
FPGA Implementation Framework for Low
Latency Nonlinear Model Predictive

Control

Vaishali Patne ∗ Deepak Ingole ∗∗ Dayaram Sonawane ∗

∗ College of Engineering Pune, Shivajinagar Pune 411005, India
(e-mail: {pva18.instru, dns.instru}@coep.ac.in).

∗∗Gustave Eiffel University, University of Lyon, ENTPE, LICIT,
F-69518 Lyon, France (e-mail: deepak.ingole@ifsttar.fr).

Abstract: Embedded implementation of real-time Nonlinear Model Predictive Control (NMPC)
is extremely challenging and complex. This paper presents a framework for implementation
of NMPC on Field Programmable Gate Array (FPGA). We show the step-by-step procedure
of FPGA implementation framework design of NMPC for a case study of 2D-crane system.
In the implementation, we used GRAMPC software to construct NMPC and subsequently
generate an FPGA specific low-level C/C++ code of the optimization solver. Generated
C/C++ code is optimized for memory, speed, and resource utilization by the customized
approach of applying pipelining and directives using Xilinx Vivado HLS toolchain. The NMPC
is implemented on a Xilinx’s ZYNQ-7000 SoC ZC706 FPGA board. The detailed analysis of
the controller computational complexity in terms of memory, resource utilization, clock, and
power consumption is presented. The performance of implemented NMPC is verified through
Hardware-in-the-Loop (HIL) co-simulation using system generator tool. The presented results
show the feasibility of FPGA-based GRAMPC framework for ultra-fast applications of NMPC.

Keywords: Nonlinear MPC, gradient method, FPGA, real-time control, HIL co-simulation.

1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is getting a
lot of attention from industries and researchers as it is an
extremely effective control strategy for Multi-Input Multi-
Output (MIMO) systems. It has been used effectively
for nonlinear industrial processes like hovercraft (Adhau
et al., 2019), aerial robot control (Kocer et al., 2019),
steering wheel of autonomous vehicle (Quirynen et al.,
2018), missile guidance (Bhattacharjee et al., 2020), and
many more.

To increase the applicability of NMPC to real-time ap-
plications with resource limited hardware, there is a need
for fast, lightweight, and hardware-specific algorithms to
solve the nonlinear Optimal Control Problem (OCP) in
sub-milliseconds time. Authors in Vukov et al. (2013),
implemented NMPC for nonlinear system with 9 states on
3 GHz CPU achieving sampling time of 4 ms while authors
in Liniger et al. (2017) obtained sampling time of 20 ms on
1.7 GHz system. Authors in Lekić et al. (2020) were able
to achieve 500 µs on ARM Cortex-M7 (STM32F746-216
MHz) hardware for DC-DC converters.

Many software environments are available to optimize
the nonlinear systems. The toolkits like ACADO (Houska
et al., 2013), VIATOC (Kalmari et al., 2015) provides a
feature of auto-code generation with low-level C code. The
hardware implementation of the code is however restricted
to OS-based embedded platforms, due to dependency
on library files (Adhau et al., 2019). Various algorithms

employed in NMPC are presented in Gros et al. (2016),
while various methods for embedded optimization are
given in Ferreau et al. (2017). The challenge is to choose
the most suitable platform satisfying the requirements
such as performance, available on-chip resources (memory,
I/Os, communications, speed, etc.) power consumption,
reconfigurability, portability, etc.

One of the attractive choices is to use FPGAs for the
implementation of optimization algorithms. FPGA chips
have very specific technical characteristics that enable
them to execute complex algorithms faster than traditional
solutions. In addition to the possibility of architecture
reconfiguration, the hardware’s parallel architecture and
deterministic nature make it an ultimate solution for
reducing round-trip latency and increasing the speed of
the optimization algorithms.

Work in Zanelli et al. (2018) applied NMPC for the con-
trol of a quadrotor using low-power Xilinx ZYNQ SoC
(System-on-Chip) with a sampling time of 10 ms us-
ing SQP (Sequential Quadratic Programming) with Real-
Time Iteration (RTI) method. Authors in Guo et al. (2019)
applied Particle Swarm Optimization (PSO) for intelligent
vehicle, achieving 5 ms sampling time on FPGA prototype
board. The survey of parallel implementations of NMPC
is presented in Abughalieh and Alawneh (2019).

The embedded implementation of NMPC is a challeng-
ing and time consuming task. Authors in Kapernick and
Graichen (2014), developed a GRAMPC Software for
NMPC implementation in C/C++ using gradient-based

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7102

method. Further, authors in Englert et al. (2019) have ex-
tended this framework to solve the nonlinear system with
the state as well as input constraints. They also considered
equality and inequality constraints along with terminal
constraints. The main advantage of the framework is that
the code is written in plain C/C++. Also, the GRAMPC
gives code flexibility to the user, to make the neces-
sary changes from the application perspective. GRAMPC
is successfully applied in the control electric vehicle on
CPU (Wu et al., 2018). However, the implementation of
the GRAMPC framework on embedded hardware if diffi-
cult to find. With GRAMPC, one can implement NMPC
on embedded platforms like ARM and other microcon-
trollers. However, the challenge is to implement the same
on FPGAs because FPGA configuration needs hardware-
specific High-Level Synthesis (HLS) C/C++ codes and
does not support built-in functions of C/C++. This paper
presents the step-by-step procedure of the FPGA imple-
mentation framework of NMPC using the 2D-crane system
as the case study. We use the GRAMPC to construct non-
linear MPC in C/C++ environment. Subsequently, FPGA
specific C/C++ HLS code of the GRAMPC is generated
through our developed C++ wrapper. Further, the gener-
ated HLS code is optimized for memory, speed, and re-
source utilization. The FPGA-based GRAMPC algorithm
is then implemented on a Xilinx’s ZC706 − 7000 series
FPGA via bitstream and tested via HIL co-simulations.
Using this framework, the NMPC algorithm development
time will be reduced significantly and it will be used for
nonlinear control problems arise in embedded applications.

The main features of the developed framework include
its use for the FPGA-based NMPC, optimal control, and
state/parameter estimation using Nonlinear Moving Hori-
zon Estimation (NMHE), supports the flexible splitting
of the algorithmic workload and memory storage between
software and hardware for trading-off the computational
resource usage against performance, and also, can be eas-
ily implemented on different FPGA boards like Xilinx’s
ZYNQ7000 SoC ZC702, ZedBoard, Microzed, etc.

This paper is organized as follows. The structure of the
GRAMPC framework is explained in Section 2. Section 3
discusses the hardware (FPGA) and the steps used for the
real-time implementation of NMPC. Section 4 presents a
case study of two-dimensional crane system and the HIL
results are discussed in Section 5. The concluding remarks
are drawn in Section 6.

2. GRAMPC FRAMEWORK

In this section, structure of the original GRAMPC soft-
ware is described along with the formulation and opti-
mization algorithm.

2.1 Nonlinear Model Predictive Control

NMPC is an advanced control technique. Its most impor-
tant advantage is its ability to handle constraints system-
atically. At each sampling instant, using the current state
of the system as an initial state, the finite horizon OCP
is solved to obtain a sequence of optimal controls. The
first control action is applied to the system and the whole
procedure is repeated in each sampling instant (Borrelli

et al., 2017, Chapter 12). This is computationally ex-
pensive, restricting the use of NMPC to processes with
relatively slow dynamics.

For real-time applications, the NMPC demands a fast
optimization algorithm to calculate optimal control ac-
tions within one sample time. Also, the code needs to be
hardware compatible and should be able to fit on resources
available on selected hardware.

To address this issue, Kapernick and Graichen (2014)
proposed the GRAMPC framework using first-order gradi-
ent method with augmented Lagrangian technique which
has less computational load as compared to second-order
methods. Thus it is possible to achieve the sampling rate
of milliseconds or even microseconds (Englert et al., 2019).

2.2 NMPC Framework

GRAMPC (v2.1) is a software for solving continuous non-
linear systems, subject to linear or nonlinear constraints on
states and inputs. The general structure of the GRAMPC
is as given in Fig. 1.

GRAMPC

Problem

Formulation

Parameters

Options

Executable

Hardware

Fig. 1. General structure of GRAMPC.

The model of the plant is defined in the C function tem-
plate file along with the dynamics of the system, con-
straints, and the cost function to be minimized. Initial-
ization of the states, variables, and parameters is in a
separate file. The OCP for the plant is solved repeatedly
over the prediction horizon (T). The MPC is run in a close
loop over the simulation time or for a single iteration. The
executable file of the C code can be used to run the model
on a hardware platform using matlab/Simulink.

2.3 NMPC Problem Formulation

The problem formulation used in the GRAMPC frame-
work is given as follows:

min
u,p,T

J(u, p, T, x0) = V (x(T), p, T) + (1a)∫ T

0

l(x(t), u(t), p(t)) dt,

s.t. x(0) = x0, (1b)

Mẋ(t) = f(x(t), u(t), p, t0 + t), (1c)

g(x(t), u(t), p, t) = 0, (1d)

gT (x(T), p, T) = 0, (1e)

h(x(t), u(t), p, t) ≤ 0, (1f)

hT (x(T), p, T) ≤ 0, (1g)

u(t) ∈ [umin, umax], (1h)

p ∈ [pmin, pmax], (1i)

T ∈ [Tmin, Tmax]. (1j)

The cost function (1a) is minimized with reference to u, p,
and T as optimization variables. The system dynamics (1c)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7103

consider constant mass matrix M . The state vector at time
t is denoted by x ∈ Rnx , control inputs by u ∈ Rnu ,
and parameters by p ∈ Rnp . The terminal as well as
general equality (gT and g) and inequality (hT and h)
constraints are also included. The MPC solves OCP in (1)
over prediction horizon T ∈ R generating new states, used
as initial states in the next sampling instant.

2.4 Optimization Algorithm

The GRAMPC uses low-level plain C code without depen-
dency on external libraries. It uses the indirect approach
to optimize first and then discretize. The Euler method
is used to solve the differential equations. The augmented
Lagrangian method provides a sub-optimal sure solution
at fast speed with a less computational cost. Also, it can
handle both, equality as well as inequality constraints. For
solving the inner minimization, the Projected Gradient
Method (PGM) is used which also updates the multipliers
along with the penalty parameters. The outer loop is
terminated when all constraints are met and the inner loop
is converged.

The augmented Lagrangian method is the combination
of the penalty method (Nocedal and Wright, 2006) and
the Lagrange method (Arora et al., 1991). In the penalty
method, the value of the penalty parameter µ is usually
large. This can cause ill-conditioning of the optimization
problem. When combined with the Lagrangian method,
smaller values of µ can be used. In the Augmented La-
grangian algorithm, LA is minimized successively, updat-
ing the value of λ and µ every iteration.

min LA(x, λ, µ) = f(x) + λT g(x)︸ ︷︷ ︸
Lagrangian

+
µk

2
||g(x)||22︸ ︷︷ ︸

augmentation

, (2a)

λ and µ is updated by,

λi ← λi + µkg(xk), (2b)

µk ← ρµk, (2c)

where xk is solution of unconstrained problem at kth step
and ρ is penalty increase factor (e.g., factor of 1.5 or 10).
This method can be easily extended to handle inequality
constraints using slack variables. However, adding inequal-
ity constraints increases the computational burden. The
next section explains the FPGA wrapper developed for
implementation for the algorithm.

3. FPGA IMPLEMENTATION FRAMEWORK

This section discusses our main contribution, the FPGA
framework to implement GRAMPC-based NMPC. Fig. 2
shows the detailed process to implement the controller on
the FPGA.

3.1 Steps for Implementation of FPGA-based GRAMPC

Code generation: The available code can be compiled for
microcontrollers with minor changes. However, for FPGA,
standard C functions are not directly synthesizable. In this
work, we developed C wrapper to transform the original
GRAMPC C code to the synthesizable HLS code for the
Xilinx FPGA board.

GRAMPC

C/C++IDE

FPGA

FPGA

and

MATLAB

Problem

Formulation

Initialise

Parameter

FPGA-based

GRAMPC

HLS Code

Generation

SIL

Simulation

HLS Code

Optimization

ParallelismDirectives

Algorithm

Implementation

HIL

Testing/

Verification

Fig. 2. Steps in design and implementation framework of
NMPC on FPGA.

The developed wrapper statically defines the initialization
parameters to avoid dynamic memory allocation. Library
functions of C are replaced with inline functions while
making necessary changes in some of the other functions.
The wrapper eliminates all generalized functions by trans-
forming the code into problem specific version, e.g., having
a choice of integrator at run time does not work with
FPGA the way it works with microcontrollers. Thus the
code executes with pre-defined options.

SIL simulation: The developed C code for FPGA-based
GRAMPC is then executed in closed-loop. It is observed
that the controller tracks the states successfully while
following the constraints. The Software-in-the-loop (SIL)
simulation is performed for various initial conditions using
C code. The generated values of states and controls are
stored in a text file for each iteration. These are then
plotted for verification of results. We also analyze the
complexity of the controller for different values of the
horizon as well as the penalty matrices at this stage.

Synthesis: The code is synthesized using Vivado HLS
(2018.3) when the code syntax is checked and the hierarchy
of the design is analyzed. At this stage, the design is
transformed into register transfer logic (RTL) and then
to gate-level representation. It is verified that the changes
made in the code from the FPGA perspective do not affect
its performance.

Code optimization: Once the code is synthesized, we
get the utilization of the FPGA resources (Block RAMs
(BRAMs), DSP blocks, Flip-flops (FFs), and Look-up-
Tables (LUTs)). Based on this information, we select the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7104

FPGA board to be used. Vivado HLS provides various
attributes, pragmas, and directives for improved perfor-
mance, reduce latency or the resources used while achiev-
ing better data throughput e.g.,

• Function inline: INLINE helps in simplification of
architectural hierarchy of the design.
• Loop manipulation: LOOP FLATTEN and LOOP

MERGE are used for better optimization of the loop-
body. UNROLL pragma is used to partially unrolling
the loops based on timing as well as memory utilized.

• Coding style: use of proper HDL coding style helps in
effective hardware design. Also, specifying necessary
bit width can result in smaller and faster hardware.

Pipelining is also applied to loops (PIPELINE) wherever
possible along with ARRAY MAP, ALLOCATION, etc.,
for the further optimization of the code. We get other
performance evaluation parameters like achieved clock and
power utilization at this stage. The code is now ready for
the target board.

Deploy on the FPGA: We have used System Generator
with matlab/Simulink to test and verify the developed
FPGA implementation framework.

• Simulink design: various building blocks are provided
in the system generator for Digital Signal Processing
(DSP), e.g., black box allows the import of the RTL
generated in Vivado HLS into Simulink. This helps
in designing directly in a flexible high-level system
environment.
• Export RTL: after optimization and synthesis, the

code is exported to matlab/Simulink for HIL co-
simulation by using the Export RTL feature of the
Vivado HLS.
• HIL co-simulation: the system generator (2018.3) has

an option to choose the appropriate hardware. The
Simulink design is then tested using simulation. The
design is then compiled using HIL with JTAG inter-
face. Once the bitstream file is created, the generated
subsystem is added to the design. Use of subsystem
executes the plant in the matlab/Simulink while the
solver is on the FPGA hardware.

3.2 FPGA Board Used

FPGAs are well known for high processing power and
reconfigurable designs. Depending upon the problem size
and required resources (obtained after synthesis step), we
can select the appropriate FPGA board. In this work,
we consider Xilinx’s ZC706 evaluation board with the
ZYNQ7000 XC7Z045 SoC processor. The SoC contains
ARM as well as FPGA on board.

Table 1. Resources available on Xilinx’s ZC706 FPGA.

Resource Available Size (bits) Memory (Mb)

BRAM 1090 18000 20.09

DSP 900 48 0.0432

FF 437200 1 0.4372

LUT 218600 64 13.99

The FPGA is reconfigurable with the capability of parallel
processing. This makes the platform ideal for the embed-
ded implementation of MPC. If the required resources are

Table 2. States and inputs of 2D-crane system.

Variable Parameter Description Unit

States

x1 r Cart position m

x2 ṙ Cart velocity m/s

x3 l Rope length m

x4 l̇ Rope velocity m/s2

x5 θ Angle with vertical rad

x6 θ̇ Angular velocity rad/s

Inputs
u1 ac Acceleration of cart m/s2

u2 ar Acceleration of rope m/s2

less, cheaper options like Zedboard or MicroZed can also
be used. Various resources available on the Xilinx’s ZC706
and their total memory occupation are given in Table 1.
The next section gives the details of 2D-crane as a case
study for verification of the FPGA wrapper developed.

4. CASE STUDY: 2D-CRANE

The algorithm explained in Section 2 is verified using a
case study of 2D-crane system. Fig. 3 shows the schematic

l

ar

r

ac

θ

Fig. 3. Free body diagram of the 2D-crane.

of the 2D-crane system. The crane comprised of a cart,
moving on the beam with a load attached to it using a rope
of length l. We follow the model and notation presented
in Kapernick and Graichen (2013). The states and inputs
of the system are given in Table 2. The nonlinear model
dynamics is given by,

θ̈ =
−1

l
(g sin(θ) + ac cos(θ) + 2 l̇ θ̇), (3a)

where g is the gravitational acceleration. The controls are
bounded between −2 to +2 with sampling time of 2 ms.
The controller aims to drive the crane from initial to final
value without swinging of the pendulum, keeping the value
of θ close to zero. The initial (x0, u0) and the final values
(xf , uf) of the states and inputs are given by,

x0 = [−2, 0, 2, 0, 0, 0]>, (4a)

xf = [2, 0, 2, 0, 0, 0]>, (4b)

u0 = [0, 0]>, (4c)

uf = [0, 0]>. (4d)

For this case study, only integral cost or the Lagrange term
is used, which is given by,

l(x̃, u) =
1

2
(∆xTQ∆x+ ∆uTR∆u), (5a)

∆x = x− xf , (5b)

∆u = u− uf , (5c)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7105

where xf and uf are the desired final values of states
and control inputs, respectively. The Q and R are positive
definite matrices given by,

Q = diag(1, 2, 2, 1, 1, 4), (6a)

R = diag(0.05, 0.05). (6b)

The nonlinear inequality constraint is given by,

l cos(θ)− 0.2(r + l sin(θ))2 − 1.25 ≤ 0. (7)

Once the model, parameters, and constraints are defined,
the steps given in Section 3.1 are followed to generate the
FPGA ready code. The FPGA implementation and its
closed-loop performance are discussed in the next section.

5. HIL CO-SIMULATION RESULTS

The performance evaluation of the FPGA-based GRAMPC
is discussed in this section. The C HLS code is optimized
for the 2D-crane model. It is then implemented on the
Xilinx’s ZC706 FPGA board using system generator. The
NMPC HLS code is executed with sampling time (Ts) =
2 ms and horizon (T) = 2 s. The values of the penalty
matrices, Q and R, are given by (6) whereas the initial
and final condition of all states is given in (4). The system
is simulated over 12.5 s.

5.1 Closed-loop Performance

The main objective of the control of 2D-crane is to
achieve the reference value while following the nonlinear
constraints as well as bounds on the controls. Fig. 4 shows

0 2 4 6 8 10 13

Time t [s]

-2.2

-1.1

0

1.1

2.2

0 2 4 6 8 10 13

Time t [s]

-2.2

-1.1

0

1.1

2.2

0 2 4 6 8 10 13
-0.4

-0.2

0

0.2

0.4

0 2 4 6 8 10 13
-0.2

-0.1

-0.0

0.1

0.2

0 2 4 6 8 10 13
-0.7

-0.5

-0.2

0.0

0.3

0 2 4 6 8 10 13
1.2

1.4

1.6

1.9

2.1

0 2 4 6 8 10 13
-0.1

0.3

0.7

1.0

1.4

0 2 4 6 8 10 13
-2

-1

0

1

2

Fig. 4. Response of FPGA-based GRAMPC with HIL co-
simulation for closed-loop control of 2D-crane.

the closed-loop response of the 2D-crane system to the
FPGA-based NMPC. It can be seen that the FPGA-based
NMPC performs as expected to track the desired reference
values of all the states within the imposed constraints and
bounds. The new cart position is reached without much
variation in the pendulum angle thus avoiding the swinging
of the pendulum.

5.2 FPGA Resource Utilization

One of the main challenges in FPGA implementation
of NMPC is to keep resources within available limits.
Even though the design fits on the Xilinx’s ZC706 board,
further reduction in the resources is attempted to make
NMPC code lightweight. To reduce memory footprints,
we used 32 bit single-precision (float) number format
in the algorithm. Further, we use HLS directives like
function inlining, array partitioning, etc. The comparison
of the original and optimized resource utilization is shown
in the Table 3. It can be seen that with the proposed
code optimization we can reduce resources by a significant
amount, which is important for large problems.

Table 3. Resource utilization of FPGA-based NMPC
with and without HLS code optimization.

FPGA-based LUTs FFs DSPs BRAM Total (Mb)

GRAMPC

Original 141734 99921 884 108 9.39

Optimized 100929 67794 670 75 6.69

Saving (%) 28.79% 32.15% 24.21% 30.55% 28.75%

Other key parameters of FPGA design are the clocks
achieved and the power consumption. Table 4 shows these
parameters for the proposed FPGA-based NMPC with
original and optimized code. It can be seen that the
achieved clock is sufficient for systems with sampling time
in the range of nanosecond. Though there is less difference
in clock achieved between before and after optimization,
there is reduction in power utilization after the code opti-
mization. This shows that we can effectively use proposed
NMPC framework for fast control applications.

5.3 Low Latency

The time interval between the input and response is
referred to as latency. Using parallel architecture of FPGA
it is possible to process independent instructions at the
same time resulting in ultra-fast latency. Occurrences
of random events in FPGA are very limited delivering
predictable and repeatable processing latency. As the zero
latency is achieved, the framework is suitable for real-time
applications requiring very fast sampling times.

6. CONCLUSION

In this paper, we present the FPGA implementation
framework for low latency NMPC. The detailed step-
by-step procedure of FPGA-based NMPC (GRAMPC)
design and implementation is presented considering the
case study of the 2D-crane system. In the proposed frame-
work, we developed a wrapper on the top of the original

Table 4. Clock and power analysis of FPGA-based
GRAMPC for the closed-loop control of 2D-crane.

Resource Original Optimized

Targeted clock (ns) 10 10

Achieved clock (ns) 0.201 0.207

Total power (W) 3.178 3.167

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7106

GRAMPC algorithm to generate FPGA specific HLS code
of the NMPC. The generated HLS code is further opti-
mized for resource utilization, speed, and memory, using
the pragmas and directives provided by Xilinx Vivado HLS
toolchain. We analyzed the performance of the FPGA-
based NMPC using the Xilinx’s ZC706−7000 series FPGA
development board with the HIL co-simulation.

The analysis shows that the FPGA-based NMPC can be
used for real-time applications owing to its fast speed and
little development time. This will open new avenues for
the use of FPGA for the control of nonlinear systems
by customizing the available GRAMPC framework for
small and medium systems. The developed framework is
an excellent choice for low-latency, ultra-fast real-time
applications such as robotics, flight control, and nonlinear
systems involving complex calculations.

The future scope of this work is to propose modifications
in the source code of the GRAMPC framework to make it
directly implementable on the FPGA hardware. Also, the
possibility of using the heterogeneous configuration, for
the larger systems demanding higher memory footprints.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of the Depart-
ment of Science and Technology, Govt. of India, under
Women Scientist Scheme (WOS-A/ET-120/2018). Fund-
ing in the form of the APJ Abdul Kalam Memorial Inter-
national Travel Award, from the Automatic Control and
Dynamic Optimization Society (ACDOS), is gratefully
acknowledged. Deepak Ingole would like to thank for a
financial contribution from the ERC under the EU Horizon
2020 research and innovation program (grant agreement
no. 646592 MAGnUM project). We would like to thank the
GRAMPC development team for their helpful discussions
and suggestions. The goal of this work is to develop an
FPGA-based implementation framework for NMPC us-
ing original GRAMPC and whole credit/copyright of the
methods and algorithms is of the GRAMPC team.

REFERENCES

Abughalieh, K.M. and Alawneh, S.G. (2019). A survey of
parallel implementations for model predictive control.
IEEE Access, 7, 34348–34360.

Adhau, S., Patil, S., Ingole, D., and Sonawane, D. (2019).
Implementation and Analysis of Nonlinear Model Pre-
dictive Controller on Embedded Systems for Real-Time
Applications. In ECC, 3359–3364.

Arora, J., Chahande, A., and Paeng, J. (1991). Multiplier
Methods for Engineering Optimization. International
Journal for Numerical Methods in Engineering, 32(7),
1485–1525.

Bhattacharjee, D., Chakravarthy, A., and Subbarao, K.
(2020). Nonlinear model predictive control based missile
guidance for target interception. AIAA Scitech 2020
Forum, 0865–0884.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Pre-
dictive Control for Linear and Hybrid Systems:Textbook.
Cambridge University Press.

Englert, T., Völz, A., Mesmer, F., Rhein, S., and Graichen,
K. (2019). A Software Framework for Embedded Non-
linear Model Predictive Control Using a Gradient-Based

Augmented Lagrangian Approach (GRAMPC). Opti-
mization and Engineering, 769–809.

Ferreau, H.J., Almér, S., Verschueren, R., Diehl, M., Frick,
D., Domahidi, A., Jerez, J.L., Stathopoulos, G., and
Jones, C. (2017). Embedded Optimization Methods
for Industrial Automatic Control. IFAC-PapersOnLine,
50(1), 13194–13209.

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and
Diehl, M. (2016). From Linear to Nonlinear MPC:
Bridging the Gap Via the Real-Time Iteration. Inter-
national Journal of Control, 1–19.

Guo, H., Liu, F., Xu, F., Chen, H., Cao, D., and Ji, Y.
(2019). Nonlinear Model Predictive Lateral Stability
Control of Active Chassis for Intelligent Vehicles and Its
FPGA Implementation. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2–13.

Houska, B., Ferreau, H., Vukov, M., and Quiry-
nen, R. (2013). ACADO Toolkit User’s Manual.
http://www.acadotoolkit.org.

Kalmari, J., Backman, J., and Visala, A. (2015). A Toolkit
for Nonlinear Model Predictive Control Using Gradient
Projection and Code Generation. Control Engineering
Practice, 39, 56–66.

Kapernick, B. and Graichen, K. (2013). Model Predictive
Control of an Overhead Crane Using Constraint Substi-
tution. In American Control Conference, 3973–3978.

Kapernick, B. and Graichen, K. (2014). The Gradient
Based Nonlinear Model Predictive Control Software
GRAMPC. European Control Conference, 1170–1175.

Kocer, B.B., Tiryaki, M.E., Pratama, M., Tjahjowidodo,
T., and Seet, G.G.L. (2019). Aerial Robot Control in
Close Proximity to Ceiling: A Force Estimation-based
Nonlinear MPC. IEEE International Conference on
Intelligent Robots and Systems, 2813–2819.

Lekić, A., Hermans, B., Jovičić, N., and Patrinos, P.
(2020). Microsecond Nonlinear Model Predictive Con-
trol for DC-DC Converters. International Journal of
Circuit Theory and Applications, 48(3), 406–419.

Liniger, A., Domahidi, A., and Morari, M. (2017).
Optimization-Based Autonomous Racing of 1:43 Scale
RC Cars. arXiv e-prints, 628–647.

Nocedal, J. and Wright, S. (2006). Penalty and Augmented
Lagrangian Methods, 497–528. Springer New York.

Quirynen, R., Berntorp, K., and Di Cairano, S. (2018).
Embedded Optimization Algorithms for Steering in Au-
tonomous Vehicles Based On Nonlinear Model Predic-
tive Control. In American Control Conference (ACC),
3251–3256. IEEE.

Vukov, M., Domahidi, A., Ferreau, H.J., Morari, M.,
and Diehl, M. (2013). Auto-Generated Algorithms for
Nonlinear Model Predictive Control on Long and on
Short Horizons. In 52nd IEEE Conference on Decision
and Control, 5113–5118.

Wu, Li, Du, Ding, Li, Yang, and Lu (2018). Fast Velocity
Trajectory Planning and Control Algorithm of Intel-
ligent 4WD Electric Vehicle for Energy Saving Using
Time-Based MPC. Recent Advancements on Electrified,
Low Emission and Intelligent Vehicle-Systems, IET,
153–159.

Zanelli, A., Horn, G., Frison, G., and Diehl, M. (2018).
Nonlinear Model Predictive Control of A Human-Sized
Quadrotor. In European Control Conference (ECC),
1542–1547. IEEE.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7107

