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Abstract: We present a framework for achieving efficient dynamic management of configurable reactive
data-flow circuits subject to global design objectives such as mutual exclusion on shared resources and
minimization of energy consumption. We propose a new symbolic controller synthesis algorithm that
targets the optimization of a cost function summed over a sliding window of a given number of reactions
of the system. We then present a technique for constructing symbolic models of configurable data-flow
circuits that lends itself to the automatic computation of dynamic configuration controllers. We use these
models to experimentally evaluate our control algorithm, and make the case for symbolic optimal discrete
controller synthesis on such designs.
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1. INTRODUCTION

High-level models are often required to reason on synchronous
circuit designs, and apply scalable techniques to translate them
into equivalent designs that meet various performance goals
such as energy-efficiency [Zhang et al., 2006]. Among these
models, the family of data-flow process networks [Lee and
Parks, 1995] sees sub-circuits as actors that communicate tokens
through communication channels (FIFOs) and react according
to predefined firing rules. Kahn Process Networks (KPN) [Kahn,
1974] are a sub-class of such models where channels are
considered unbounded, and a process is fired whenever there
are enough tokens in its input channels. A consequence of
this property is that writes can be considered non-blocking—
i.e., a process is never blocked when it writes to a channel—,
whereas reads to empty channels are blocking. KPNs can be
used to describe systems where the amount of data produced
and consumed by a process is not statically determined.

We consider reactive data-flow circuit designs similar to KPNs,
where each process offers a discrete configuration means
that impacts its computation speeds and power consumption.
Here, reactivity means that designs have to respond to a
potentially infinite stream of new data. In practice, these designs
are convenient when several implementations are available to
perform a given computational task, each with various levels of
resource consumption, quality of service, etc [An et al., 2016].
Process implementations may also make use of shared resources
in such a way that mutual exclusion constraints must be enforced.
Finding the optimal configuration for such a network at any
given time is intrinsically a challenging task. We advance
a framework for automatically computing and integrating a
dynamic configuration manager into such designs. This manager
is able to satisfy predefined global design objectives, such as
reducing the overall energy consumption of the design over a
period of time, while meeting the mutual exclusion constraints.
We rely on the construction of an abstract symbolic system model
? This work was supported by the EPSRC through grant EP/M027287/1.

of the design, and employ discrete control techniques to compute
a piece of code (e.g., a synchronous circuit) that implements
energy-efficient configuration management. As we observe in the
next Section on discrete optimal control, solutions that address
the kind of problems above only focus on runs that reach a given
set of target states. As such, they do not suit the needs imposed
by the reactive designs we consider, for which one cannot
identify a suitable set of target states. Therefore, we devise
in Section 3 a new algorithm for achieving symbolic optimal
control, limited to a sliding window of a fixed number of discrete
steps. We then present in Section 4 our approach for constructing
symbolic systems that model configurable reactive data-flow
networks that permit the construction of energy-aware dynamic
configuration managers. In Section 5, we use the models to:
(i) experimentally evaluate our new algorithm; (ii) make the
case for applying limited optimal controller synthesis on such
designs; (iii) demonstrate the power of such symbolic techniques
for producing results that can directly be implemented as control
mechanisms in, e.g., hardware circuits.

2. CONTROL OF DISCRETE SYMBOLIC SYSTEMS

The symbolic systems we consider are built upon a set of symbols
S , each associated with a domain of definition D ∈ D according
to the mapping Dom:S → D. D comprises at least the Boolean
domain B def

=
{

tt,ff
}

, and numerical domainsDnum ⊆ D such as
the Integers (Z) and Rationals (Q), and S notably comprises all
constants used to define domains in D (e.g.,

{
tt,ff, 0,− 1

2 . . .
}

).
Given a domain D ∈ D, the set XD of all D-valued symbolic
expressions comprises all formulae ψD that can be generated
according to the following grammar:
ψD ::= s | if ψB then ψD else ψD (D ∈ D,Dom (s) = D)
ψB ::= ¬ψB | ψB ∨ ψB | ψB ∧ ψB | ψB ⇒ ψB | ψD = ψD

| ψN ./ ψN (D ∈ D,N ∈ Dnum, ./∈ {<,6})
ψN ::= cψN | ψN ./ ψN (N ∈ Dnum, c ∈ N , ./ ∈ {+,−})

where s denotes any symbol in S, and Dfin is the set of all
finite domains in D. Note that rule ψD is polymorphic (i.e.,
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generic) in the domain D, and restricts conditional constructs
to cases where the two rightmost expressions are of the same
type. Also, this grammar features the following constructs that
are available as syntactic sugar to ease readability: ¬, ∨, ∧ and
⇒ are usual logical connectives that can be expressed using
conditional constructs, and ϕ − ψ is equivalent to ϕ + −1ψ.
Informally, the rules ψN and ψB respectively produce guarded
linear arithmetic expressions and propositional predicates with
equality and linear (in)equalities.

Non-constant symbols are variables, and a valuation µ ∈
Val (V ) for each variable in V ⊆ S maps every variable x
from V to Dom (x). We compose valuations for disjoint sets
of variables with ]. The support of e, denoted Support (e),
is the set of variables that appear anywhere in its constructs.
We shall index sets of expressions with the variables that
make up the smallest super-set of their support when such a
precision appears relevant for our exposition: e.g., XD,V

def
=

{e ∈ XD |Support (e) ⊆ V } ; when domains appear irrelevant,
however, we abbreviate the set of all symbolic expressions as
X def

=
⋃

D∈D XD. Given e ∈ XD,V and a valuation µ ∈ Val (V ),
the interpretation of e w.r.t. µ, noted JeKµ, belongs to D and
can be computed according to the usual semantics of the
operators. P def

= XB is the set of all propositional predicates
with (in-)equalities; P is closed under elimination of variables
defined on finite domains. Further, for every domain D ∈ D,
XD is also closed under substitution of any symbolic expression
that belongs to XD′ for any variable v s.t Dom (v) = D′. We
generalize to multiple variables and denote with e

[
µ
]

such a
substitution in e ∈ X according to a mapping µ from a set
of variables to symbolic expressions of the same domain of
definition. We use the variable assignment denotation x := ex
to incrementally construct such a mapping in Section 4 1 .

Symbolic systems are made of disjoint sets of state and input
variables, respectively denoted X and I . The values associated
to state variables are fixed initially, and evolve according to
a discrete step (lock-step) semantics very similar to that of
synchronous circuits: discrete evolutions are defined using a
mapping T with one assignment x := ex per state variable
x ∈ X , where ex is a Dom (x)-valued symbolic expression that
determines the value to be memorized by variable x based on
the current valuations for state and input variables, at each tick
of an implicit basic clock. Such a system induces a state machine
whose state-space consists of all possible valuations for every
variable in X , and whose transitions are encoded by the discrete
evolutions T . If the domain of definition of every variable in X
is finite, then this constitutes a finite-state machine (FSM).

2.1 Symbolic Control

Solving symbolic control problems on such systems can be
seen as solving a game where, at each tick, one player (the
environment) gives a value for a fixed portion of the input
variables, then the other player (the controller) assigns values
to every other input variable, and then the game evolves into
a subsequent state according to the discrete evolutions and
the inputs given by the players. The input variables assigned
by the first (resp. second) player are said non-controllable

1 Throughout the paper, and unlike :=, s
∆
= e denotes the classical formal

definition of a left-hand side symbol s with a right-hand side expression e: s can
be seen as a placeholder for expression e everywhere in the paper. Alternatively,

we use
def
= when defining structures and algorithms.

(resp. controllable); we denote these sets U and C, respectively.
Control objectives expressed as logic formulas that involve state
and/or input variables are assigned to the controller, and the
solution of the control problem consists in a strategy that this
player can follow to win the game by fulfilling all its objectives.
Systems where such a choice for the first player always exists
are said deadlock-free, and algorithms solving control problems
should preserve (or enforce) this property.

The control objectives that we use in this work are twofold: First,
achieving a safety control objective consists in enforcing a safety
property. Such properties can be expressed using some temporal
logic like LTL [Clarke et al., 1986]. In our case however, we use
the same symbolic constructs as for the system to build stateful
observers that represent the temporal aspects of the properties
we need (e.g., sequence, iteration), and can therefore restrict
the safety objective formulas to propositional logic. Second,
satisfying optimal control objectives consists in minimizing a
cost function, possibly summed over a sliding window of a given
number of ticks. In systems as described above, when costs are
associated with the transitions of the underlying FSM instead
of its states, the cost function is a total mapping from state and
input valuations into some numerical domain: in symbolic terms,
it can therefore be expressed as an expression in XN ,X∪I , with
N ∈ Dnum. When both a safety and an optimal control objective
are to be enforced, the combined strategy can be obtained by
first computing a strategy that ensures the safety objective, and
then refining it to satisfy the optimal control objective.

Strategies as Efficient Sequential Code Usually, strategies
that are computed by algorithms dedicated to operate on
symbolic systems eventually take the form of a predicate over
state and input variables: i.e., they belong to PX∪I . Then,
given a valuation for state and non-controllable inputs, a
constraint solver needs to be used to find a suitable valuation for
controllable inputs that satisfies the predicate. The existence of
such a solution is guaranteed by the control algorithm; when this
solution is always unique, moreover, the strategy is deterministic.

To avoid relying on a constraint solver, a triangularization
procedure [Hietter et al., 2008] can be used to translate the
strategy into a mapping from valuations for state and non-
controllable input variables into valuations for controllable
input variables, which is basically a combinatorial circuit. This
translation operates via successive variable substitutions and
partial evaluations of the predicate strategy. Triangularizing
non-deterministic strategies requires a total order on solutions,
e.g., with a total order on both the controllable input variables
and their respective domains of definition: this can be achieved
by ordering (prioritizing) the controllable input variables, and
assigning them with “default” or “preferred” values. The trian-
gularized strategy can directly be combined with the original
system to form a controlled system that, when fed with values
for non-controllable inputs, keeps track of the system state
and outputs appropriate values for controllable variables to
enforce the desired control objectives. This controlled system
does not rely on any constraint solver, and can therefore easily
be implemented as an efficient piece of sequential code or
synchronous circuit.

2.2 Tooling and Related Works on Discrete Optimal Control

Few works have addressed the problems of enforcing safety
control and optimization objectives on the kind of symbolic
systems we consider; they mostly derive from the seminal work
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of Ramadge and Wonham [1989]. Marchand et al. [2000] and
Miremadi et al. [2012] implemented tools that are suitable for
enforcing safety objectives. Berthier and Marchand [2014, 2015]
extended these algorithms to operate on systems where state
variables may take their values in infinite numerical domains
like Integers or Rationals, and implemented their solutions
as part of the ReaX tool 2 . In turn Marchand and Le Borgne
[1998], and Dumitrescu et al. [2010], implemented algorithmic
solutions for optimization objectives; these works focus on
finite-state systems equipped with cost functions relating to
states only, and essentially consist in symbolic adaptations of
Bellman’s algorithm for the computation of optimal strategies
using dynamic programming [Bellman, 1957]: as such, they
operate based on a given set of target states in the underlying
FSM, to be reached using a path that incurs an optimal cost.

The algorithm we present in the next Section alleviates the need
for specifying target states to better accommodate the modeling
of reactive systems for which the solutions above are inadequate.
Instead, we take an alternative approach by operating on every
path of a given length at once.

3. AN ALGORITHM FOR SYMBOLIC LIMITED OPTIMAL
CONTROLLER SYNTHESIS

We now present our new algorithm for refining a base strategy σ
towards fulfilling a given optimization objective. We consider
the objective that seeks the minimization of a cost function
ζ ∈ XN ,X∪I summed over k ∈ N+ ticks, with N ∈ Dnum.
Observe that ζ actually associates a cost on every transition of
the model: given a state q ∈ Val (X) and a valuation ι ∈ Val (I)
for inputs, JζKq]ι gives the cost incurred by the current tick as a
quantity inN . In turn, the base strategy σ is given as a predicate
on state and input variables, i.e., σ ∈ PX∪I .

3.1 Computing Best Expected Outcomes

Our algorithm starts by computing the best outcome ηk as a
symbolic expression on the numerical domainN ∗ def

= N ∪ {∞},
i.e., N extended with∞ so that∞ is the supremum element for
N ∗, and∞ <∞ does not hold 3 . ηk ∈ XN∗,X∪I gives the best
outcome that any strategy refined from σ can achieve on a time
window of k ticks, given any valuation for the state and input
variables. ηk can be recursively computed as

η1
def
= if σ then ζ else∞ (1)

ηi+1
def
= if σ then

(
MaxU ◦MinC(ηi)

)[
T
]

+ ζ else∞ (2)
where MinV (s), s ∈ S def

= s (3)

MinV (ce), c ∈ N def
=

{
cMinV (e) if c > 0

cMaxV (e) if c < 0
(4)

MinV (e1 + e2)
def
= MinV (e1) + MinV (e2) (5)

MinV (if p then e1 else e2)
def
=

if ∃V p ∧ ∃V ¬p then min
(

MinV (e1),MinV (e2)
)

else if ∃V p then MinV (e1) else MinV (e2)
(6)

with min
(
e1, e2

) def
= if e1 < e2 then e1 else e2 (and similarly

for MaxV , max). ∃V p denotes the existential elimination of
every finite variable in V from a predicate p. Eqs (3)-(6) describe
a solution to the symbolic optimization problem that consists in
2 Available at https://reatk.gforge.inria.fr/.
3 In the case of a maximization,N is extended with −∞ instead.

finding, given a set of variables V and a numerical expression
e ∈ XN ,W , a numerical expression e′ without any variable from
V (i.e., e′ ∈ XN ,W\V ) such that: (i) e evaluated according to
any possible valuation for all variables in V is always greater or
equal than e′; and (ii) there exists a valuation for V such that e
equals e′; i.e., ∀ω ∈ Val (Support (e) \ V ),

(i) ∀ν ∈ Val (V ), JeKω ] ν > Je′Kω; and
(ii) ∃ν ∈ Val (V ), JeKω ] ν = Je′Kω.

Eq. (3) is straightforward since V must not contain infinite
variables and s ∈ XN : therefore s /∈ V . Eqs (4)-(6) operate
recursively on the structure of the expression e. Elimination
in conditional constructs essentially involves building a new
expression that separately handles three sub-cases based on
whether there exist valuations for V that maintain satisfaction of
the condition p or not—the fourth case, that does not appear in
Eq. (6), equates to p unsatisfiable.

Going back to Eqs (1)-(2) for the computation of ηk, the base
case for k = 1 consists in associating every transition that does
not satisfy σ with the supremum cost∞. In turn, the computation
of ηi+1 given ηi in Eq. (2) can be broken down as follows:
(MinC) solve the symbolic optimization problem of finding the

minimum for every controllable variable (C): this actually
represents the choice of values for controllable input variables
that best fulfill the objective;

(MaxU ) solve the dual symbolic optimization problem for every
non-controllable variable (U ), representing the worst possible
move of the environment against the desired objective. This
leads to a numerical expression that only involves state
variables since the combined optimization problems above
eliminate all input variables;

(·
[
X 7→ T

]
) substitute every state variable with its correspond-

ing evolution expression (note that this may re-introduce input
variables);

(·+ ζ) add ζ to account for the cost of the additional transition.
The result of this operation builds a new cost function that
associates any transition in the underlying state-machine with
the best expected outcome that can be achieved using any
choice for controllable variables against the worst choices for
non-controllable variables on a subsequent path of length i;

(if σ then · else∞) lastly, associate any choice for inputs that
does not satisfy the strategy σ with the supremum cost.

The result ηk ∈ XN∗,X∪I represents the best expected outcome
towards the optimization objective among every path of length k
that originates from any state. This is to be contrasted with the
existing algorithms mentioned in Section 2.2, that compute the
best cost for reaching any target state.

3.2 Computing the Refined Strategy

Given ηk, a strategy that fulfills the objective consists in
choosing values for variables in C that minimize ηk at the
current tick, given valuations for state and non-controllable input
variables. We compute the predicate that encodes this strategy as

σ′
def
=
(
@C′(ηk

[
C 7→ C ′

]
< ηk)

)
∧ σ (7)

where C ′ are primed versions of all variables in C. The
innermost parenthesized expression in Eq. (7) denotes the
condition upon which choices for variables in C ′ are expected to
produce a strictly better outcome according to ηk, than choices
for variables in C. The resulting strategy σ′ thus consists in
keeping only choices for C such that no strictly better choice for
variables in C ′ exists, and ensuring that these choices are indeed
compatible with the strategy to be refined σ.
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Configurable Design Managed Design

Control
for Safety

Design ModelM
Safety Objective ϕ

Strategy σϕ Optimal
ControlOptimization ObjectiveO

Strategy σϕ+O

Manager

Fig. 1. Overview of our suggested work-flows for computing energy-aware configuration managers.

4. ENERGY-AWARE RECONFIGURATION

We consider controllable designs made of processes that commu-
nicate through channels. Each process consumes and processes
data from one or more input channels whenever possible—i.e.,
a process does not wait unless one of its input channels is
empty—, and produces results into at least one output channel.
Upon consumption of new pieces of data, each process reads a
configuration signal that influences the speed (e.g., the number
of clock cycles in a hardware circuit) and power consumption
its takes it to finish processing the data and produce an output.
Lastly, the design may feature a set of shared resources that
processes may make use of depending on their configuration
(e.g., a specialized signal processing unit in an FPGA): choices
for process configurations must therefore obey a set of mutual
exclusion constraints. The design receives pieces of data from
its environment through one or more input FIFO channels.

Given such a design, our goal is to automatically construct an
energy-aware configuration manager whose role is to dynami-
cally select configurations for each process according to various
global design objectives.

4.1 Overview of the Approach for Computing Managers

We describe in Fig. 1 the work-flows offered by our approach.
A symbolic system model M is first constructed from the
configurable design. M is made of the synchronous parallel
composition of: (i) a model for each channel, defined using
state and non-controllable variables, and appropriate encoding
of discrete evolutions; (ii) a similar model for each process, that
additionally involves controllable variables that offer levers for
the sought-after manager to select configurations. We associate
the symbolic system model with a series of definitions based
on process and channel models, that permit the expression of
control objectives (see below).

Then, a safety objective ϕ is built, in the form of a conjunction
of propositional formulas that involve the state variables of
process models. Each one of these formulas expresses a mutual
exclusion constraint between process configurations that make
use of a shared resource. At this stage, a symbolic safety control
algorithm can be used to compute a strategy σϕ. This strategy is
guaranteed to select values for the process configuration inputs
(i.e., controllable input variables ofM ) that ensure that the safety
objective ϕ is satisfied. σϕ and M can be used in combination
to form a manager that outputs configuration choices for each
process; a design whose processes are configured according
to the outputs of this manager cannot violate any of the
aforementioned mutual exclusion constraints. Alternatively, the
strategy σϕ can be improved by using a symbolic optimal control
algorithm, such as the one that has been presented in Section 3,
that ensures an additional optimization objective O. In our case,
the cost function that we use to define O basically consists of
an estimation of the energy consumption for all processes. The
resulting refined strategy σϕ+O can be used in the same way as
σϕ to dynamically select configurations for each process. We
further detail the construction of the symbolic system model M

Empty Low High

prodi ∧ ¬consj ∧ ωi,j prodi ∧ ¬consj ∧ ωi,j

¬prodi ∧ consj ∧ ωi,j¬prodi ∧ consj ∧ ωi,j

else else else

Fig. 2. Representation of 3-state channel model encoded as qi,j .

and associated definition of control objectives to obtain energy-
aware designs in the remainder of this Section.

4.2 Abstract Channel Model

Several options are available when modeling the kind of chan-
nels featured in the configurable models we consider. The choice
for one option or the other notably depends on whether the
manager that we seek to obtain needs to precisely track the level
of occupation of the FIFOs or not, or, if FIFOs were bounded for
instance, if it actually needs to ensure the absence of overflows.
In our use-case the configuration manager can only alter the
speed of processes by selecting appropriate configurations,
and preventing FIFO overflows would therefore require more
insight (such as computation rates) about the processes at
hand. We can however suppose that a manager that is able to
distinguish almost empty FIFOs will be able to leverage this
additional knowledge of future process activities to achieve a
more energy-efficient planning for process configurations. In
order to permit such a distinction while limiting the growth
of the state-space, we abstract the state of a channel from
process i to process j using a state variable qi,j ∈ X that
takes its values in {Empty, Low,High} ∈ Dfin. We further
introduce non-determinism in each channel model qi,j with
the help of a Boolean oracle input ωi,j ∈ U . This oracle is
a non-controllable input used to non-deterministically transition
between the abstract states of the channel.

We illustrate in Fig. 2 the abstract behavior of a FIFO using a
Mealy-machine partitioned according to the domain of qi,j ; this
automaton is strictly equivalent to the assignment that we use
to define the discrete evolutions of every qi,j in the symbolic
modelM . prod i and consj denote predicates that hold whenever
production and consumption of elements occurs in the channel:
we define the associated symbolic expressions in the next Section
as part of the model of processes. Observe that, for instance,
this automaton clearly shows that the shortest path from High to
Empty involves two ticks where consj holds and prod i does not.

4.3 Abstract Process Model

We now turn to the symbolic model of a process p, defined as:

consp
∆
=
∧
i∈Qp

(qi,p 6= Empty) ∧ if pp = Idle then tt else ep

prodp
∆
= pp 6= Idle ∧ ep

p′p
∆
= if consp then Act-cfgp else (8)

if ¬consp ∧ prodp then Idle else pp
pp := p′p
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We further represent the variables and definitions above in
context in Fig. 3 where we illustrate a simple configurable
design. Input r denotes the arrival of a new piece of data into
the network. A process p becomes or remains active whenever
a data token is available in all its input channels (a set that
we note here with Qp): this is represented in the model using
a predicate consp . The model of a process p also features a
predicate prodp , which indicates that the active process p has
terminated its computations and produced a new piece of data
into (each one of) its output channel(s). Since the model does
not track any internal operational process state, and in particular
none of its progress towards terminating its computations, an
input variable ep is used to drive process terminations. Upon
termination of its current computations (this event manifests in
the system model as a tick where ep holds), p either becomes
idle if any one of its input channel is empty, or consumes a new
element from all of them and remains active. Eq (8) defining
expression p′p represents the value held by state variable pp
starting from the next tick; the new abstract state of p’s model
that this expression represents is either Idle, or some active state
that is tagged with the configuration that was selected by the
controller as controllable variable cfgp when p last consumed
data. The state variable pp ∈ X takes its values in the domain
Modesp

def
=
{

Idle,Act-1, . . . ,Act-|Configsp |
}
∈ Dfin where

|Configsp | ∈ N+ is the number of available configuration
options (aka modes) for p; in turn, cfgp ∈ C is defined in
the domain

{
1, . . . , |Configsp |

}
∈ Dfin.

Wort-case Energy Estimation In our modeling approach, the
designer associates each configuration c for a process p with
a worst-case execution-time wcetp,c ∈ N and peak-power
consumption ppp,c ∈ N , using a numerical domain N ∈ Dnum.
An over-approximation of the energy consumption incurred by
any configuration choice for a process p that consumes some
data during a tick (and thus starts a new computation cycle) is
therefore
wep

∆
=
∑

c∈Modesp

if consp ∧ p′p = c then wcetp,c × ppp,c else 0,

and the global energy consumption we ∈ XN ,X∪I is the
sum over all processes P : we ∆

=
∑

p∈P wep . Observe that
(wcetp,c × ppp,c) terms are constants that can be evaluated
during the construction of the symbolic model. Also, we
involves expressions for p′p as defined in Eq (8), and it thus
associates energy costs to transitions of the system.

4.4 Control Objectives

Our control objectives fall into two categories: safety objective
ϕ and optimization objective O. In our use-case, the former
category embodies mutual exclusion constraints between process
configurations that share resources. For instance, a safety
property given as predicate ϕ ∆

= ¬(pp = Act-i ∧ pq = Act-j)
indicates that processes p and q cannot be active in their
respective ith and jth modes at the same time. At last, one
can make use of the worst-case energy estimation expression
we defined above to specify an optimization objective O to
be enforced using the symbolic optimal control algorithm we
presented in Section 3.

We have defined at this point a full system model and associated
control objectives. We can thus employ a work-flow as sketched
in Fig. 1 to obtain a control strategy σ, and eventually obtain

qr,i

. . .. . .

r consi

pi

pi,1

..
.

pi,n

cfg i

ei
qi,j

. . .. . .

prod i consj

pj

pj,1

..
.

pj,m

cfgj

ej

Fig. 3. Graphical representation of a 2-process 2-channel con-
figurable design; the pi,1, . . . , pi,n’s represent the distinct
modes of process i—similarly for j. r, cfg i, cfgj , ei, and
ej are inputs of the system model, whereas consi, prod i
and consj denote expressions (predicates).

g
Designer

system.ctrln

simbench.v

ReaX manager.ctrld ctrl2hdl manager.v

+
Integration simulator Executions

Í
Modeling Symbolic Control Code Generation Evaluation

Fig. 4. Synthesis & simulation tool-chain for assessing global
design objectives.

an implementable configuration manager by means of the
triangularization process described at the end of Section 2.

5. EXPERIMENTAL EVALUATIONS

Let us now turn to the experimental evaluations of our contri-
butions. Apart from carrying out some performance evaluations
of our implementation in ReaX of the new optimal control
algorithm of Section 3, we also want to empirically assess that it
is actually able to enforce optimization goals by using the models
constructed above. Indeed, such actual performance evaluations
are necessary in the case of symbolic implementations, where
one usually observes significant gaps between the practical
performances and theoretical complexity results. We also want
to experimentally assess whether configuration managers as
produced using our approach effectively improve energy con-
sumption whatever the sequences of inputs the resulting designs
are subject to. This essentially means that the energy-efficiency
of a manager needs to be evaluated on as many (realistic)
scenarios as possible. At last, we want to observe the impact
of the size of the sliding window used to specify the limited
optimal control objectives.

5.1 Constructing Simulators of Managed Designs

We represent in Fig. 4 an overview of the series of modeling
steps and tools that we used to carry out our evaluations. The
“Modeling” box on the left-hand side depicts the designer’s
manual tasks of both constructing the symbolic system model
and control objectives (in system.ctrln), as well as a simulation
bench in the form of a Verilog file simbench.v. The latter will be
used to carry out multiple stochastic simulations of the resulting
managed design, encoded as a sequential circuit (we give more
details on the simulation bench in Section 5.2 below).

In the “Symbolic Control” phase, we use ReaX to perform
safety and limited optimal control on the system, triangularize
the resulting strategy, and combine it with the original system
to construct the manager. The latter is a controlled system
(in file manager.ctrld), that can directly be translated into a
sequential circuit using ReaX’s companion tool ctrl2hdl: this
translator turns deterministic symbolic systems into equivalent
code in a hardware description language such as Verilog: this
step produces manager.v. The integration of this manager with
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module fifo (input clk, input c, input p, output ω);
reg [31:0] fifo;
wire empty = 0, low_u = 10;
assign ω = (p & ~c & (fifo==empty | fifo==low_u)) |

(~p & c & (fifo==empty+1 | fifo==low_u+1));
initial fifo = 0;
always @(posedge clk) begin

if (p & ~c) fifo <= fifo + 1;
if (~p & c) fifo <= fifo - 1;

end
endmodule

Listing 1. Verilog module for FIFO’s simulated behaviors.

p1 p2 p3 p4

p5

p6

Design1

p1 p2 p3

p5 p6

p4

Design2

Fig. 5. Schematic representation of configurable designs.

Table 1. Specification values for 6-process example.

Process p c ∈ Modesp wcetp,c (clock-cycles) ppp,c

p1 Act-1 / Act-2 100 / 150 55 / 35
p2 Act-1 / Act-2 40 / 50 70 / 27
p3 Act-1 / Act-2 40 / 50 43 / 80
p4 Act-1 / Act-2 40 / 50 43 / 80
p5 Act-1 / Act-2 / Act-3 180 / 210 / 195 8 / 7 / 7
p6 Act-1 / Act-2 80 / 90 70 / 60

the simulation bench produces a hardware circuit that can
be efficiently executed using compilers and simulators for
synchronous circuits.

5.2 Simulation Bench

Several Verilog modules make up the basis for constructing
a simulation bench for our designs. A module process is
instantiated for each process in the design, and simulates
computations of dynamically parameterizable length. It accepts
a parameter et, and basically starts counting upon receiving
a run signal r. It emits e when its counter reaches the value
of its parameter et. The value of et for a process will be
randomly drawn upon every one of its data consumptions. In
turn, module fifo (shown in Listing 1) accurately tracks the
amount of simulated payload in a FIFO channel, and reports
when this occupation level crosses some fixed boundaries using
a dedicated output signal ω, which is fed as input to the manager
(see module main below) to drive the corresponding abstract
3-state behavior illustrated in the Mealy-machine of Fig. 2. In
this particular instance, every concrete simulated FIFO that has
between 1 and 10 elements is considered in the abstract state
Low; the value of 10 is here chosen arbitrarily.

An additional module main assembles processes and FIFOs
along with the manager produced by ReaX and ctrl2hdl. This
module reflects the behavior of the modeled system, and includes
the produced manager to form a controlled circuit that integrates
dynamic reconfiguration capabilities.

At last, a module simbench feeds the simulated design
by periodically raising r. This module is also responsible
for uniformly drawing values for actual execution times and
power consumptions of each process, depending on its current
configuration and in accord with the specification used to
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Fig. 6. Gain in simulated energy per completely processed data
for each design illustrated in Fig. 5.

define the system model (in system.ctrln in Fig. 4). simbench
also reports simulated energy consumption data every 1 000
clock cycles. This way of partitioning the resulting stochastic
simulation trace into chunks of 1 000 clock cycles allows us to
gather statistics on the simulated energy consumption for the
design under multiple configurations and loads (i.e., state of the
channels) at once.

5.3 Simulation Results

Let us now present the simulation results we obtain for two
designs with 6 processes shown in Fig. 5, whose specification
values for worst-case execution times and power peaks for each
process configuration are given in Table 1; observe that process
p5 offers 3 possible configurations. For both designs, additional
mutual exclusion constraints must ensure that process p3 must
not be in mode Act-1 while p5 is in mode Act-1 (and conversely);
similarly for mode Act-1 of p4 and Act-2 of p5:

ϕ = ¬ (p3 = Act-1 ∧ p5 = Act-1)∧
¬ (p4 = Act-1 ∧ p5 = Act-2) .

We represent in Fig. 6 the gains in energy consumption per
processed data that we observe w.r.t. the size of the sliding
window used for the limited optimal control algorithm. For each
size of sliding window (on the horizontal axis), we give the
minimum, average, and maximum gain in percentage, as well as
the low and high quartiles (for each case, aggregated over 100
simulations). A window of size 0 indicates that the manager is
produced without any enforcement of optimal control objective
(yet, mutual exclusion constraints are enforced). All gains (on
the vertical axis) are given in percentage of the average energy
consumption obtained for the non-optimized design (represented
with the dashed horizontal line). For each example design, we
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Table 2. Synthesis time and memory footprint of
ReaX for example design Design1 w.r.t. size of
sliding window selected for the limited optimal
control algorithm (k); we also report the size of
the resulting manager circuit (in number of logic

elements—LE).

k Time (s) Memory (KB) Manager size (LE)
0 0.13 50424 660
1 7.49 192940 661
2 37.40 523300 663
3 89.86 1572140 839
4 133.20 2848112 1035
5 164.42 2531132 1161
6 198.01 3030064 1190
7 210.84 3054040 1192

show 5 series of results that each represent the average period
(50, 100, 150, or 200, in clock cycles) after which a new token
in fed into the circuit (drawn uniformly within a ±25% range
upon each token firing); “loop” represents a minimal workload
with exactly one token in the circuit at any given time. Upon
consumption of a token by a process pi with configuration c,
its actual simulated execution time is drawn uniformly within
60% and 100% of its respective specification value wcet i,c.
Likewise, its instantaneous power consumption is uniformly
drawn at each clock cycle, within 60% and 100% of ppi,c. As
expected, the overall energy consumption per processed data
decreases with the size of the sliding window (and the simulated
workload). These results empirically confirm that the size of
the sliding window considered for the optimization can greatly
impact the ability of the limited optimal control algorithm to
actually achieve a noticeable reduction in energy consumption.

We further report in Table 2 the run-time performances of ReaX
for Design1 (Design2 exhibits similar results). Manager sizes
are between 600 and 1 192 logic elements, which are relatively
negligible compared to the several hundred thousands to millions
of logic elements that currently available FPGAs offer.

Observe that in Fig. 6, a plateau is reached for sliding windows of
size greater than 5. For the two designs, this actually corresponds
to the iteration i after which the expected outcome as computed
in Eq. (2) only ever increases by some fixed amount ξ; i.e., in
these cases, ∃ξ ∈ XN ,X∪I ,∀j > i, µj+1 = µj + ξ. Note that
our implementation of the algorithm does not attempt to detect
these cases to stop the computation of expected outcomes before
reaching the full length of the sliding window.

6. CONCLUSIONS & FUTURE WORKS

We have presented a new algorithm for achieving limited optimal
control on symbolic system models. This algorithm alleviates
the need for specifying target states by operating on a finite
sliding window of parameterizable length. It also accepts cost
functions directly defined on transitions, which is a novelty
among symbolic approaches for optimal control. In order to carry
out some empirical evaluations of this new control algorithm, we
have also advanced a framework for producing an energy-aware
dynamic reconfiguration manager for reactive data-flow circuits.
Our technique permits the systematic construction of abstract
symbolic models of such designs, as well as associated global
control objectives. Through the construction of an efficient
simulator using a hardware description language, we have also
demonstrated that the symbolic model and the resulting strategy
can be translated into a piece of circuit that encodes an efficient

configuration manager. By construction, this manager ensures
any set of mutual exclusion constraints on the design, and is able
to reduce overall energy consumption.

We plan to develop a tool and design guidelines for using
our approach on the automated construction of the abstract
symbolic models. As stated in Section 2, the strategies are
usually computed under the assumption that the environment
of the model behaves as an adversary: in a sense the strategy
is pessimistic. A natural extension of our work is to take
some stochastic models of the environment (e.g., inferred
from simulation traces) into account to compute strategies that
achieve better energy efficiency on average. Last, our symbolic
optimization algorithm could be extended in the two following
directions: (i) the tool ReaX that we use for computing strategies
is already able to enforce safety properties on infinite-state
systems. An extension of our limited optimal control algorithm
towards handling such systems appears a natural extension of
our work; (ii) in some cases, more than one design metrics are
relevant for specifying optimal control objectives. Regarding
our circuit use-case for instance, one can also identify the
dice temperature as a factor that would be interesting to take
into account. Handling such new quantitative objectives would
require extending our optimal control algorithm towards multi-
criteria objectives.
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