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Abstract: This paper presents the control of an underactuated four Cable-Driven Parallel Robot (CDPR) 

using a modified input-output feedback linearization technique. The effect of internal dynamics (due to the 

underactuated degrees of freedom of the CDPR) on the behavior of the moving platform is presented to 

highlight the need of an improved controller to stabilize the system outputs. A modified control scheme is 

then proposed as a solution to obtain stable system outputs. A structure with two separate branches is 

modeled to simultaneously act on the control inputs and the mathematical calculations are done using the 

well-established equations of nonlinear control theory. Following this, the response of the system to the 
modified control law is then verified by simulation. A comparison between the classical and modified 

feedback linearization is shown to illustrate the significant improvement in the stabilization of the various 

parameters such as the cable tensions and platform orientations. 

Keywords: Underactuated CDPR, Input-output feedback linearization, Internal dynamics, nonlinear 

control, stability.  

 

1. INTRODUCTION 

Cable-Driven Parallel Robots (CDPRs) is a special variant of 
traditional parallel robots in which the moving platform (MP) 

is connected to the base frame by a set of cables whose lengths 

are adjusted by actuated winches. Coordinated retraction and 

extension of cables control the position and orientation of the 

platform (Merlet and Daney, 2010). One of the important 

challenges in the design of the CDPRs arises from the fact that 

cables can only pull and not push. As a result of this, a 

unilateral constraint exists in which the cables must always be 

maintained in tension, thus, resulting in a larger number of 

cables in general than the number of degrees of freedom (DoF) 

to fully restrain or control the moving platform (Ming, 1994). 
 

A CDPR is said to be underactuated if the number of actuators 

employed for the control of the MP is less than its DoF. Such 

CDPRs have at most one feasible solution for cable tensions 

and mostly rely on gravity for keeping the cables taut. 

Application of underactuated CDPRs with a limited number of 

cables can be found in tasks requiring a limited number of 

controlled DoFs or when a limitation of dexterity is acceptable 

in order to decrease complexity, cost, set-up time, the 

likelihood of cable interference, etc. (Abbasnejad and 

Carricato, 2015) 

 
While a rich literature is available describing the control of 

fully and over-constrained CDPRs (Alp and Agrawal, 2002; 

Oh and Agrawal, 2006; Zi et al., 2008), very few works are 

available on the control of underactuated CDPRs. Some of the 

approaches are dynamic trajectory planning (Gosselin et al., 

2012), anti-sway trajectory generation based on input-shaping 

(Park et al., 2013), zero-vibration input shaping scheme 

(Hwang et al., 2016), flatness-based control (Heyden and 

Woernle, 2006), rest-to-rest trajectory planning (Ida et al., 
2019), and so on.  

 

The application of classical input-output feedback 

linearization has been presented in (Kumar et al., 2019a).  

However, the work did not show the effect of internal 

dynamics on the platform behavior at various points. The main 

contribution of this work is to present the effects of internal 

dynamics on the MP and to propose a modified feedback 

linearization control to stabilize the values of cables tensions 

which in turn helps in stabilizing the DoFs of the moving 

platform (mainly the platform orientations). The simulation 
results indicate that the modified control law performs 

significantly better than the classical I/O feedback 

linearization and can be implemented in the real prototype for 

validation. 

   

The paper is organized as follows: Section 2 presents the 

dynamic model of the CDPR followed by section 3 which 

introduces the input-output feedback linearization in general. 

The effect of internal dynamics on the CDPR is shown in 

section 4. The concept of the modified control law is presented 

in section 5 followed by the simulation results comparing both 

the control laws in section 6.  

 

2. DYNAMIC MODEL OF THE CDPR 

The modelling and analysis methods developed for 

conventional rigid link manipulators cannot be directly applied 
to the cable-driven robots because of the unilateral constraints 

where the tensions in the cables must be considered. 
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A general sketch of cable-driven parallel robot is shown in 

(Fig. 1). 

 

Fig. 1: Simple sketch of one of the cables of the CDPR 

 

A fixed reference frame (O, x, y, z) attached to the base of a 

CDPR is referred to as the base frame. A moving reference 

frame (P, x’, y’, z’) is attached to the mobile platform where P 

is the reference point of the platform to be positioned by the 

mechanism. From (fig. 1), ai and bi are respectively defined as 

the vector connecting point O to point Ai and the vector 
connecting point P of the platform to the point Bi, both vectors 

being expressed in the base frame. The position p of the mobile 

platform is given by 𝑂𝑃⃗⃗⃗⃗  ⃗. In order to reduce the complexity of 

computation in modelling, we assume the following (Gosselin, 

2014): 

1) The mass of the cables is negligible and the cables are 
non-elastic. 

2) The ith cable is assumed to be taut between points and is 

therefore considered a straight segment and is denoted by 

𝜌𝑖. 

3) The moving platform is assumed to be a rigid body, 

defined by its mass and inertia matrix. 

The equations of motion for a CDPR can be derived using 

Newton–Euler formulations provided all cables are in tension 

as shown in (1) (Begey et al., 2019). 

 

[
𝑚𝐼3×3 03×3

03×3 𝐼𝑃
] [

𝑝̈
𝜔̇

] + [
03×1

𝜔 × 𝐼𝑃𝜔
] + [

−𝑚𝑔
03×1

] = −𝐽𝑇𝜏         (1) 

 

In this equation, m denotes the mass of the moving platform 

with the payload, IP  is a 3×3 matrix and denotes the inertia 

tensor of the end-effector about point P in the base frame, I3×3 

is a 3×3 identity matrix, g denotes the gravity acceleration 
vector, τ denotes the vector of cables forces while scalar ti 

denotes the tension force of the ith cable, 𝜔 = [𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]
𝑇  

denotes the velocity vector of the orientation, 𝑝 = [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧]
𝑇 

denotes the position vector. Consider 𝑋 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]𝑇 as 

generalized coordinates vector, in which 𝜃 = [𝛼, 𝛽, 𝛾]𝑇 

denotes the vector of a set of Euler angles. With this definition, 
the rotation matrix can be written in terms of Euler angles as: 

 

𝑅 = [
𝑐𝛽𝑐𝛾 𝑐𝛾𝑠𝛼𝑠𝛽 − 𝑐𝛼𝑠𝛾 𝑐𝛼𝑐𝛾𝑠𝛽 + 𝑠𝛼𝑠𝛾
𝑐𝛽𝑠𝛾 𝑐𝛼𝑐𝛾 + 𝑠𝛼𝑠𝛽𝑠𝛾 −𝑐𝛾𝑠𝛼 + 𝑐𝛼𝑠𝛽𝑠𝛾
−𝑠𝛽 𝑐𝛽𝑠𝛼 𝑐𝛼𝑐𝛽

]      (2) 

 

where, s and c represent sin and cos functions, respectively.  
The angular velocity of the end-effector can be written in the 

following form, 

 

𝜔 = 𝐸𝜃̇                                          (3) 

 

𝜃̇ = [𝛼̇, 𝛽̇, 𝛾̇]𝑇                                    (4) 

 

in which,  

 

𝐸 = [
cβc𝛾 −s𝛾 0
cβs𝛾 c𝛾 0
−s𝛽 0 1

]                               (5) 

 

The equations of motion can be written in terms of X using the 
notations defined above. By some manipulations these 

equations may be derived as, 

 

𝑀(𝑋)𝑋̈ + 𝐶(𝑋, 𝑋)̇ 𝑋̇ + 𝐺(𝑋) = −𝐽𝑇𝜏              (6) 

 

where, 

𝑀(𝑋) = [
𝑚𝐼3×3 03×3

03×3 𝐼𝑃𝐸
] 

 

𝐶(𝑋, 𝑋̇) = [
03×3 03×3

03×3 𝐼𝑃𝐸̇ + (𝐸𝜃̇)
×
(𝐼𝑃𝐸)

] 

 

𝐺(𝑋) = [
−𝑚𝑔
03×1

] 

 

in which, the matrix (𝐸𝜃̇)× is a skew-symmetric matrix 

defined by the components of the angular velocity vector as 
 

The Jacobian transpose of the CDPR is given by  

 

𝐽𝑇 = [
𝑑1

𝑂
… 𝑑𝑖

𝑂 …

𝑏1
𝑂 × 𝑑1

𝑂
… 𝑏𝑖

𝑂 × 𝑑𝑖
𝑂 …

]                     (7) 

where, 𝑑𝑖
𝑂 is the unit vector giving the direction of the ith cable 

from its end point on the base frame (O) to its end point on the 

MP and 𝑏𝑖
𝑂 is the vector from the MP centre of gravity P to the 

end point Bi expressed in the inertial frame. 

 

Equation (6) is finally represented as  
 

𝑀(𝑋)𝑋̈ + 𝑁(𝑋, 𝑋)̇ 𝑋̇ = −𝐽𝑇𝜏                  (8) 

 

where,                   𝑁(𝑋,𝑋)̇𝑋̇ = 𝐶(𝑋,𝑋)̇ 𝑋̇ + 𝐺(𝑋)    

 

Equation (8) is then used for the implementation of the input- 

output feedback linearization method.  
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3. INPUT-OUTPUT FEEDBACK LINEARIZATION 

The mathematical approach of the input-output feedback 

linearization (I/O FL) method for a nonlinear MIMO dynamic 

system of nth order with m number of inputs and outputs is 

presented in this section. Further explanation of the technique 

in detail can be found in (Isidori, 2013). Consider a MIMO 

system described in the affine form as given below: 

𝑥̇(𝑡) = 𝑓(𝑥, 𝑡) + 𝑔1(𝑥, 𝑡)𝑢1(𝑡) + ⋯+ 𝑔𝑚(𝑥, 𝑡)𝑢𝑚(𝑡)     (9) 

 

𝑦1(𝑡) = ℎ1(𝑥, 𝑡) 

… 
𝑦𝑚(𝑡) = ℎ𝑚(𝑥, 𝑡) 

 

where, i= 1..m – ith inputs,  j=1..m – jth outputs,  𝑥(𝑡) ∈ 𝑅𝑛 is 

state vector, ui(t) is control input, yj(t) is the system output, 

f(x,t), gi(x,t) and hj(x,t) are smooth nonlinear functions. 

 

The basic principle of the input-output feedback linearization 
method is in finding an input transformation in the shape 

 

𝑢𝑖 = 𝛼𝑖(𝑥) + 𝛽𝑖(𝑥)𝑣𝑖                          (10) 

 

Where vi is the new input, 𝛼𝑖(𝑥), 𝑎𝑛𝑑, 𝛽𝑖(𝑥) are nonlinear 

functions. 

 
 

Fig. 2: Block diagram representation of the input-output 

linearization 

 

Equation (10) helps in creating a linear relationship among the 

outputs yi and the new inputs vi decoupling the interaction 

between the original inputs and outputs. Following this 

decoupling, control algorithms for each subsystem with input 

and output independent of each other can be synthesized using 

the conventional linear control laws.  In order to achieve this, 

each output is repeatedly differentiated until the input signals 

appear in the expression of derivation. The individual 
derivatives of outputs are calculated using lie derivatives 

which are marked as Lfh and Lgh. The first derivative has the 

form 

𝑦𝑗̇ = 𝐿𝑓ℎ𝑗(𝑥) + ∑ 𝐿𝑔𝑖

𝑚
𝑖=1 ℎ𝑗(𝑥)𝑢𝑖               (11) 

 

where,          𝐿𝑓ℎ𝑗(𝑥) =
𝜕ℎ𝑗

𝜕𝑥
𝑓(𝑥), 𝐿𝑔𝑖

ℎ𝑗(𝑥) =
𝜕ℎ𝑗

𝜕𝑥
𝑔𝑖(𝑥)  

 

If the expression 𝐿𝑔𝑖
ℎ𝑗(𝑥) = 0 for all i,, it means that the 

inputs have not appeared in the derivation making it necessary 

to continue with the differentiation process till at least one 

input appears in the derivation. The resulting derivation takes 

the form  
 

𝑦𝑗
𝑟𝑗 = 𝐿𝑓

𝑟𝑗ℎ𝑗(𝑥) + ∑ 𝐿𝑔𝑖

𝑚
𝑖=1 𝐿𝑓

𝑟𝑗−1ℎ𝑗(𝑥)𝑢𝑖            (12) 

 

where, rj represents the number of derivatives needed for at 

least one of the inputs to appear, also known as the relative 

order. 

  

This approach is followed for each output yj. The resulting m 

equations can be written in the form 

 

[
𝑦1

𝑟1

…
𝑦𝑚

𝑟𝑚

] = [
𝐿𝑓

𝑟1ℎ1(𝑥)
…

𝐿𝑓
𝑟𝑚ℎ𝑚(𝑥)

] + 𝐸(𝑥) [

𝑢1

…
𝑢𝑚

]               (13) 

 

where E(x) is a m × m matrix of shape 
 

𝐸(𝑥) = [
𝐿𝑔1

𝐿𝑓
𝑟1−1ℎ1 ⋯ 𝐿𝑔𝑚

𝐿𝑓
𝑟1−1ℎ1

⋮ ⋱ ⋮
𝐿𝑔1

𝐿𝑓
𝑟𝑚−1ℎ𝑚 ⋯ 𝐿𝑔𝑚

𝐿𝑓
𝑟𝑚−1ℎ𝑚

] 

 

If the matrix E(x) is regular, then it is possible to define the 

input transformation in the shape 

[

𝑢1

⋮
𝑢𝑚

] = −𝐸−1(𝑥) [

𝐿𝑓
𝑟1ℎ1(𝑥)

⋮
𝐿𝑓

𝑟𝑚ℎ𝑚(𝑥)
] + 𝐸−1(𝑥) [

𝑣1

⋮
𝑣𝑚

]        (14) 

Once the input transformation is completed as shown in (14) 

the linear control law is used to propose a feedback control for 

the linear system to ensure the desired behaviour of the 

nonlinear system using the conventional techniques. The 

relative degree (ri) of the individual output is then used to 
calculate the overall vector relative degree of the system (r) to 

analyze the concept of internal dynamics. 

𝑟 = 𝑟1 + 𝑟2 + ⋯+ 𝑟𝑚                          (15) 

From equation (15), we will be able to calculate to vector 

relative degree of the system (r). If the vector relative degree 

is less than the number of states of the system (n), there exists 

internal dynamics (ID) in the system. In order to apply the 
classical I/O feedback linearization, it is important to study the 

effect of ID on the overall behaviour of the system. 

4. PRELIMINARY APPLICATION OF INPUT-OUTPUT 

FEEDBACK LINEARIZATION FOR A CDPR MODEL 

The dynamic model (8) of the CDPR can be represented as 

shown follows: 

𝑋̇ = 𝐹 + 𝐺𝑢                                (16) 

𝑦 = ℎ(𝑋) 

where,            𝑋 = {
𝑋
𝑋̇
}, 𝐹 = { 𝑋̇

−𝑀−1𝑁
}, 𝐺 = {

06×1

−𝑀−1𝐽𝑇
} 

with constraints,                0 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 

The input vector u of the system is given by the forces in the 

four cables (u1, u2, u3, u4) while the output of the system (𝑦) is 
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the position of the platform (x,y,z) and one of the angle namely, 

gamma (γ), which is the orientation angle about the z-axis.  

The application of classical input-output feedback 

linearization for a CDPR model can be found in (Kumar et al., 

2019a). From the preliminary calculation and simulation of the 

model, it has been found that the considered CDPR has a 

vector relative degree (r) of 8 while the total states of the 

system (n) are 12. Hence, this indicates the presence of internal 

dynamics (of 4 states); the effect of which has to be checked 

for the application of the control law.  

In order to visualise the effect of internal dynamics, the I/O 

feedback linearization control was applied on the CDPR model 

with the conditions as mentioned in (Kumar et al., 2019a). The 

corresponding values of α, β, γ for the starting and final point 

is calculated from the static equilibrium program developed by 

the authors in (Kumar et al., 2019b). A quintic polynomial was 

used to generate the desired trajectory to obtain smooth values 

for the acceleration and velocity.  

Table 1: Simulation parameters for the control laws 

Room dimension (m) 5*5*3 

Platform dimension (m) 0.5*0.5*0.2 

Max. and Min. cable 

tension (N) 

500N and 1N respectively 

Starting point(t=0) x=2, y=0.5, z=1.5 

Final point(t=10) x=2, y=2, z=1.5 

Mass of the platform 

including the object weight 

30kg 

Table 2: Cable attachment points for centre of mass at a 

height of 1.5m from bottom 

Cable no. MP Base 

Cable 1 [2.25,2.25,1.7] [0,0,3] 

Cable 2 [2.25,2.75,1.7] [0,5,3] 

Cable 3 [2.75,2.75,1.7] [5,5,3] 

Cable 4 [2.75,2.25,1.7] [5,0,3] 

The results of the simulation are shown in fig. (3) and (4). It 

can be seen from the figure that the internal dynamics results 

in oscillatory behaviour in the uncontrolled DoFs which in turn 

leads to high variations in the tensions produced in the cable. 

On further analysis, it is found that the oscillatory behaviour is 

profound as the value of the platform orientation about x and 

y axis increases, indicating that as the MP moves closer to the 

boundary of the room it is affected more by the ID.  

 

Fig. 3: Cable forces because of the internal dynamics in the 

underactuated CDPR 

 

Fig. 4: Oscillations in the uncontrolled DoFs (α and β) 

 

It is also observed from simulations that the classical I/O 
feedback linearization is not able to generate positive cable 

tensions at some points in the room because of their 

underactuated behaviour. One example of such situation is 

when the MP is moved from x=0.6, y=0.6, z=1.5 to x=2, y=2, 

z=1.5. A more thorough analysis to quantify the region of 

controllable workspace (points in the room where the control 

law can be applied with positive cable tensions and stabilized 

system outputs) will be done in the forthcoming work.  

 

5. MODIFIED INPUT-OUTPUT FEEDBACK 

LINEARIZATION 

A modified input-output feedback linearization approach has 

been proposed in this section to reduce the effect of oscillatory 

internal dynamics and stabilize the system behaviour.  

The proposed approach uses the regular I/O feedback 

linearization as its foundation; however, it is divided into two 

separate branches which acts simultaneously on the control 
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input i.e., the tensions in the cables. The external forces acting 

on each branch is divided by 2 to calculate the control inputs 

from each branch. The block diagram of the proposed 

modification is as shown below: 

 

Fig. 5: Block diagram representation of the modified input-

output linearization 

Equation (16) is used to model the proposed law. However, the 

outputs to be controlled in the two branches are as  

𝑦𝑎1 = 𝑥, 𝑦𝑎2 = 𝑦, 𝑦𝑎3 = 𝑧, 𝑦𝑎4 = 𝛼          (17) 

𝑦𝑏1 = 𝑥, 𝑦𝑏2 = 𝑦, 𝑦𝑏3 = 𝑧, 𝑦𝑏4 = 𝛽            (18) 

Following this, the individual values of the input forces (ua and 

ub) corresponding to the branch 1 & 2 is calculated by 

following the steps shown in section 3, eq (11-14).The final 

input vector u is then calculated as the sum of the individual 

contribution from the two branches shown in the block 

diagram i.e.,  

𝑢 = 𝑢𝑎 + 𝑢𝑏                           (19) 

where, ua and ub are the values of the forces calculated from 

the individual corresponding branches (1 & 2) as shown in the 

block diagram. 

6. SIMULATION OF THE CONTROL LAW 

The results of the simulation (using MATLAB) demonstrating 

the effectiveness of the modified control law over the classical 

I/O feedback linearization is presented in this section. The 

simulation conditions are mentioned in table 1. The initial and 

final values of alpha and beta are calculated from the static 

equilibrium conditions. The desired trajectory points are 

generated using a quantic polynomial as before. The results 
obtained are presented in fig. (5) and (6). The cable forces 

generated by the modified control law to follow the desired 

trajectory is shown in fig. (5). It is seen that the values of the 

forces are positive and within the limits defined in table 1. 

Figure 6 shows the comparison of the platform orientation 

values generated by the modified control law and the classical 

I/O feedback linearization. It is clearly visible that the 

orientation values are more stable with the application of 

modified feedback linearization. Both the control laws 

however have satisfactory behaviour to control the position of 

the MP. 

 

Fig. 5: Cable forces using the modified input-output feedback 

linearization 

 

Fig. 6: Variation of platform orientations with modified I/O 

FL and classical I/O FL respectively 

 
As mentioned in section 4, the classical I/O FL fails to generate 

positive values of cable tensions (force in cable 3) for moving 

the cable from specific points. The modified control law was 

tested for the same starting points using the same trajectory to 

be followed. For the points considered, it is observed that 

positive tension values were generated in all the four cables. 

Figure 7 shows the value of the forces in cable 3 for the 

simulation. As said before, I/O FL generated negative tensions 

in the cable to achieve the trajectory, but the modified FL was 

successful in generating positive cable tensions. The values of 

the forces are  
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Tension in cable 3 (I/O FL) = - 41.88 N (<0) 

Tension in cable 3 (Modified FL) = + 17.59 N (>0) 

 
Fig. 7: Force in cable 3 showing negative cable tension for 

I/O FL and positive cable tension for Modified FL 

 

Hence, it is evident from the simulations that the modified 

control law has the potential to improve the controllable 
workspace of the underactuated CDPR. The quantification of 

this will be done in further works. 

 

7.CONCLUSION 

This article demonstrated the implementation of a modified 

input-output feedback linearization method to control an 

underactuated cable-driven parallel robot. The simulation 

results proved that the proposed control law stabilized the 

system output significantly and can be tested on the real 

prototype. It was also shown that the proposed control law 

might also impact the controllable workspace of the CDPR. 
However, the application of the modified control law for 

different configurations needs to be investigated for better 

validation and formulation of the stability conditions. Also, 

experiments will be conducted on the prototype which is being 

prepared for real-time validation of the control law. In the end, 

the cable elasticity will also be included in the control law to 

provide a robust solution for the operation of underactuated 

CDPRs.     
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