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Abstract: Modern intensive care therapy as well as general anesthesia would not be possible,
without respiratory support. Yet, unphysiological pressure levels and gas concentrations pose a
serious risk to severely harm the patient. Advanced control schemes could improve the patient’s
safety and ensure the therapeutic success. Model predictive control (MPC) for instance allows to
incorporate information about the patient at runtime through an internal model of the system,
e.g. by using the lung compliance or airway resistance as model parameters. Furthermore, it
can guarantee the satisfaction of constraints, which is useful, when considering physiological
safety bounds. In this article we propose a two layered model-based control architecture for
pressure controlled ventilation. The purpose of the lower layer is to approximately linearize the
actuator dynamics, while the second layer implements a MPC controlling the pressure at the
upper airways of the patient. The control architecture is implemented in an experimental setup,
incorporating the ventilation unit of an anesthesia workstation. Initial results are presented,
with the focus on the general feasibility of the chosen approach.

Keywords: Model Predictive Control, Respiratory Support Ventilation, Embedded System

1. INTRODUCTION

Respiratory support is a key element of modern medicine.
By sustaining the ventilation of the patients lung, its task
is to provide sufficient gas exchange during partial or
complete failure of the patients respiratory system (Shelly
and Nightingale, 1999). It is thus essential during gen-
eral anesthesia to maintain the patients oxygenation and
eliminate the produced carbon dioxide in case of the
respiratory muscles are fully or partially relaxed (Shelly
and Nightingale, 1999). Due to the applied positive pres-
sure and commonly increased oxygen concentration in the
inspired air, mechanical ventilation is non-physiological,
with a high potential of severely damaging the lung of
the patient (Shelly and Nightingale, 1999). Furthermore,
it affects the cardiovascular system by elevating its work-
load, due to the increased counter pressure applied by the
ventilation system (Shelly and Nightingale, 1999). Thus,
the safety criteria on ventilation units are rigorous and
highly regulated.

By using modularisation together with a model-based
control approach the complexity of the resulting control
system can be coped with, helping to ensure a safe opera-
tion of the medical ventilation unit. Männel et al. (2018)
proposed a hierarchy of segregated control loops for the
development of a respiratory support system alongside a
model predictive controller for the carbon dioxide gas ex-
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change, covering the higher layer of this hierarchy. In this
article, we introduce a two level model-based control ap-
proach for controlling the pressure level of the ventilation
unit of an anesthesia workstation, thus covering the lower
layer control loops of the proposed hierarchy, Männel et al.
(2018). These loops comprise of an actuator level controller
abstracting the nonlinear actuator dynamics and a second
level pressure controller. For this level, a model predictive
control scheme is proposed to control the ventilation of the
patients lung, whilst satisfying patient-safety constraints.
In order to show the general feasibility of this model-based
approach on a resource-constraint system, the resulting
control architecture is implemented on two cortex M4
microcontrollers.

To the best of the authors knowledge Li and Haddad
(2013) were the first to propose MPC for use in respiratory
support. They presented simulation results following refer-
ence volume pattern to ventilate a multicompartment lung
model also considering physiological constraints. Further-
more Scheel et al. (2017) proposed the use of MPC for the
pressure regulation of the patient airways. The approach
was proposed for a medical device maintain a continuous
positive airway pressure (CPAP) commonly used in the
therapy of obstructive sleep apnea with a patient breathing
on its own. The controller objective was to counter act
disturbances, such as the patient breathing effort and did
not incorporate any constraints on the system. Our goal in
contrast is to also support patients unable to breath spon-
taneously. In this setting the incorporation of physiological
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constraints is highly desirable. The proposed approach
is illustrated both in simulation and with experimental
results.

Notations: The weighted euclidean norm of vector x ∈
Rn is defined as ‖x‖M =

√
x>Mx, where M ∈ Rn×n is

a symmetric positive semi-definite matrix. For a sequence
u , [u(0), u(1), ..., u(N − 1)], u(i) denotes the ith element
of u. A polyhedron is the intersection of a finite number
of halfspaces P = {x | Ax ≤ b} and a polytope is a closed
bounded polyhedron. The identity matrix of dimension n
is denoted by In, while 0n,p denotes a zero matrix within
the Rn×p.

2. SYSTEM DESCRIPTION

The ventilation unit is an important component of the
anesthesia workstation. In order to illustrate the applica-
bility of the proposed control approach the ventilation unit
of an anesthesia workstation, a semi-closed rebreathing
circuit is used as basis for our investigations. Semi-closed
means that the exhaled air is partially reused after remov-
ing the exhaled carbon dioxide by means of an absorber. A
schematic of the simplified pneumatic system is displayed
in Figure 1. Depending on the clinical situation, the venti-
lation is accomplished via a mask or a tubus. Either one is
attached to a y-piece from where two hoses are connecting
the patient to the system, for inspiration and expiration
respectively. During each breathing phase the gas flows
through one of the hoses, which is ensured by a check valve
marked as I for inspiratory and E for expiratory branch
(see figure 1). The pressure at the y-piece, representing
the pressure at the patient’s airways, is controlled by two
actuators. In the inspiratory branch a blower is located
directly before the check valve. In the expiratory branch a
valve is placed directly behind the check valve. Since this
valve is essential for maintaining a positive end expiratory
pressure (PEEP), it is called PEEP-Valve. During the in-
spiration the the blower increases the inspiratory pressure
(pinsp) while the PEEP-valve is closed. Thus, air flows into
the direction of the patient, filling its lung. The pressure
is kept at the positive inspiratory pressure level (PIP) as
depicted in figure 1.

Once the expiration phase starts the blower reduces the
pressure pinsp and air is released from the lungs through
the opening of the PEEP-valve. It is common to not release
all air from the lung, but holding a positive pressure
level, in order to prevent the alveoli from collapsing. The
expiration is mainly driven by the restoring forces within
the lung, thus the transient behavior during expiration can
only be manipulated within tight bounds.

The exhaled air is collected in a reservoir bag, from which
the blower can suck in air. This air is cleansed of CO2

by an absorber, before it is redirected to the patient. The
reuse of the exhaled air reduces the amount of required
anesthetics and oxygen.

In order to compensate the oxygen uptake of the patient
and to change the mixture of the breathing gas if required,
fresh gas (FG) flows constantly into the breathing system.
When a fast change of gas mixture is desired, it is pos-
sible to use a constant circular flow through the system.
Furthermore, an adjustable pressure limitation (APL) is
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Fig. 1. Simplified schematic representation of the ventila-
tion system and the typical flow and pressure wave-
forms at the patients upper airways during pressure
controlled ventilation

required as safety measure for manually ventilating the
patient, e.g. in case of a complete system failure.

Finally two valves, not shown in figure 1, are used to keep
the pressure in the rebreathing branch close to atmospheric
pressure. If the pressure is above atmospheric pressure,
gas is released into the scavenging system (AGS) and
otherwise gas is drawn from the atmosphere.

For the experimental setup used throughout this work, a
modular research demonstrator of an anesthesia device is
used. The demonstrator is based on the rebreathing circuit
and actuators of a commercially available anesthesia work-
station and illustrates a bus-modular design concept. The
ventilation system is controlled by two microcontrollers,
one Infineon XMC-4800 and one Infineon XMC-4300, both
using the ARM Cortex-M4 architecture. Both controllers
are exchanging data over an EtherCAT-bus with a sam-
pling time of 1 ms. The bus master is implemented on a
Raspberry pi 3B+ with an rt-patched raspian operating
system. The XMC-4300 is used to read and pre-process
the data from the sensors. The other microcontroller is
connected to the systems actuators and provides a larger
internal memory, thus the control architecture for the
ventilator unit is implemented there.

3. SYSTEM MODEL

A model describing the system dynamics of the breathing
system is derived using first principle methods. The model
shall be used within the MPC, where it is beneficial to
use a linear model with linear constraints to reduce the
complexity of the optimization problem. Therefore, the
rebreathing circuit of the ventilation system is neglected
and the actuators are assumed to behave like linear first
order systems. The differential equation for the inspiratory
pressure pinsp, for the blower, and expiratory flow Qexp, for
the PEEP-valve, is given by:

ṗinsp = τBlower pinsp + pinsp,r ,

Q̇exp = τPEEPQexp +Qexp,r ,
(1)

with pinsp,r and Qexp,r being the respective input. The time
constant of the actuator is given by τBlower and τPEEP

respectively. The actuators are yet bound to constraints.
On the one hand, the blower can only generate positive
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Fig. 2. Electrical analog of the ventilation system

pressure and has an upper limit. On the other hand, the
maximal flow through the expiratory valve is dependent
on the pressure pexp at the valve. Under the assumption
that the air flow is laminar, the following inequality holds:

Qexp ≤ Gmax pexp ,

where Gmax is the conductance of the completely opened
valve.

The ventilation hose poses a resistance (Rh) to the air flow
and increases its volume, thus it behaves like a compliance
(Ch). In combination the ventilation hose is modeled as a
first order low-pass filter.

For the patient a single compartment model is used,
where it is assumed that the patients airways behave as
one rigid tube and the lung can be modeled as a single
elastic compartment (Bates, 2009). Under the assumption
of laminar air flow, the change of pressure within the
alveoli palv can be expressed as

ṗalv =
1

RawCalv
(paw − palv),

where paw is the pressure at the mouth piece or tubus of
the patient. The parameter Raw, Calv describe the airway
resistance and lung compliance respectively.

The electrical analog, where the volume flow and pressure
are assumed to be an analog to current and voltage
of the connected components is displayed in figure 2.
Note that the pressure in the inspiratory hose, i.e. at
the y-piece, is assumed as the airway pressure paw. The
expiratory pressure is equivalent to the pressure in the
expiratory hose. The behavior of the check valves and
thus the directed flow within this model is considered
by applying additional constraints to the system. In the
expiratory branch it is sufficient to demand that Qexp ≥ 0,
which is easily represented as an input constraint. For
the inspiratory branch the constraint Qinsp ≥ 0 implies
that pinsp ≥ paw. Nevertheless, the introduced constraints
seemed more promising for the current setup, than the
introduction of switching behavior. Given this system, the
derived state space model has five states, two inputs and
two outputs, namely:

x =


palv
paw
pexp
pinsp
Qexp

 , u =

[
pinsp,r
Qexp,r

]
and y =

[
pexp
Qinsp

]
.

4. CONTROL ARCHITECTURE

In order to control the pressure at the patient’s airways
we propose a hierarchical controller design with two layers
and an additional therapy control unit (TCU). A block
diagram of the proposed system is depicted in figure 3. The
purpose of the therapy control unit in the given scenario
is to generate the reference for the pressure at the y-piece,
expecting the parameters of the pressure curve as input.
In a more general setting the TCU would also contain all
the different aspects relevant for the therapy. Thus, higher
level controller, e.g. for the gas exchange (Männel et al.
(2018)), would be abstracted within this block.

Similarly to the TCU the lower level controllers, KBlower

and KPEEP, are used to simplify the actuator dynamics
by compensating their nonlinearity and counteracting dis-
turbances. These controllers are designed and empirically
tuned such as their closed loop dynamics can be considered
as approximately linear but with constraints, i.e. limits in
their output. The blower is controlled such that it can
be considered as a pure pressure source generating pinsp,
while the expiratory valve controls the outflow Qexp of
the system. The subordinate controllers therefore provide
a means for the assumptions of (1) to actually hold.
Furthermore, the controller counter act disturbances from
the rebreathing circuit, allowing to neglect it in the model
of the MPC. Both controllers at this level run with a
sampling time of 1 ms and are truly distributed, sharing no
information, and furthermore having no knowledge about
the patient.

The actual ventilation of the patient is achieved by the
second control layer, which uses model based optimization
to guaranty safe and reliable operation. The proposed
approach contains two elements, on the given hierarchy
level. For one the actual model predictive controller (MPC)
calculating the future inputs and a Kalman filter (KF)
estimating the current state of the system. Independently
from the actual control architecture, the state estimate
might be a useful addition for the system supervision,
e.g. to identify abnormal or faulty behavior (Mehra and
Peschon, 1971). The internal model of the filter and the
controller is a zero-order hold discretized version of the
continuous time model at a sampling rate of 10 ms.

In the authors opinion this approach holds several advan-
tages over a single central controller. For one the MPC
scheme provides a means to incorporate constraints into
the system and guarantees that those are not violated.
This can be used to directly introduce soft and hard
physiological boundaries increasing the patients safety
during therapy. Another major benefit comes from the
internal model, which can be easily adapted to different
patients and in future be extended, e.g. by incorporating
spontaneous breathing. Furthermore, the control hierarchy
enables the exchange of its components, e.g. an actuator,
where only the respective sub-controller needs to be up-
dated.
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4.1 Model Predictive Controller

In the following a model predictive controller is designed
for tracking piece-wise constant references as proposed
by Limon et al. (2008). Therefore, consider a system with
the linear discrete time system model

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k)
(2)

where x ∈ Rn, u ∈ Rm and y ∈ Rp represent the systems
state, input and output at time instance k ∈ N. The
system dynamics are described by the matrices A ∈ Rn×n
and B ∈ Rn×m, where the pair (A,B) is assumed to
be controllable. The system output is determined by the
system matrices C ∈ Rp×n and D ∈ Rp×m. The system is
subject to input and state constraints

(x, u) ∈ X × U , (3)

where X ⊆ Rn and U ⊆ Rm are polyhedral sets, containing
the origin as an interior point. Constraints on the system
outputs are not considered explicitly, but rather trans-
formed into state and input constraints using the affine
mapping in (2). The solution to (2) at time i for an input
sequence u, is denoted x(i) = φ(i;x(0),u). The input
sequence is considered to be an optimal input sequence
u∗, when it minimizes the quadratic cost function:

J(u, θ, x(0), yr) =

N−1∑
k=0

(
‖x(k)− xs‖2Q + ‖u(k)− us‖2R

)
+ ‖x(N)− xs‖2P + ‖ys − yr‖2T . (4)

The sum within the cost function accumulates for N
consecutive time steps a weighted cost on the deviation
between the predicted state and input to a steady state
(xs, us). For the weighting matrices Q = QT � 0, R =
RT � 0 and T = TT � 0 hold. Furthermore, a cost
term for the deviation between the state at the end of the
horizon and the steady state is included approximating the
cost of the infinite horizon optimal control problem, (Bor-
relli et al., 2017). Thus, the weighting matrix P is the
solution to the discrete time Algebraic Ricatti Equation

P = ATPA− (ATPB)(R+BTPB)−1(BTPA) +Q .

The steady state is selected such that it minimizes
weighted deviation between the steady state output and
the reference yr, while also being reachable without violat-
ing the system constraints at any time. Thus, each selected
steady state (xs, us) must satisfy the equation

[
A− In B 0n,p
C D −Ip

][xs
us
ys

]
=

[
0n,1
0p,1

]
. (5)

If the pair (A,B) is stabilizable, a non-trivial solution
to (5) exist, (Muske and Rawlings, 1993) and can be
parameterized by the parameter vector θ ∈ Ro, given
in (4), and the affine mapping[

xs
us

]
= Mθθ, ys = Nθθ , (6)

with the mapping matrices Mθ ∈ R(m+n)×o and Mθ ∈
Rp×o. As proposed by Limon et al. (2008) the parameteri-
zation is used to calculate an invariant set Xf for tracking
given a state feedback controller K, rendering the closed
loop system A + BK Hurwitz. The calculated set is used
to impose a constraint onto the state at the end of the
horizon, demanding it to be within the set Xf .

Given the current state of the system x and a reference yr
to be tracked the ideal input sequence u∗ is determined by
solving the optimization problem

min
u,θ

J(u, θ, x(0), yr)

s.t. x(0) = x,

(2), (3), (6),

(x(N), θ) ∈ Xf ,

(7)

where u and θ are the decision variables. The stated
optimization problem yields a standard quadratic pro-
gramming problem, which can be efficiently solved using
specialized solvers. The system is controlled using the
receding horizon strategy, applying the first element of u∗

to the system and solving (7) again for the measured state
at the next time instant.

4.2 Implementation

The complete proposed control architecture is imple-
mented on a single microcontroller, which is programmed
in C, using code generated by Matlab Simulink. A non-
linear model, which forms the foundation of the controller
development, was deducted using first principle methods.
Unknown system parameters were estimated from mea-
surements by means of system identification. The inter-
faces of the model are selected to match the interfaces of
the real system. Thus, the model outputs each represent
an actual sensor within the real system with an identical
discretization and sampling rate. The model inputs corre-
spond to the electronic signals controlling the actuators.

The implementation of the TCU, the Kalman Filter and
subordinate controllers is accomplished by using compo-
nents, for which code can be directly generated. The imple-
mentation of the MPC is segregated into two parts, a solver
and a design part. As a solver, qpOASES (Ferreau et al.
(2014)) is selected, since it is open source and a library free
translation to C-code already existed. The solver expects a
parameterization in the standard quadratic program form

min
z

1

2
zTHz + 2zTF

s.t. blG ≤ Gz ≤ buG
bl ≤ z ≤ bu ,

(8)

with the optimization variable z, the Hessian H = HT � 0
and the gradient vector F . All constraints are formulated
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as linear inequalities, either as bounds (bl, bu) on the
decision variables or as bounds (blG, blG) on the affine
mapping G of the decision variables. Therefore to interface
the solver, the optimization problem in (7) has to be
converted to the form of (8). This transformation can
easily be accomplished in Matlab using YALMIP (Löfberg,
2004), allowing the problem to be directly implemented as
stated in (7). The computation of the terminal set Xf is
done using the Multi-Parametric Toolbox (Herceg et al.,
2013). The required matrices are extracted from internal
YALMIP model and used to interface the solver directly
within the Simulink model and later on in the C-code on
the microcontroller. At run time only the matrix parts,
depending on the initial state and the reference, e.g. the
gradient vector, have to be updated between solving steps.

Due to limited resources, especially memory and computa-
tional power, of the microcontroller a further optimization
of the implementation is necessary. The lack of memory is
particularly problematic, due to the fact, that the embed-
ded version of qpOASES does not support sparse matrices.
Therefore the sequential representation of (7) is selected,
e.g. eliminating the states as decision variables and only
keeping the system inputs over the horizon. As Rawlings
et al. (2018) points out, this reformulation drastically
reduces the size of optimization problem. The size of the
quadratic program is further reduced by eliminating the
current state and the reference as decision variable, since
these are fixed during each run. Nonetheless, both are
incorporated in the quadratic program as parameters for
the calculation of the gradient and the bounds of the
affine constraints. Thus, only u and θ remain as decision
variables in (8).

5. SYSTEM PERFORMANCE

The international standard for basic safety and perfor-
mance of critical care ventilators (ISO 80601-2-12:2011)
specifies that for different test lungs of different compli-
ance and resistance 30 consecutive breathing cycles are
measured for different PEEP and PIP-levels as well as
breathing frequencies and inspiration times. In order to
evaluate the proposed control setup for the given system
one of the test case defined by the standard is used. A
passive test lung with a compliance of 20 ml/mbar and
resistance of 20 mbar/l/s is attached to the y-piece of the
breathing system and the demanded breath cycles, with
a frequency of 8 min−1 and inspiration time of 3 s, are
measured. The selected pressure levels for inspiration and
expiration are 15 mbar and 5 mbar respectively.

In order to evaluate the control system on the embedded
system measures describing the performance on the mi-
crocontroller are as much of interest as the measures of
the closed loop performance in general. In particular the
memory size of the binary file on the microcontroller as
well as the run time of the solver for each solved opti-
mization problem are of interest. Concerning the closed
loop system performance only a maximum overshoot of
10% or 2 mbar, whichever is greater, is acceptable. This
requirement stems from the documentation of the original
anesthesia workstation. Furthermore an undershoot dur-
ing the expiration, critical when it comes to the therapy,
is to be avoided.
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Fig. 4. Expiratory pressure (top) and patient flow
(bottom) of the simulated breath cycle for differ-
ent prediction horizon lengths (N,Color, Type) =
{(2, red, dashed), (5, blue, dashdotted),
(10, yellow, solid)}.

5.1 Numerical Results

The control approach is evaluated first in simulation using
a nonlinear system model. The controller is tested for the
horizon lengths of N = 2, 5, 10, from which the most
suitable horizon will be implemented on the embedded
system. Since no large deviation between breathing cycles
is to be expected in simulation, only a single breath is
considered instead of 30 as required by the norm.

In figure 4 the result of the simulations are depicted. The
upper graph shows the pressure at the PEEP-valve, as sur-
rogate to the airway pressure, and the lower graph shows
the flow towards the patient. The closed loop performance
of all three controller is quite similar. Actually only during
the inspiration a deviation between the controllers can
be quantified. The maximum overshoot for the controller
with N = 2 (red, dashed) is 0.250 mbar and thus more
than double the maximum overshoot of 0.114 mbar for the
controller with N = 5 (blue, dash-dotted). The overshoot
can be reduced even further to 0.027 mbar with the horizon
length of N = 10. The controller with the shortest pre-
diction horizon also shows a slight tracking error, which is
not present for the other controllers. During the expiration
all three controllers display a similar performance, which
makes sense considering, that the dynamics of the expira-
tion is mostly driven by the passive relaxation, thus the
expiration can only be manipulated to a limited extent.

Regarding the amount of required memory for the opti-
mization problem in relation to the horizon length can
be expressed by a quadratic function. When operating
with double precision floating point numbers the mini-
mal required memory for given optimization problems is
11.120 kB for N = 2, 19.496 kB for N = 5 and 37.936 kB
for N = 10. Since the solver keeps more than one copy of
these matrices in the memory at any time, the real memory
requirement is significantly larger.

5.2 Experimental Results

All three controllers satisfy the performance requirements
given the maximum overshoot during inspiration and
no undershoot during expiration in simulation. For the
implementation on the embedded system the controller
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Fig. 5. Experimental results for the controller with predic-
tion horizon N = 5 for 30 consecutive breathing cycles
overlaid in one (shaded) and the mean value (solid)
for each point on the respiratory cycle. The top graph
shows the expiratory pressure and the bottom graph
the patient flow.

with N = 5 was selected, since the controller with N = 2
shows a slight tracking error and the performance gain for
N = 10 does not outweigh the increased complexity and
memory requirement.

Figure 5 show the pressure measured at the PEEP-valve
and the flow into the patient for all 30 respiratory cycles
(thin dash dotted lines) overlaid in a single breath for each
horizon length. Furthermore, it displays the mean value
(solid line) of all breaths at any point in the breath cycle.
The deviation between the single breath cycles is rather
small and really noticeable in the onset of the inspiration
and expiration.

The proposed controller is capable of following the given
pressure reference trajectory (dashed dark line) reasonably
well. The inspiratory rise time of the pressure is signifi-
cantly slower compared to the simulation, but the max-
imal overshoot over all breath cycles is with 0.069 mbar
well below the bound set by the requirement. During the
expiration on the other hand, the undershoot is larger and
a constant offset is maintained. Furthermore, the controller
does not close the PEEP-valve entirely, which results in a
small but undesirable constant circular flow, which is not
depicted. Therefore, the pressure at the y-piece is actually
slightly higher than measured, due to the pressure drop
across the ventilation hose.

This shows the general applicability of the proposed con-
trol approach for the given system setup. When analyzing
the time required for solving the optimization problem, it
was noticed that only 87 % of the time the problem could
be solved for optimality within the sampling time of 10 ms.
The origin of this issue requires further investigations and
might increase the over all performance.

6. CONCLUSION

In this paper we demonstrated the applicability of hier-
archical control architecture for pressure controlled venti-
lation on the ventilation unit of a bus-modular research
demonstrator. The introduction of subordinate controllers
allowed us to abstract the nonlinear actuators for the
second level model predictive controller. The model pre-
dictive controller incorporated physiological and technical

constraints, holding the potential to increase the patients
safety and incorporate therapeutic information through
the model. The first results are promising, showing that
it is possible to follow a desired breathing pattern while
satisfying the formulated performance measures in simu-
lation and on the embedded system.
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