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Abstract: This paper proposes a learning framework for solving the inverse kinematics (IK)
problem of high DOF redundant manipulators. The latter possess more DOFs than those
required to obtain the end effector (EE) pose. Therefore, for a given EE pose, several joint angle
vectors can be associated. However, for a given EE pose, if a set of joint angles is parameterized,
the IK problem of redundant manipulators can be reduced to that of non-redundant ones,
such that the closed-form analytical methods developed for non-redundant manipulators can
be applied to obtain the IK solution. In this paper, some redundant manipulator’s joints are
parameterized through workspace clustering and configuration space clustering of the redundant
manipulator. The growing neural gas network (GNG) is used for workspace clustering while a
neighborhood function (NF) is introduced in configuration space clustering. The results obtained
by performing a series of simulations on a 7 DOFs redundant manipulator demonstrate the
effectiveness of the proposed approach.

1. INTRODUCTION

Recently, kinematically redundant manipulators have been
the subject of active research, mainly thanks to their high
flexibility and versatility in the execution of certain com-
plex tasks. Indeed, they offer the possibility of simultane-
ously performing secondary tasks other than the main one,
such as joint limit avoidance and obstacle avoidance. These
secondary tasks make the solving of inverse kinematics
(IK) for this class of kinematic structures an integral part
of their real practical application. Typical applications of
such systems include collaborative robots, space robotic
arms, dexterous hand, and so on.

The methods for solving the inverse kinematic prob-
lem of redundant manipulators can be classified into
three groups: analytical or closed-form methods, numerical
methods, and hybrid methods, i. e. those that combine the
two previous ones. Regarding analytical methods, all the
inverse kinematic solutions are expressed as functions in
terms of the variables pose of the EE. They are compu-
tationally efficient and yield all IK solutions for a given
EE pose. Peiper (1968) proposed a procedure to obtain
IK solutions in closed-form for manipulator robots with
three consecutive joints whose axes are parallel or intersect
at a single point. How joint limits affect the feasibility
of the inverse solution was also explored to develop an
analytical method for computing feasible solutions under
the joint limits. Other geometric methods have also been
developed Wei et al. (2014); Singh and Claassens (2010).
However, the above-mentioned contributions are highly

configuration-dependent and can be very costly in terms of
computation due to the increase in the number of DOFs.

As regards numerical methods, they generally work re-
gardless of the number of degrees of freedom of the ma-
nipulator. The inverse of the Jacobian matrix Hollerbach
(1985) is generally used to solve IK of non-redundant
manipulators, while pseudo-inverse or extended Jacobian
inverse Klein et al. (1995) are used for their redundant
counterparts. However, Jacobian methods suffer from sev-
eral shortcomings, including high computation costs and
execution time, the existence of local minima and joint
singularities.

Other researchers investigated the use of both previous
approaches. Several closed-form solutions for inverse kine-
matic are derived by parameterizing or fixing a set of joint
variables. Following that idea, an interesting analytical
method based on workspace analysis has been proposed
in Zaplana and Basanez (2018). The main idea is to re-
duce redundant manipulators to non-redundant ones by
selecting a set of joints, denoted redundant joints, and
parameterizing its joint variables. The inverse kinematics
of the non-redundant manipulator obtained is then solved
analytically using either Pieper, Paul or other geometric
methods. However, this method is very dependent on the
degree of redundancy of the manipulator and can be very
expensive in terms of computation due to the increase
in the number of potential redundant joints. A hybrid
method of performing IK for general 2n + 1 (n is the
number of joints) DOF manipulators with a spherical joint
at the wrist has been proposed in Ananthanarayanan and
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Ordóñez (2015). The analytical equations were used to
determine the first two and last three joint angles and a
numerical technique was used to solve the rest. However,
this method can be very expensive in terms of computation
time as the number of elbow joints increases.

Machine learning were widely used for solving IK of
redundant robotic systems Raja et al. (2019); Kumar
et al. (2010). Support Vector Regression, artificial neural
networks, and fuzzy systems have been used to solve IKs
of redundant manipulators. Kohonen Self-Organized Map
(KSOM) networks have been used to solve the redundancy
of a 7 DoF arm for tracking trajectories with low errors.
The advantages of KSOM networks to maintain continuity
of the IK solutions with the possibility to select desired Ik
solutions from a set of possible IK solutions have been
exploited. However, not only do Cartesian errors remain;
several iterative loops may be necessary to improve the
position accuracy of the selected IK solution.

In this paper, a learning framework that preserves the mul-
tiple IK solutions of redundant manipulators is proposed.
The idea consists of dividing the redundant manipula-
tor’s workspace into clusters using clustering algorithms
and eliminating some joint angle vectors that are too
close to each other in each cluster using a neighborhood
function (configuration space clustering). Thus, the re-
maining joint angle vectors in each cluster are potential
inverse kinematic solutions for a given input vector that
belongs to that cluster. Finally, criteria such as lazy arm
movement and minimum angle norm can be applied to
select a particular inverse kinematic solution among the
redundancy manifolds. However, for a given EE pose; each
selected IK solution leads to some pose errors. In this
work, to completely avoid iterative loop in the derivation
of IK solutions, depending on the redundancy resolution
criterion, an IK solution is selected, and the configuration
of some joints is maintained fix. Thus, the IK problem
of redundant manipulators is reduced to non-redundant
ones, and closed-form analytical methods developed for
non-redundant manipulators ( Pieper, Paul, etc.) can be
applied to obtain the IK solution. Unlike self-organizing
maps Kohonen (1990) and neural gas methods Martinetz
et al. (1991), GNGs do not have parameters that change
over time and can continue to learn, adding neurons and
connections, until a performance criterion is achieved.

The remainder of this paper is organized as follows: Section
II gives an overview of the forward kinematics of serial
manipulators. Section III focuses on the development of
the proposed learning framework for the IK problem of
redundant manipulators. A series of simulations on a 7
DOF redundant manipulator is presented in Section IV to
demonstrate the effectiveness of the proposed approach.
Finally, some concluding remarks and future prospectives
are drawn in Section V.

2. FORWARD KINEMATICS OF REDUNDANT
MANIPULATORS

Among the methods developed to derive the forward kine-
matics of serial manipulators, the Denavit–Hartenberg
(D–H) convention is generally adopted. This section de-
scribes the forward kinematics of a n-DOF serial manip-
ulator, depicted in Fig.1. The frame assignments follow

the Denavit–Hartenberg (D–H) convention, which enables
to represent the location of every coordinate frame with
respect to every other.

Fig. 1. n-DOF serial manipulator; i−1Hi(θi) with i =
1, 2, ..., n, is the homogeneous matrix that represents
the coordinate frame of the link i

Let us consider the robot’s kinematic chain of Fig.1, the
forward kinematic can be derived as follows:

0Hn(θ) = 0H1 (θ1) 1H2 (θ2) · · · n−1Hn (θn)

=

n∏
i=1

i−1Hi (θi)
(1)

where n and 0Hn represent the total number of DOFs
and the homogeneous matrix containing the position and
orientation of the EE, respectively. qi with i = 1, 2, ..., n
represents the angle position for each robot joint. The
homogeneous matrix i−1Hi that transforms the frame
attached to link i− 1 into the frame attached to link i can
be expressed as the product of four basic transformations

i−1Hi = Tz (θi)Tz (di)Tx (ai)Tx (αi) , (2)

The relation (2) can be rewritten as follows:

i−1Hi =

Cθi −SθiCαi SθiSαi aiCθi
Sθi CθiCαi −CθiSαi aiSθi
0 Sαi Cαi di
0 0 0 1

 (3)

where C and S refer to the cosine and sine functions,
respectively. Equation (1) that represents the final trans-
formation from the EE frame to the base frame can be
rewritten as follows:

0Hn =

n∏
i=1

i−1Hi (qi) =

[
R3×3 P3×1

0 1

]
(4)

where P3×1 is the EE position vector and R3×3 is the
rotation matrix, which can be reduced to orientations
around the three main axes using the Euler or ZY X
notation.

3. PROPOSED LEARNING FRAMEWORK FOR
INVERSE KINEMATICS OF REDUNDANT

MANIPULATORS

Kinematically redundant manipulators admit an infinite
number of inverse kinematic solutions. Thus, two prob-
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lems generally emerge, namely, obtaining all the inverse
kinematics solutions for a given EE pose and the redun-
dancy resolution, which consists in selecting a particular
inverse solution among a multitude of solutions. This
section is devoted to the development of the proposed
learning framework which combines Analytical and nu-
merical methods to derive the IK solution of redundant
manipulators. The section starts with the presentation of
the learning architecture, followed by the clustering in
the workspace and configuration space. Its end with the
redundancy resolution process.

4. LEARNING FRAMEWORK ARCHITECTURE

The proposed learning framework is shown in Fig. 2.
The learning database consists of samples identified by
(xk, qk), k = 1, . . . , N with N the maximum size of
the learning base. xk and qk are the EE pose and the
configuration vector, respectively. The proposed learning
framework is a four-step process. The first step called
workspace clustering , The next step, called clustering
in the configuration space, consists in forming the couple
(xk, qk) while eliminating configuration vectors that are
too close to the configuration vectors already existing
in each cluster. A neighborhood function is used in this
step to preserve the conservative property of the obtained
inverse kinematic solutions. The third step is redundancy
resolution and the last step consists in deducting the
IK solution via Paul’s method after parameterizing some
joints of the redundant manipulator.

4.1 Clustering in workspace

The discretization of the workspace allows to transform
the infinite number of IK solutions into a finite number,
thus reducing the computation time. However, since only a
finite number of poses from the workspace are taken into
account in the clustering process, the learning database
must cover all regions of the manipulator’s workspace.
Therefore, the sampling period of the configuration space
plays a crucial role as it must be chosen to ensure the
presence of redundant solutions in the learning database.
Another important parameter is the maximum number of
clusters in the sense that it governs the number of redun-
dant solutions. The ability of incremental neural networks
such as GNG Qin and Suganthan (2004), Self-organizing
incremental neural network (SOINN) to automatically
insert new nodes into the hidden layers is exploited to
eliminate the crucial parameter of the number of hidden
neurons.

The clustering in the workspace is done using GNGs. For
a given Cartesian vector xk, only the winning prototype
vector is updated wp and its direct topological neighbors
wi with i ∈ Qwp

and p ∈ Fwp
. Fwp

and Qwp
are the set of

winning prototype vectors and the set of direct topological
neighbours that are linked by an edge with wp. The update
rule is given as follows:

∆wp = εb (xk − wp) ,∆wi = εn (xk − wi) ,∀i ∈ Qwp
(5)

We refer the interested reader to Fritzke (1995) for more
details on the GNG algorithm.

4.2 Clustering in configuration space

The clustering in the configuration space consists in asso-
ciating each winning prototype vector wp with its corre-
sponding configuration vectors while eliminating config-
uration vectors that are too close to the configuration
vectors already existing in the cluster. Suppose that the
winning prototype vector wp is associated with Nwp

con-

figuration vectors referred as qjwp
, j = 1, 2, ..., Nwp

, as
shown in Fig. 2. The input Cartesian vector qk allows
you to create a new configuration vector if it is not too
close to those existing in the cluster or to update existing
configuration vectors if it is close.

The configuration vector is updated using the following
competitive rule

qjwp
(t+ 1) = qjwp

(t) + ηhj

(
qk − qjwp

(t)
)

(6)

where hj = exp
(
− (β − j)

/
2σ2

t

)
is a neighbourhood func-

tion Kumar et al. (2010). The latter generates a continuous
and smooth path in the configuration space for a given
continuous path in the workspace.

4.3 Redundancy resolution

The clustering in the configuration space results in mul-
tiple configuration vectors for a given EE pose. The set
qjwp

, j = 1, 2, . . . , Nwp is the possible inverse kinematic
solutions for a given EE pose xk. A configuration vector
can be selected among the redundant manifolds according
to a given criteria such as:

• Minimum variation of the configuration space vector
• The criteria of the joint limit avoidance and the ob-

stacle avoidance can also be applied via optimization
functions, Zaplana and Basanez (2018).

4.4 Derivation of the IK solution

In general, any selected IK solution results in Cartesian
pose errors. In this work, to completely eliminate the
remaining Cartesian errors while without include iterative
loops, some joints of the redundant manipulator are fixed
using the corresponding values of the selected IK solution,
such that the redundant manipulator is reduced to non-
redundant one. Finally, Paul’s method is applied to derive
the rest of joint variables. The choice of the fixed joints is
straightforward because, as we operate within a particular
cluster, small displacements of the EE are sufficient to
reach the desired EE pose. For any n-DOF redundant
manipulator with a spherical wrist, the following proce-
dure can be implemented. The first joint that rotates the
base of the manipulator will remain variable. Two of the
following joints (2, 3, ..., n− 3) and the three joints of the
spherical wrist must also be variable. The other joints can
be configured via clustering in the workspace and in the
configuration space.

For the implementation of Paul’s method, if the last three
joints of the manipulator form a spherical wrist as is
usually the case, then the problem of inverse kinematics
can be decoupled. We first determine the position of the
spherical wrist from the base to the n−3-th joint; then we
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Fig. 2. Proposed IK learning architecture: for a task pose vector that belongs to wp cluster, a set of Nwp
inverse

kinematic solutions are associated.

use the last three joints to determine the orientation of the
EE. This is done by moving the origin of the frame 0n to
the origin of the frame 0n−2. The position of the spherical
wrist will be defined by:

Pn−2 = Pn − dn · 0Rn · k (7)

where dn is the length of the last link, k = [ 0 0 1 ]
T

, and
0Rn is the rotation matrix of the frame n with respect to
the frame 0. Pn−2 and Pn are the position of the spherical
wrist and the EE , respectively. Thus, for the EE position,
we have

Pn = Pn−2 + dn · 0Rn · k. (8)

As soon as the position of the wrist is known, the FKM
can be used to determine the position of the EE.

5. SIMULATION ON KUKA LWR-4+ ROBOT

The proposed learning scheme is simulated on 7-DOF
anthropomorphic arm where the last three joints conform
a spherical wrist Fig.3. Due to the number of pages limit,
this is the sole example case that is presented.

Fig. 3. KUKA LWR-4+ manipulator robot

The learning database is built from the forward kinematic
model of the KUKA LWR-4+ and a database size of 50
000 samples is generated. The ranges of input and output
spaces are given in Table I.

The IK solutions are obtained by performing the clustering
in task and configuration spaces. The dimensions of the
task space and configuration space are R6 and R7, respec-
tively. GNG consists of several free parameters. However,
preliminary tests have shown that only some parameters
have a strong influence on the overcome of the training.

Table 1. Ranges of the input and output spaces

Range of joint angles Range of Cartesian workspace

−170◦ ≤ q1 ≤ 1700

−120◦ ≤ q2 ≤ 1200

−170◦ ≤ q3 ≤ 1700 −0.845m < x < 0.845m
−120◦ ≤ q4 ≤ 1200 −0.840m < y < 0.840m
−170◦ ≤ q5 ≤ 1700 −0.350m < z < 1.160m
−120◦ ≤ q6 ≤ 1200

−170◦ ≤ q7 ≤ 1700

As a result, only a few parameters were varied within a
predefined range based on a search grid to empirically
select the best model. The adaptation step λ, the learning
rate of best εn, the learning rate of neighbors εb, and the
learning rate of output α were varied during the learning
process.

The database is normalized in the range [0.1, 0.9] and is
randomly divided in the ratio 70 : 15 : 15 for training,
validation and test set, respectively. The following GNG’s
parameters εb = 0.25, εn = 0.003, α = 0.55, αmax =
50, d = 0.995, and λ = 100 have achieved satisfactory
performance. The learning process performed in MATLAB
software using an Intel Core i7 − 2670QMCPU at 2.20
GHz took approximately 16 hours. The clustering in
configuration space took approximately 5 minutes.

5.1 Derivation of the IK solution of KUKA LWR
robot

In the case of the 7-DOFs redundant manipulator, only
the second joint (θ2) is kept fixed. The other joints will be
obtained by Paul’s method. Other joints can be fixed, but
the choice of the first one allows strategies such as obstacle
avoidance to be easily implemented.

Let U0 be the matrix defining the position and orientation
of the effector such that

U0 =

 sx nx ax px
sy ny ay py
sz nz az pz
0 0 0 1


The centre of the kneecap located at the origin frame 05
and its position denotes 0P5 will be defined as follows:

P5 = P7 − d70R7k (9)

Equation (9) can be rewritten in the following form:
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P5 =

[
P5x

P5y

P5z

]
=

[
px − d7ax
py − d7ay
pz − d7az

]
. (10)

In (10), the origin of the frame 07 has been translated to
origin 05, and the position and orientation matrix at the
point 05 can be expressed as follows:

Uw =

 s
,
x n,x a,x p5x
s,y n,y a,y p5y
s,z n,z a,z p5z
0 0 0 1


From the above, the following equalities hold,

Uw [ 0 0 0 1 ]
T

= 0P5 = 0H5 [ 0 0 0 1 ]
T
. (11)

By multiplying the both members of (11) by the inverse
of 0H1 , we get:

1H0 × 0H5 [ 0 0 0 1 ]
T

= 1H0 × Uw [ 0 0 0 1 ]
T
. (12)

From this equality, we can draw the following system:{
c1p5x + s1p5y = − (c2c3s4 + s2c4) d5 − s2d3
p5z − d1 = − (s2c3s4 − c2c4) d5 + c2d3

s1p5x − c1p5y = s3s4d5
(13)

θ2 being known from the clustering process, the system
(13) can still be written as:{

c1p5x + s1p5y = −s2 (c4d5 + d3)− c2c3s4d5
s1p5x − c1p5y = s3s4d5
p5z − d1 = −s2c3s4d5 + c2c4d5 + c2d3

(14)

By squaring and adding each side of the equation system
(14), we have :

p25x + p25y + (p5z − d1)
2 − d23 − d25 = 2c4d3d5 (15)

→ c4 =
p2
5x+p2

5y+(p5z−d1)
2−d2

3−d2
5

2d3d5
,

⇒ θ4 = a tan 2 (s4, c4), where s4 =
√

1− c24
Knowing θ4, we can easily calculate θ3 since θ2 is known.
The third relationship of the system (14) gives:

d1 + c2c4d5 + c2d3 − p5z = s2c3s4d5 (16)

in that way, c3 = d1+c2c4d5+c2d3−p5z

s2s4d5
and s3 =

√
1− c23

⇒ θ3 = a tan 2 (s3, c3) (17)

Therefore, we can determine θ1, the second relationship of
the system (14) yields :

s1p5x − c1p5y = s3s4d5 (18)

Equation (18) is in the form A1s1 + A2c1 = A3, where
A1 = p5x, A2 = −p5y, and A3 = s3s4d5. Then, the
following expressions can be derived

s1 = −A1A3±A2

√
A2

1+A2
2−A2

3

A2
1+A2

2
and c1 = −A2A3±A1

√
A2

1+A2
2−A2

3

A2
1+A2

2
,

Finally, the first configuration variable can be obtain

θ1 = a tan 2 (s1, c1).

Concerning the orientation angles, knowing that 0R7is the
rotation matrix of U0, we have

0R7 =

[
sx nx ax
sy ny ay
sz nz az

]

By pre-multiplying the both sides of the above equation
by 4R0, we have:

[U V W ] = 4R7 (θ5, θ6, θ7) (19)

where U = [Ux Uy Uz ]
T

, V = [ Vx Vy Vz ]
T

, and

W = [Wx Wy Wz ]
T

.

By multiplying each member of Eq.(19) by 5R4, we will
get the following equality:[
c5Ux + s5Uy c5Vx + s5Vy c5Wx + s5Wy

Uz Vz Wz

s5Ux − c5Uy s5Vx − c5Vy s5Wx − c5Wy

]
=[

c6c7 −c6s7 −s6
s6c7 −s6s7 c6
−s7 c7 0

] .

It follows, after identifying both sides of this equality, that

s5Wx − c5Wy = 0, hence,

θ5 = a tan 2 (−Wy,−Wx) (20)

we also have the following equality{
c6 = Wz

s6 = −c5Wx − s5Wy
, hence

θ6 = a tan 2 (s6, c6) (21)

Finally,

{
c7 = s5Vx − c5Vy
s7 = −s5Ux + c5Uy

, hence

θ7 = a tan 2 (s7, c7) (22)

5.2 simulation results

The simulations are performed in MATLAB software using
an Intel Core i7− 2670QMCPU at 2.20 GHz.

Fig. 4 represents a linear path tracking where the spherical
wrist is oriented down and upwards in Fig. 4-(a) and Fig.
4-(b), respectively. The circular path on the X−Z plane is
tracked in Fig. 5. The tracking with simple configuration
vectors is represented in Fig. 5-(a) while the tracking
with complex configuration vector is shown in Fig. 5-(b).
These paths can be followed without error with several
other configuration vectors. Others scenarios such that
obstacles avoidance and joint limit avoidance can also be
implemented.

The various simulations carried out to validate the pro-
posed learning scheme have shown satisfactory results. It
can be applied to any redundant manipulator and regard-
less of its number of DOFs.

6. CONCLUSION

In this paper, a novel learning scheme that can learn
redundant solutions of redundant manipulators has been
proposed. Redundant solutions were maintained by per-
forming clustering in the workspace and the configuration
space of the redundant manipulator. The growing neural
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Fig. 4. Linear path tracking: a): a line path tracking with with the wrist pointing upwards, b): a line path tracking with
with the wrist pointing down.

a) b)

Fig. 5. Circular path tracking 2: a): a circular path tracking with simple configuration vectors, b): a circular path
tracking with complex configuration vectors.

gas network has been implemented in workspace clustering
while a neighborhood function has been introduced in
configuration space clustering. The simulations carried out
have yielded satisfactory results in terms of IK solving,
redundancy preservation and resolution. In a future work,
the IK problem redundant mobile manipulator will be
investigated.
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