the sets of size [g] — 1 are
exactly the minimal control sets and also the optimal

control sets

Fig. 3. If all nodes have degree at most 2, then choosing
one node per connected component gives a control set

These are particular sequences of strategy profiles, that
start from a given configuration and end at 1, such that
every step increases the number of players using strategy
1 without decreasing the potential. More formally:

Definition 2. (Adapted Monotone Crusade). Let C < V.
A monotone crusade from C is a sequence of vectors
xF e X, for k=0,...,m such that

(i) x =1, xm =1
(ii) for every k =1,...,m — 1 there exists i € V\C such
that x**1 = xF + §;,

Moreover, if a function V' : X — R satisfies

i) V(x> V(x¥) for k=0,...,n—1
(i) V( ) ;

k

then the sequence x” is called a V-adapted monotone

crusade from C.

A few comments on the above definition are in order:

Remark 1. All nodes iy,...,i, appearing in (2) are nec-
essarily distinct otherwise the condition x* e {0,1}"
for all k£ would be violated. Indeed, we must have that
V\C = {i1,...,im} and thus m = |V\C|. This allows for a
monotone crusade from C to be equivalently characterized
by the sequence of nodes (i), the induced order on the
nodes or by the sequence of increasing support sets (S)
defined by Sy = Sx«, for £ =0, ..., m having the property
that So = C and S,, = V.

Remark 2. We can also define a decreasing version of the
monotone crusade where x° = 1, x™ = 1¢ and where. for
every k, x*T1 = x¥ — §; . This will be called a decreasing
crusade to C (V-adapted if (iii) in Definition 2 is satisfied).

Definition 3. (Valid control set). A set C is V-valid if
there exists a V-adapted monotonous crusade from C.

The main goal of the rest of this section is to show that
the class of ®.-valid control sets (we recall that ®. is the
potential of the majority game) coincides with the class of
sufficient control sets defined in (Definition 1).

The following property is instrumental to our results.

Lemma 1. (Monotonicity of Coordination Game). For ev-
ery two strategy profiles x,y € X and every player ¢ € V,
the following holds true:

(1) if x <y and Pe(1,x_;) = Pc(x) then Pc(l,y_;) =
Pc(y);

(2) if x >y and ®.(0,x_;) = P.(x) then ®.(0,y_;) =
Dc(y)-

Proof We only prove the first assertion, the second can
be obtained by exchanging the role of 0 and 1.

If y; = 1, we have that (1,y_;) = y and there is nothing
to prove. If x; = 1, then the inequality x < y ensure that
y; = 1 and we are thus in the previous case.

We now consider the case when both z; and y; have value
0.

Note that, for any configuration z if z is such that z; = 0,
the variation of the potential when player ¢ changes her
action from 0 to 1 can be expressed as

De(1,2-1) — e(2) = ni1(2) —nio(2)
where, we recall, n;1(z) and n;(z) are the number of
neighbors of ¢ whose action is, respectively, 1 and 0.

As x <y, we have that n;0(y) < n;0(x) and n;1(y) =
n;,0(x). Hence,

This yields the thesis.

Proposition 1. (Monotonicity for the Inclusion). A super-
set of a ®.-valid control set is a ®.-valid control set.

Proof Assume that C is a $.-valid control set and let
C’' ©C. Let x* be a ®.-adapted monotone crusade from C
with associated sequence of points (i) for k =1,...,m =
n — |C| such that x*+! —x* = §;, for each k. Consider the
subsequence of points i, , ik,, ..., ik, that are in V\C’ and
put y* = max{l¢,x*}. By construction, we have that
y" = xFn+1=1 and thus, by Lemma 1 and the fact that x*
is a ®.-adapted monotone crusade from C, we have that
@C(yh) < <I>C(yh“).

Remark 3. The full set is always a ®.-valid control set

The following result clarifies the connection between valid
control sets for the majority game and sufficient control
sets introduced in the previous section.

Theorem 1. (Characterization). A subset C € V is a suffi-
cient control set if and only if it is a ®.-valid control set.

Proof We first show that a sufficient control set is ®.-
valid. If C is a sufficient control set, there exists a sequence
of vectors y°,...,yT € X©) such that y° = 1¢ and
yT = 1 that the best response dynamics follows with

positive probability. This is equivalent to saying, using
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the definition of best response dynamics (see in particular
property (4)) , that

(1) y**l —y* = £4;, forallk=0,...,T —1;
(2) D(y°) <--- < Pe(y”).
For every i ¢ C, define

k(i) =min{k =1,...,T | y* —y* 1 = §;}
that is the first time when agent ¢ change her action to
1 in the sequence y!. Order now the agents in V\C as
i1,...,%,m in such a way that k;, < k;, < -+ < k; .
Consider the increasing monotone crusade x" associated
with the sequence of points (i), namely,

x" = 1c + Z i,
h'<h
and notice that x"~! > y*@n)=1 Since &, (y*(n)—1) <
®.(y*k0r)), it follows from Lemma 1 that ®.(x"!) <
®.(x"). This tells us that x" is a ®.-adapted monotone
crusade from C and, thus, C a ®.-valid control set.

We now show that a ®.-valid control set C is sufficient.

We fix any initial condition xo € X(©) and we put C’ = Sy, .
C’ is a superset of C and, on the basis of Proposition 1, C’
is also a ®.-valid control set. Let x* be a corresponding
® -adapted monotone crusade from C’. By the properties
of adapted monotone crusades (properties 2. and 3. in
Definition 2) and the characterization (4) of the transition
matrix of the best response dynamics X3, starting from xg,
the Markov X; will follow such a sequence with positive
probability. Thus, from any initial condition, X; will reach
1 with positive probability. The standard result on Markov
that if there is a state such that for any other state there
exists a path to it with nonzero probability, then the state
will be visited with probability one, then yields the claim.

4. MARKOV CHAINS AND BACKWARD SEARCH
ALGORITHMS

The characterization of sufficient control sets through the
concept of monotone crusades suggest the possibility that
such sets can be found starting from the strategy profile
1, iteratively replacing 1’s with 0’s in the attempt to
follow backwards a monotone crusade. To this aim we now
introduce a family of Markov chains Z; on the binary space
X, parameterized by € € [0, 1] that will be the core part of
our algorithms.

Transitions of Z; are described as follows:

At every discrete time, a node uniformly at random i is
activated. If her neighbors with current action 1 (n; 1) are
strictly less than her neighbors with current action 0 (n; ),
she stays still. Otherwise, if her action is 1 it changes to 0
with probability 1, while if her action is 0, she changes to
1 with probability e.

The only non zero non trivial transition probabilities of Z;
are the following. Given x € X,
l’izl, ni_l(X)>TLio(X) = P;(Ox ) 21/71
—0 n ’ & (6)
z; =0, m:1(x) 2 ni0(x) = Py ) =€/n

In the case when € = 0, only transitions from 1 to 0 are
allowed. In this case, the Markov has absorbing points.
The relation of these points with sufficient control sets is
studied in the next result.

We denote
Z ={zeX|P@Et: Z) =z| 23 =1) >0}
ZP = {xeX|P3ty: Z0 =aVNt =ty | Z) =1) > 0}

the sets of reachable and absorbing state of the chain Z°.
Theorem 2. The following facts hold:

(1) C is a sufficient control set if and only if 1¢ € Z;
(2) if C is a minimal sufficient control set, then 1o € Z%.

Proof

(1): By definition, if x = 1¢ € Z, there exists a sequence
of strategy profiles y*, for k = 0,...,m such that y° = 1
and y™ = 1 satisfying the properties

(1) y* -yttt =¢; forallk=0,...,m —1;
(2) Pe(y?) = = @e(y7).

Then z* = y™~* is a ®°-adapted monotone crusade from C
and this yields that C is a ®.-valid control set and thus also
a sufficient control set by virtue of Theorem 1. Inverting
this argument we prove the other implication.

(2): If C is a minimal sufficient control set, we know from
(1) that 1¢ € Z. If, by contradiction, 1¢ ¢ Z%, then, from
x = 1¢, the Markov Z} could reach, in one step, a different
state x’ = ¢ with ¢’ € C. This contradicts minimality.

Theorem 2 allows to reformulate the optimization problem
as follows:

i [x]}; (7)

where ||z||; = >}, #;. Optimal sufficient control sets C are
those for which 1¢ solves (7).

The Markov Z7 is naturally related to the minority game
whose definition we briefly recall thus: Given an undirected
graph G = (V,€), we define the minority game on G
as the binary game where each player ¢ € V has utility
u? : X — R given by
uf(x) = [{j € Ni|z; # zi}|

that is simply the number of neighbors with which i is in
disagreement. We denote by N, the set of Nash equilibria
of the minority game. This game is potential with a

potential @, that is just the opposite than the potential of
the majority game:

Du(x) = —Pe(x) (8)

The following property clarifies the relation of the minority
game with our problem.

Proposition 2. N, < Z: Nash equilibria of the minority
game are valid control sets.

Proof Let x € N, and let y*, for kK = 1,...,m be
any decreasing crusade from 1 to x. By construction,
x < y* < 1 for all k. Consider the sequence of nodes
(i) such that y*=1 — y* = §;, . We have that x;, = 0 for
every k. For all k, since x is a Nash equilibrium then 0 is
in ix’s minority best response, thus ®,(x) = ®,(1,x_;), or
equivalently, ®.(x) < ®.(1,x_;). By Lemma 1, it follows
that ®.(y*) < ®.(1,y*,) = ®.(y*!). Therefore x" =
y™ " is a ®.-adapted monotone crusade from C = Sx. By
virtue of Theorem 2, we have that x € Z.

We have the following simple but not obvious consequence.
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Corollary 1. (Existence). For any graph, there exists a
sufficient control set whose size is less than or equal to
half the total number of nodes.

Proof Since the minority game is a potential game, it
admits at least one Nash equilibrium x € N,. By symmetry
X = 1 — x is also a Nash equilibrium. Proposition 2
guarantees that they are both sufficient control sets and
one of the two necessarily contains not more than half the

nodes in the network.

Notice that the reciprocal of the second part of Theorem 2
and the reciprocal of Proposition 2 are not true in general,
as shown by the following examples.

Fig. 4. The red set above is a minimal control set with
respect to the inclusion, yet the rightmost node is
not in her best response, making it not a Nash
equilibrium.

O O O O @

Fig. 5. The red set above is optimal, but not a Nash
equilibrium.

Fig. 6. Two sufficient control sets (red nodes) on the
same graph, both in Z% only the one on the right
is minimal.

The above considerations show that we cannot directly use
the dynamics Zp as an algorithm to find optimal sufficient
control sets as its absorbing state Z% are not minimal
in general. To overcome this difficulty we will instead use
the Markov Z; with € > 0. The presence of transitions in
the opposite directions allows the algorithm to make a full
exploration of the set Z.

Theorem 3. Let € > 0. The following facts hold:

(1) Zg is ergodic inside the set of states Z;

(2) Zf is time-reversible and its unique invariant proba-
bility is given by p€(x) := Kel*Ilt where K > 0 is the
normalization constant;

(3) As e tends to 0, u€ converges to a probability measure
p concentrated on the subset argmin, z ||x]|;.

We do not present a proof of Theorem 3 here due to
space limitations and since Theorem 3 is a special case
of a more general result proved in Durand et al. (2020) for
supermodular games.

By virtue of the reformulation (7), we have that, for small
e and sufficiently large ¢, the Markov Zf will spend most
of the time in strategy profiles whose support are optimal
sufficient control sets. This observation is at the base of a
practical algorithm described in the next section.

5. IMPLEMENTATION AND SIMULATIONS

We have implemented an iterative algorithm based on the
Markov chain Z; studied in the previous section. For the
sake of increasing the speed of convergence, we actually
considered a modification of the Markov chain Z; with all
trivial self-loop transitions removed. This induces a little
modification in the invariant probability of the Markov
chain, but does not affect the minimal set that is the
output of the algorithm. Also, our algorithm keeps track
of the best strategy profile (the smallest ||z||;) found so
far. This algorithms is written in Algorithm 1.

We have applied the algorithm to random realizations
of Erdos-Rényi graphs with different number of nodes n
and probability p = 1/2. For every value of n, we ran
500 executions on 20 randomly generated graphs. The
algorithm is stopped after 100n iterations, using for epsilon
the constant value ¢ = 0.2.

As a point of comparison, we computed a benchmark
optimum consisting of the exhaustive optimum for small
graphs, and a much longer execution on bigger graphs.
Figure 7 shows the average values of the size of the
sufficient control sets computed by the algorithm. We
compare it with the benchmark optimum and also with
the result obtained looking at the very last step of the
algorithm. This plot shows a remarkable performance of
the algorithm that in linear time gets quite close to
the optimum. It also shows that the Markov, though
fluctuating, as € > 0, still remains close to the optimal
strategy profiles. The important question of how to tune
the parameter e for optimize performance has not been
addressed here.

Finally, notice how optimal sufficient control sets are
scaling linearly with respect to the size of the graph. This
suggests that Erdos-Rényi random graphs are somewhat
hard to control in this sense. In other terms, they show
resilience to this type of external actions.

40

T T T
algorithm ——
35 | final value

benchmark optimum

30 4

25 | .

20 B

15 + B

control set size

10 B

5 | 4

0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

graph size

Fig. 7. In blue, the benchmark optimum. In purple, the
minimal control set encountered in 100n steps. In
green, the size of the control set at the end.
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Graph(Adjacency list of sets A:
Z<—>]<:>Z€AJ /\jEAZ','
List of degree-threshold L: max number of 0 among

the neighbor for the strategy 1 to be the best response;

0-partial degree list D: D; is the number of i’s
neighbor with strategy 0, initialized to Vi, DY « 0 ;

Strategy X, initialized to ViX? « 1;

number nl of 1, initialized to nl — |V|)

Input: graph’s A and L, trajectory length T
Output: a Valid Control Set

m<«— V|, S<{0,1---,|V]};
Initialize D, X, n1;

fort =0 to T do

// weights

forall i € V do

if D; <T; then
if X; =1 then
| w; <1
else
| Wi < €
end
else
| w; <0
end
end

// random value, conditioned on the step
having an effect. The sum is never 0 as
the last node chosen still verifies the
inequality

choose j with probability Zw—;),

// effect of the step

if X; =0 then

forall k€ A; do

| Dp < Dp—1

end

X]‘ <« 1,

nl «— nl + 1;

else

forall ke A; do
| Dy« Dp+1

end

Xj <« 0;

nl «—nl—1;

nd

/ comparison

if m < nl then

m < nl;

CS «— &;

forall i€ V do
if X; =1 then
| CS=CSu{i}
end

end

end

return CS;

end

Algorithm 1: Pseudocode for the algorithm employed

in the simulations.

~0

6. CONCLUSION

We have formulated the problem of finding, in a network
coordination game, the minimum number of players to be
controlled in order to drive the system from one Nash
equilibrium to another one. To the scope, we have designed
a low complexity randomized algorithm and proven its
convergence properties. We have finally carried on some
numerical simulations corroborating the results.

Many challenging issues naturally arise from our analysis
and simulations. Erdos-Rényi graphs exhibited optimal
sufficient control sets growing linearly in the number of
nodes. It would be of interest to prove this analytically, as
well to extend the analysis to other graph families, con-
necting resilience properties to the topological structure.

The problem studied in this paper is an instance of a more
general problem of studying the effect of control actions
in games. Future research will analyze similar control
problems for general games with strategic complements
as well strategic substitutes. A first step in this direction
can be found in Durand et al. (2020).
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