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Abstract: This paper proposes an approach based on a k-Nearest Neighbour classification
algorithm (k-NN) to identify regions in a water distribution network (WDN) that are affected
under presence of leaks. The classification algorithm is trained with numerical data coming
from a MATLAB simulator based on a dynamic model of the WDN that involve leaks in its
formulation. Concretely, the training is done by using the numerical solutions of a dynamic
model of the WDN under several leak cases. The dynamic model is formulated by taking into
account typical assumptions of the rigid water column (RWC) theory and using the graph
theory. The proposed approach was evaluated in a hydraulic pilot plant.
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1. INTRODUCTION

Water distribution networks (WDN) are prone to different
types of faults. The most common and harmful ones are
leaks, which mainly occur in tanks, gaskets, joints, and
accessories (Thornton et al., 2002; Bermúdez et al., 2018).
Since pressure changes throughout a WDN when it is
affected by a leak (Creaco and Pezzinga, 2018), most
water companies have invested in developing different leak
diagnosis algorithms based on pressure and flow measure-
ments. For example, Valizadeh et al. (2009) developed a
K-Nearest Neighbour classification algorithm (K-NN) to
locate leaks by using only pressure and flow sensor data,
without considering a dynamic hydraulic model.
However, detecting a fault is as important as reducing the
effects of these on the WDN. In other words, it is impera-
tive to reduce the amount of water that is lost due to leaks.
For example, Abu-Mahfouz et al. (2019) proposes a control
system for water demands at the nodes of a hydraulic net-
work, using genetic algorithms and the dynamical network
model. Brentan et al. (2018) propose a model of water
demand predictions in the nodes of a hydraulic network
using artificial neural networks (ANN), working together
with the model of pumps and pressure reducing valves
in the system. Authors in Bello et al. (2019) present an
overview of pressure management in hydraulic networks
and the techniques used to supply the demand for water
through different approaches; based on data, dynamical
system modeling, and optimization. Muhammetoglu et al.
1 Correspondence author: frlopez@ittg.edu.mx

(2017) developed an analysis of pressure data through
a hydraulic network, and implement a set of valves in
a sector of the system to reduce overpressure. Laucelli
et al. (2015) present the evolutionary regression modeling
(EPR) technique to highlight possible problems in a WDN
such as leaks and overpressures, through pressure/flow
measurements of some system nodes. Nevertheless, despite
the few reported papers in the literature, the problem of
reducing water losses due to leaks still open.
This work proposes an approach based on a k-NN classifi-
cation algorithm to locate the section of WDN affected
by a leak. The classification algorithm is trained with
simulations data, which are based on physical modeling of
the hydraulic network. In particular, this is focused on the
case study of a pilot WDN located at the Technological In-
stitute of Tuxtla Gutierrrez, which provides an example of
topology and realistic physical parameters. Furthermore,
the control valves are considered in the mathematical
model of the WDN. Simulation results are presented to
illustrate the applicability of the proposed method. The
leak magnitude is reduced by activating control valves,
which are located in critical nodes of the WND.
The paper continues as follows: the case study which is
considered is presented in section 2, where the correspond-
ing physical modeling is also given. The key ingredients of
control valves and classification approach are then intro-
duced in section 3, and application results are provided in
section 4. Some conclusions are finally given in section 5.
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Fig. 1. Instrumentation diagram of the experimental set-up

2. CASE STUDY

The WDN considered in this work as a case-study cor-
responds to the experimental PVC pipeline (schedule 80)
located at the Technological Institute of Tuxtla Gutierrez.
The set-up is composed of two valves placed in strategic
positions such that they allow the reconfiguration of the
test apparatus: as a simple pipeline, or as a WDN with
two branches. The P&I diagram is shown in Fig. 1. The in-
strumentation of the hydraulic system is composed of five
valves to simulate leaks, two flow meters of Coriolis effect,
two magnetic flow meters with enhanced double frequency
excitation, which allows coping with the most severe ap-
plications. Eight industrial pressure sensors transmitters
(Yokogawa EJA530E) located at the ends of the pipe, and
a modular block data acquisition system (GM10).

3. MODELING APPROACH

In this contribution, the modeling of a WDN is based
on the rigid water column (RWC) theory, which has
been previously used by Shimada (1989); Kaltenbacher
et al. (2017). Therefore, the following assumptions are
considered:

(A1) The flow rate is supposed to be one-dimensional;
(A2) the cross-sectional area is constant along each pipeline;
(A3) the conduit walls of each pipeline are rigid, and the

liquid fluid is incompressible;
(A4) convective changes in velocity are negligible;
In the following, the models of the elements conforming
to a WDN are presented together with their constitutive
laws. After this, the model of the overall WDN connecting
the elements is derived by using graph theory.

3.1 Component models

A WDN consists of multiple elements (e.g., pipes, valves,
leaks, reservoirs) that are characterized by dynamic and
algebraic relationships between the flow Qj through the
component j and the pressure drop ∆Hj = Hi − Hi+1

across that component, where subscripts i and i+1 denote
the two ends of component j (De Persis and Kallesoe,
2011). The relationships for the elements considered in this
contribution are introduced here below.

Pipe and pipe section: The equation of motion for each
pipe (or pipe section) of a WDN is given as

Q̇j = βj(Hi −Hi+1)− αjQj |Qj | − βj∆Hvj , (1)
where Qj is the flow rate (m3/s) trhough pipe j, Hi is
the piezometric head (mH2O) at the inlet of pipe j, Hi+1

is the piezometric head (mH2O) at the outlet of pipe j,
∆Hvj is the pressure drop across an in-line device (e.g.,
a valve, a pump), βj = gArj/Lj is the inertial term
associated to pipe j, g is the acceleration of gravity, Arj is
the cross-sectional area of pipe j, Lj is the length of pipe
j, αj = fj(Qj)/2ϕjArj , ϕj is the inner pipe diameter, and
f(Qj) is the friction factor, which is calculated according
to the flow regime (laminar, transitional or turbulent).

Leak node: The continuity equation for a leak is given
by the following equation:

Ḣi =
1

Aℓi
(Qj −Qj+1 −Qℓi). (2)

where Aℓi is the leak area.
The discharge of the leak can be calculated with the
Torricelli’s equation given by:

Qℓi = CℓiAℓi(2gHi)
−1/2, (3)

where Cℓi is the discharge coefficient.
The motion equations for a pipeline with a leak are given
as follows

Q̇j = βj(Hi−1 −Hi)− αjQj |Qj |, (4)
Q̇j+1 = βj+1(Hi −Hi+1)− αj+1Qj+1|Qj+1|, (5)

where all the variables with sub-index j are associated
to the flow through the section j, which is before the leak
node i, and the variables with sub-index j+1 are associated
to the flow trough section j+1, which is after the leak node
i.

Branch node: The continuity equation for a branch can
be written as

Ḣi =
1

Ani
(Qj −Qj+1 −Qk), ∀k ̸= j, j + 1 (6)

where Qk is the flow rate through the branch k connected
to the node and Ani is the node surface.

In-line valve: The equation for the pressure drop across
a check valve or gate valve is

∆Hvj = Hi −Hi+1 =
Qj |Qj |
(rjEj)2

, (7)
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where Qj is the flow rate trough the valve, rj is the
nondimensional effective gate opening, Ej is a valve size
parameter determined by the energy dissipation potential
of the valve. If the valve is fully open then rj = 1. If the
valve is fully closed then rj = 0. When the valve is partially
open the value of rj is defined by

rj =
Cv′jAv

′
j

CvjAvj
(8)

where Cvj and Cv′j are the coefficients of discharge repre-
senting losses trough a fully open valve and partially open
valve, respectively. Avj and Av′j are the cross-sectional
area of the valve orifice when fully and partially open,
respectively. The valve size parameter is defined as

Ej = CvjAvj(2g)
1/2. (9)

If (7) is substituted into (1) then the continuity equation
for a pipeline with a valve can be written as

Q̇j = βj(Hi −Hi+1)− αjQj |Qj | − βj
Qj |Qj |
(rjEj)2

, (10)

These equations can be used to increase or decrease the
flow rate between nodes of the hydraulic network (in-line),
however it is also possible to consider the Haze-Williams
Equation, which is a head-flow expression between nodes
i, i+ 1 where are located (Dai and Li, 2016):

Qvj =
αCHWD2.63

ij (Hi −Hi+1)|Hi −Hi+1|0.54

L0.54
j

, (11)

where α is a system-dependent constant (SI 0.2787), Qvj
is the flow that passes through the valves in [m3/s], Dj

indicates the pvc pipeline diameter CHW = 150, Lj is the
length corresponding to Hi − Hi+1, which represents the
pressure drop accross the valve. However, some parameters
can be compacted in a Rj coefficient by reducing the
previous Equation to (12):

Qvi = Rj∆Hj |∆Hj |0.54 (12)
where ∆Hj = Hi − Hi+1 =

A

/Avj Therefore, to have a
variable flow control, is added the parameter V (t) to the
equation (12), which allows to adjust the diaphragm to
throttle the flow, leaving:

Qvi = V (t)Rj∆Hj |∆Hj |0.54 (13)

where Rj take values from 0 to ∞ (Ulanicki et al., 2008).

3.2 Network model

A WDN can be represented as a graph in order to
organize the continuity and momentum equations in a
graph-theoretical framework and facilitate the numerical
implementation of the network model. Each pipe, which
may include a valve, is called “a link”, with a direction
arbitrarily defined in the graph. The two ends of a link
are called “nodes,” where a branch or a leak may exist or
pipes may be connected. The number of links and nodes
are l and n, respectively.
The global model of the WDN can expressed as follows

ẋ =

(
−K ΨA

−ΠAT 0

)
x+

(
ΨBC1

ΠBC2

)
(14)

where x ∈ RN is the state vector given as x = [Q H]T ,
where Q ∈ Rl is a vector comprising the flow rates
trough the links and H ∈ Rn is the vector comprising
the pressures at the nodes. A ∈ Rl×n is the node-link
incidence matrix that describes the topology of a WDN
and can be obtained as follows:

Aij =

{
+Sj if link j starts at node i
0 if link j is not incident to node i

−Sj if link j leaves at node i
(15)

where Sj = status of link j given by

Sj =

{
1 if link j is open
0 if link j is closed

(16)

BC1 ∈ Rl and BC2 ∈ Rn are vectors that contains the
boundary conditions (known variables) associated to the
momentum and continuity equations, respectively, or in
other words, the boundary conditions associated to the
links and nodes, respectively. K ∈ Rl×l is a diagonal
matrix composed of dissipation terms Kj in its diagonal,
which are defined as

Kj = −αj(Qj)Qj |Qj | − βj
Qj |Qj |
(rjEj)2

. (17)

Ψ ∈ Rl×l is a diagonal matrix composed of the inertial
terms βj . Π ∈ Rn×n is a diagonal matrix composed of the
inverses of areas. 0 ∈ Rl×n.

3.3 Model of the WDN pilot plant

The pilot plant has n = 11 nodes and l = 10 links. The
nodes 1, 3, 5, 6 and 7 are leak nodes. The nodes H1

BC ,
H2

BC , H3
BC and H4

BC are boundary nodes with measured
piezometric heads. The nodes 2 and 4 are branch nodes.
The links 1, 3, 5, 7 and 9 involve in-line valves. The links 2,
4, 6, 8 and 10 do not involve any in-line device. According
to this, the dynamic of the pilot plant can be described by
the following set of equations

Q̇1 = β1(H
1
BC −H1)− α1(Q1)Q1|Q1| − β1

Q1|Q1|
(r1E1)2

Ḣ1 =
1

Aℓ1
(Q1 −Q2 −Qℓ1) +Qv1

Q̇2 = β2(H1 −H2)− α2(Q2)Q2|Q2|

Ḣ2 =
1

An2
(Q2 −Q3 −Q7)

Q̇3 = β3(H2 −H3)− α3(Q3)Q3|Q3| − β3
Q3|Q3|
(r3E3)2

Ḣ3 =
1

Aℓ3
(Q3 −Q4 −Qℓ3) +Qv2

(18)
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Fig. 2. Hydraulic network diagram with 5 possible leaks

Q̇4 = β4(H3 −H4)− α4(Q4)Q4|Q4|

Ḣ4 =
1

An4
(Q4 −Q5 −Q9)

Q̇5 = β5(H4 −H5)− α5(Q5)Q5|Q5| − β5
Q5|Q5|
(r5E5)2

Ḣ5 =
1

Aℓ5
(Q5 −Q6 −Qℓ5) +Qv3

Q̇6 = β6(H5 −H2
BC)− α6(Q6)Q6|Q6|

Q̇7 = β7(H2 −H6)− α7(Q7)Q7|Q7| − β7
Q7|Q7|
(r7E7)2

Ḣ6 =
1

Aℓ6
(Q7 −Q8 −Qℓ6) +Qv4

Q̇8 = β8(H6 −H3
BC)− α8(Q8)Q8|Q8|

Q̇9 = β9(H4 −H7)− α9(Q9)Q9|Q9| − β9
Q9|Q9|
(r9E9)2

Ḣ7 =
1

Aℓ7
(Q9 −Q10 −Qℓ7) +Qv5

Q̇10 = β10(H7 −H4
BC)− α10(Q10)Q10|Q10|.

The previous set of equations can be expressed in the
compact form given by (14) with Q, H, BC1, BC2, K, Ψ
and Π given as follows:

Q = [Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10]
T

H = [H1 H2 H3 H4 H5 H6 H7]
T

BC1 = [H1
BC 0 0 0 0 −H2

BC 0 −H3
BC 0 −H4

BC ]
T

BC2 = [Qℓ1 0 Qℓ3 0 Qℓ5 Qℓ6 Qℓ7]
T

K = diag(K1,K2,K3,K4,K5,K6,K7,K8,K9,K10)

Ψ = diag(β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)

Π = diag(1/Aℓ1, 1/An2, 1/Aℓ3, 1/An4, Aℓ5, 1/Aℓ6, 1/Aℓ7)

A =



−1 0 0 0 0 0 0
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 1 0 0
0 1 0 0 0 −1 0
0 0 0 0 0 1 0
0 0 0 1 0 0 −1
0 0 0 0 0 0 1


(19)

4. DATA CLASSIFICATION BASED ON K-NN
ALGORITHM

In order to identify the section where the leak occurs,
the valves vL1, vL4 and vL5 are considered, representing
a leak in each section of the hydraulic network, which are
classified by the k-NN algorithm. The principle of k-NN
algorithm is that the most similar samples belonging to the
same class have high probability (Zhang et al., 2018), and
is based on a simple learning model, which is presented in
Fig. 3 (Cambronero and Moreno, 2006).

Fig. 3. Classifier Diagram

This algorithm uses the Euclidean distance function to
calculate the similarity or difference between classes. The
class consists of a set of measurements that represent
features of the system. Therefore, if the classifying algo-
rithm is trained with a set of points ζ = (ζ1, ζ2, . . . , ζn),
and the new values of the system are the points ψ =
(ψ1, ψ2, . . . , ψn), the algorithm defines the class using the
distance equation, for a two-dimensional space:

D(ζ, ψ) =
√
Σn

i=1(ζi − ψi)2 (20)
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For test data, the output of the k-NN classifier is the class
with the highest frequency among the k-nearest neighbors.
In more complex network topologies than Fig. 1, and
considering noisy measurements, non-Euclidean distance
metrics can be selected and the selection of the optimal
number of neighbors is important (Santos-Ruiz et al.,
2019). For the work described in this paper, the Euclidean
distance with 10 neighbors (k = 10) was sufficient to
obtain the required data separability.
In this work, the k-NN classification algorithm was trained
with only 4 pressure sensors (H1

BC , H2
BC , H3

BC , H4
BC), and

four classes are considered. These classes correspond to:
nominal operation without leak; leak in the main pipeline;
leak in one branch; leak in the other branch. Only pressure
measurements are considered due to the fact that in real
hydraulic networks, they are the most commonly available
tools. It is important to mention that these experiments
were carried out in four different operating points of the
hydraulic pump, corresponding to 35Hz, 40Hz, 45Hz,
and 50Hz. Then for each leak scenario, or class, four
experiments were done. The classification regions obtained
are presented in Fig. 4. As it can be seen, in the presence of
leaks, the data presents some separability, which facilitates
the identification of the class. Note that this approach
only identifies the section where the leak occurs, which is
very important to apply the water loss reduction method
presented below.

25 30 35 40 45 50 55 60

H
1 [mH20]

1.5

2

2.5

3

3.5

4

H
4 

[m
H

20
]

No leak
leak; section 1
leak; section 2
leak; section 3

Fig. 4. k-NN classification for leak detection.

5. DETECTION AND REDUCTION OF THE LEAK
IN THE HYDRAULIC NETWORK

5.1 Use of control valves

The simulation of the hydraulic network was performed in
Matlab with the system parameters presented in Table
1. Three different leak scenarios are considered. First,
a leak is between nodes 1 and 2, which corresponds
to Section 1, and the leak is simulated at 40 seconds.
Due to the separability of the data, the classification
algorithm identifies the section where the leak occurs,
and then, the control valve in that section is activated
100 seconds later. As it can be seen in Fig. 5, under the
leak period, the flow rate is reduced in the demanding

nodes. But after activation of the control valve, the flow
rate changes drastically, and the water loss is reduced
in the demanding nodes Q6, Q8, and Q10. The global
water loss reduction is around 3%. Note that even if the
classification algorithm identifies the class immediately,
the control valve is activated only after 100[s], in order
to better illustrate its impact on the water loss reduction.

Table 1. System parameters.

Parameter Value

Pipeline length, L 105.7 [m]
Relative roughness, ϵ 1.5× 10−4

Fluid (water) density, ρ 995.736 [kg/m3]
Cinematic viscosity, ν 0.803× 10−6 [m2/s]

Piezometric head, H1
BC H2

BC 4; 1 [mH2O]
Piezometric head, H3

BC H4
BC 0.2; 0.2 [mH2O]

Coefficient λf 0.5× 10−4 [m(5/2)/s]
Setting parameter, V1(t), V4(t), V5(t) 0.7, 0.5, 0.2

Setting parameter, r1,4,5 1
Gravity acceleration, g 9.81 [m/s2]

Parameter, Rij 0 to ∞
Valve coefficient, Cv 1.156

Leak diameter, dl 0.0127 [m]
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Fig. 5. Reduction of water losses due to the control valve
in section 1.

For the second scenario, a leak is introduced in section 2 at
time at 40 [s], and Fig. 6 shows its transitory effect of the
flows {Q7 Q8}. The section is again well identified by the
classification algorithm, and the leak again reduced when
the control valve is activated at time 120 seconds.
For the third case, a leak is simulated in section 3 at 40
seconds, and the system classifier indeed finds it. In this
case, Fig. 7 shows the leak transient effect on flow rates
{Q9 Q10}, and again its reduction after activation of the
control valve at time 100 seconds.

6. CONCLUSIONS

In this paper, a method was proposed to locate leaking
regions in a water distribution network. This method is
based on a classification algorithm and the dynamic model
of a water distribution network. Note that better training
of the classification algorithm can be done since leaks
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Fig. 6. Water loss reduction via control valve in section 2.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

F
lo

w
(m

3
/s

)

10-3

Q
6

Q
8

Q
9

Q
10

Fig. 7. Water loss reduction via control valve in section 3.

can be simulated at different coordinates of each pipe.
The proposed method was implemented in a real system
by considering a pre-tuned mathematical model, together
with EPANET simulations. In a more realistic scenario,
it could be necessary to identify or compute the model
parameters such as the roughness, the friction factor,
etc. In addition, the proposed methodology to obtain the
mathematical model, which includes the valve and leakage
model, can be used to implement control techniques to
reduce water losses and guarantee water supply to users
despite the presence of leaks. Future work will be done
to consider an integrated leak tolerant control method by
considering optimization control techniques.
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