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Abstract: In this paper, we consider networked control systems under Denial-of-Service (DoS)
attacks. The control objective is to synthesize a quantized controller in which the quantizer
is as coarse as possible for a networked control system subject to DoS attacks, while still
guaranteeing (quadratic) stability. Our main result will explicitly show the trade-offs between
system robustness against DoS and quantizer coarseness. A simulation example will demonstrate
the strengths of the new method.
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1. INTRODUCTION

In recent years, there is an increasing number of reports
regarding the malfunctions of networked control systems
(Cárdenas et al. (2008); Sandberg et al. (2015); Cheng
et al. (2017)), thereby spurring the interest of designing
secure control systems that are resilient to attacks. In
particular, a large number of security issues are caused by
cyber attacks. The attacks mostly affect the exchange of
data by corrupting their confidentiality, authenticity, and
availability.

This paper is particularly interested in Denial-of-Service
(DoS) attacks, which affect the availability of data, in
combination with quantization over the input channel of
the plant, see Fig. 1. These attacks jam the communication
channels, causing packets to be dropped and hence a
(temporal) loss of communication, see, e.g., De Persis
and Tesi (2015); Dolk et al. (2017), which considered
the stabilizing control problems under unlimited data-rate
networks subject to DoS attacks. Motivated by bit-rate
limitations of the communication channels, other studies
have been conducted regarding the permissible coarseness
of quantized signals for stabilization, such as Brockett and
Liberzon (2000); Elia and Mitter (2001); Liberzon (2003);
Fu and Xie (2005).

However, relatively little work is done on quantized control
under DoS attacks. In Wakaiki et al. (2018), the case
of quantized control under DoS attacks over the output
channel of the plant is investigated, whereas in Feng et al.
(2020) the minimum data rate is derived following the line
of research of, e.g., Nair et al. (2007). To the best of the
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Fig. 1. Control architecture.

authors’ knowledge, there have not been any studies into
the problem tackled in this paper, consisting of the design
of coarse stabilizing quantized control under DoS attacks
over the input channel of the plant. In particular, we are
interested in the system setting depicted in Fig. 1, of which
more details follow in the next section.

Note that quantized control under random packet losses
was addressed in Tsumura et al. (2009). Non-quantized
networked control systems that experience random packet
losses are discussed extensively in Hespanha et al. (2007);
Schenato et al. (2007); Zhang et al. (2013). However,
DoS attacks can be sophistically organized and launched
intelligently, in the sense that attackers would try to max-
imize the influence of attacks. Therefore describing an
adversary’s behaviour using stochastic processes such as
random packet losses is hardly justified. This motivates the
development of a new theoretical analysis for quantized
networked control systems under DoS since the classical
probability and expectation type analyses are not applica-
ble in the context of DoS attacks launched by a malicious
adversary.

Our contributions in this paper form a step towards solving
the problem of finding the coarsest possible quantizer
that stabilizes the system, when the maximum duration
of the DoS attack is known. In fact, we consider a more
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conservative problem, by only looking at solutions using
a common quadratic Lyapunov function in order to find
solutions. As our main result, we present a finite-level time-
varying quantizer, which ensures quadratic stability of the
closed-loop system. We illustrate the main results through
a numerical example.

The remainder of this paper is organized as follows. In
Section 2, we present the problem setting of this paper,
where the process, the class of quantizers and DoS attacks
are introduced. Section 3 presents a result concerning
static quantized control under DoS, where the number of
quantization levels are infinite. In Section 4, we present
the main result of this paper. We first propose the design
of a dynamic quantized controller with finite quantization
levels, and then characterize the system robustness against
DoS. A numerical example is given in Section 5, and
Section 6 concludes the paper with possible future research
directions. Due to space reasons, we do not present the
proofs.

Notation: The sets of reals and integers are denoted by R
and Z, respectively. Let Z+ := {0, 1, 2, . . .} denote the set
of nonnegative integers. Given a vector v, ‖v‖ denotes the
Euclidean norm of the vector v. The notations λmin(M)
and λmax(M) denote the minimum and maximum eigen-
values of matrix M , respectively.

2. FRAMEWORK

In this section, we will first describe the overall problem
setting. Then, we introduce the class of quantizers consid-
ered and their coarseness, as well as an assumption on the
DoS model. The combination of these notions is then used
to formulate the problem studied in this paper.

2.1 General problem setup

Consider the discrete-time networked control system de-
picted in Fig. 1. Here, the process G is represented by the
state space equation given by

G : xk+1 = Axk +Bv̂k, (1)

where xk ∈ Rn is the process state and v̂k ∈ R is the
control input at time k ∈ Z+. Assume that the matrix pair
(A,B) is controllable. Moreover, to avoid trivial situations,
we assume the system to be unstable, that is, the system
matrix A has at least one eigenvalue with magnitude
greater or equal to one.

The control input is sent from the sensor side, where the
state feedback controller is located, to the actuator side.
This communication is constrained due to the limited data
rate available in the channel as well as the uncertainties
caused by the DoS attacks. First, the control input uk is
generated by using the state feedback gain K as

uk = Kxk. (2)

Before transmitted over the channel, this input uk is
quantized so that it takes a discrete value. Specifically,
let Q be a countable set in R and let q : R → Q be the
quantizer. Then,

vk = q(uk). (3)

Finally, in the presence of DoS attacks, the input vk
sent over the network may be dropped and not reach the
actuator side. This is expressed by

v̂k = σkvk, (4)

where σk is the indicator of the DoS at time k. If the
transmission fails due to DoS, then σk = 0, and otherwise
σk = 1. Note that we assume that when there is no input
in case of DoS, the input is zero.

In this paper, we would like to synthesize both the feed-
back gain K and the quantizer q such that the quantizer is
as coarse as possible, as defined in the next section, while
still guaranteeing quadratic stability of the overall closed-
loop system under a DoS attack model in line with those
in De Persis and Tesi (2015); Dolk et al. (2017).

2.2 Quantizer class and coarseness

Our study is motivated by the research on logarithmic
quantizers initiated by Elia and Mitter (2001). We intro-
duce the class of memoryless quantizers accompanied with
a one-bit memory. The memory is necessary to deal with
the packet losses due to the DoS attacks, storing the in-
formation that whether or not the system (1) experienced
DoS in the previous time-step.

As we will see later, the first quantizer presented in Section
3 is a static but infinite one. That is, the quantizer map-
ping is time-invariant and its output set Q is countable,
containing an infinite number of quantization levels, i.e.,
its cardinality is card(Q) =∞. The coarseness of such an
infinite quantizer q scales inversely with its quantization
density, defined in the following:

Definition 1. [Elia and Mitter (2001)] Given a quantizer
q : R→ Q, its density is given by

d = lim sup
ε→0

card(q([ε, 1/ε]))

− ln ε
,

where card(q([ε, 1/ε])) denotes the number of quantization
levels in Q of the quantizer q(·) in the interval [ε, 1/ε].

Hence, the coarsest quantizer q would have the lowest
quantization density d.

The main result in Section 4 presents a dynamic finite-level
quantizer, where the coarseness is based on its underlying
infinite-level version. That is, the dynamic quantizer map-
ping is time-dependent and card(Q) < ∞. Throughout
this paper, we assume that the quantizer is symmetric,
i.e., q(u) = −q(−u) for all u ∈ R.

2.3 The model of DoS attacks

Clearly, if the attacker can generate DoS all the time,
feedback control would not be possible. Hence, we impose
a constraint on the duration of the DoS attacks.

Assumption 1. [De Persis and Tesi (2015)] There exist
Πd ≥ 0 and νd ∈ [0, 1] such that for k ∈ Z+, the duration
of DoS attacks satisfies

Φd(k) ≤ Πd + νdk, (5)

where Φd(k) =
∑k
p=0(1 − σp) denotes the DoS duration

in the number of samples on [0, k] that experience DoS.
Here Πd does not scale with k and therefore provides the
attacker with an initial budget, whereas the second term
νdk does scale with the amount of samples k, which limits
the percentage of samples that DoS is allowed. Note that
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(5) does not have to satisfy any probability distribution as
in the random packet-loss case.

Remark 1. The works by De Persis and Tesi (2015);
Dolk et al. (2017) have studied networked control under
DoS in the continuous-time domain. There, to describe
DoS attacks, an additional assumption on the frequency
of them is required. This is needed in the continuous-
time problem setting, where there is a possibility that the
duration of a DoS attack is small, but the attackers emit
considerably many pulse-like DoS attacks, which could still
corrupt all communication attempts. In this paper, the
DoS model is considered in the discrete-time setting and
therefore the above situation is not present.

2.4 The coarsest quantizer without DoS attacks

The notion of density of static quantizers has gained much
attention since the work by Elia and Mitter (2001) that
derived the infimum density value analytically while still
guaranteeing quadratic stability. The bound is expressed
by the unstable eigenvalues of the process to be stabilized,
explicitly showing that more unstable systems require
more dense quantization and thus more communication.
We briefly outline their result in the following since it will
serve as the starting point for our study.

Consider the process in (1) under the quantized control
input vk when no DoS attack is present. That is, we assume
σk = 1 for all k ∈ Z+ so that the control input becomes
v̂k = uk = q(Kxk). For this system xk+1 = Axk +
Bq(Kxk), we say that it is quadratically stable if there
exists a quadratic Lyapunov function V (x) = xTPx with
a positive-definite matrix P such that V (Ax+Bq(Kx))−
V (x) < 0 for each x ∈ Rn \ {0}.
The paper by Elia and Mitter (2001) showed that the
coarsest quantizer for the quadratic stabilization, i.e.,
where there exists K such that xk+1 = Axk +Bq(Kxk) is
quadratically stable, in this case has two characteristics:
One is that the quantizer belongs to a logarithmic type of
the form

q(u) =


vi if u ∈

(
ρ+ 1

2ρ
vi,

ρ+ 1

2
vi

]
,

−vi if u ∈
[
−ρ+ 1

2
vi,−

ρ+ 1

2ρ
vi

)
,

0 if u = 0,

(6)

where ρ > 1 is the expansion ratio and the discrete-valued
outputs are given by vi = ρiv0 for i ∈ Z with v0 > 0.
Moreover, the largest, or the coarsest, expansion ratio
ρ∗sup > 1 under which quadratic stabilization is possible
(which is formally defined later) is expressed as

ρ∗sup =

∏
i |λui |+ 1∏
i |λui | − 1

, (7)

where λui denote the unstable eigenvalues of A.

Note that the output set of the quantizer in (6) is given
by Q = {±vi | i ∈ Z} ∪ {0}.

2.5 Problem formulation

When DoS attacks are successful in inducing packet
losses, clearly the problem setting and the conditions for

quadratic stabilization as given in Section 2.4 change and
the largest expansion ratio ρ∗sup in (7) may not be suffi-
cient.

Hence, in this paper, the first question of interest is
whether the networked control system in Fig. 1 with quan-
tized control (3) and DoS attacks (4) under Assumption
1 can be quadratically stabilized by a suitable K. In
particular, given the DoS attack parameters Πd ≥ 0 and
νd ∈ [0, 1], we would like to find the largest expansion
ratio ρsup(Πd, νd) ≤ ρ∗sup for the quantization, such that
quadratic stabilization is still possible.

This problem however turns out to be difficult to address.
In this paper, we solve a slightly weaker version of this
problem and find whether stabilization is possible for a
given expansion ratio ρ ∈ (1, ρ∗sup]. This will be conducted
in a manner consistent with the framework of Elia and
Mitter (2001): If the level of DoS attacks goes down
as Πd, νd → 0, then the expansion ratio ρsup(Πd, νd)
approaches ρ∗sup, that is, ρsup(0, 0) = ρ∗sup. In this respect,
our result to be presented in the next section can be seen
as a generalization of the conventional result in Elia and
Mitter (2001).

3. STATIC QUANTIZER DESIGN

In this section, we provide the solution to the problem of
designing the static quantized control scheme for quadratic
stabilization under DoS attacks, when ρ ∈ (1, ρ∗sup] is fixed.

Given the DoS attack parameters Πd ≥ 0 and νd ∈ [0, 1],
for the logarithmic quantizer (6), take the quantization
expansion ratio satisfying ρ ∈ (1, ρ∗sup]. Then, we let

γ =
ρ+ 1

ρ− 1
, β =

(∏
i |λui |
γ

)2/m

, (8)

where λui with i = 1, . . . ,m are the unstable eigenvalues
of A. Moreover, take Aβ = A/

√
β. Then, there exists a

positive-definite matrix P satisfying the matrix inequality

ATβPAβ − P −
(

1− 1

γ2

)
ATβPBB

TPAβ

BTPB
< 0. (9)

The existence of such P can be shown since by the choice
of ρ, it holds γ >

∏m
i |λui /

√
β| (see, e.g., Ishii (2006)).

Now, for the control input u in (2), we use the feedback
gain given by K = −BTPA/(BTPB). This is known as
the controller that makes the Lyapunov function V (x) =
xTPx decrease the most when no quantization and no DoS
are introduced in the control.

Next, with this matrix P , we define the parameter α by

α := λmax(P−
1
2A>PAP−

1
2 ). (10)

Here is the main result of this section for the design of the
static quantizer.

Theorem 1. Consider the process (1) under the quan-
tized control and DoS in (2)–(4) with the logarithmic type
quantizer in (6) with expansion ratio ρ ∈ (1, ρ∗sup]. Suppose

that Assumption 1 holds. If K = −BTPA/(BTPB) and
the DoS parameter νd satisfies

νd <
− lnβ

lnα− lnβ
=: ν̄d, (11)

then the system (1) is quadratically stable.
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Remark 2. We note that the results in Theorems 1 and
2 (the latter follows in the next section) do not present
the coarsest possible quantizer under a given duration of
the DoS attacks, as the solution to P in (9) is not unique.
Hence, a different P satisfying (9) results in a different α
in (10), leading to a different bound ν̄d in (11).

To establish the theorem, we will exploit the quadratic
Lyapunov function V (x) = xTPx using the solution to
the matrix inequality in (9). This function will decrease
while there is no attack, while it may increase when DoS
attacks are launched. In particular, with the parameters
α in (10) and β in (8), we can show that the following
inequalities hold:{

DoS present: V (Axk) ≤ αV (xk)

DoS absent: V (Axk +Bq(Kxk)) ≤ βV (xk).
(12)

We now present three lemmas that relate the change in the
Lyapunov function depending on the DoS modes in (12).
First, the divergence rate of V (x) during attacks can be
characterized as follows.

Lemma 1. Given a Lyapunov function V (x) = x>Px,
with positive-definite P , the smallest α satisfying the
inequality V (Ax) ≤ αV (x) for all x ∈ Rn is given by

α = λmax(P−
1
2A>PAP−

1
2 ).

We next consider the case when there is no DoS attack.
The next lemma is a corollary of the result characterizing
the coarsest quantizer discussed earlier and is derived in
Elia and Mitter (2001). It shows the coarsest quantizer
having the largest expansion ratio for achieving quadratic
stability with guaranteed decay rate of β.

Lemma 2. The coarsest quantizer q, which can achieve
quadratic stability with decay rate β ∈ (0, 1), i.e., V (Ax+
Bq(Kx)) ≤ βV (x) for all x ∈ Rn and for some V (x) =
x>Px with P > 0 and some feedback gain K in the case
when there are no DoS attacks, is of the form of (6) and
characterized by the expansion ratio ρsup given by

ρsup =
γinf + 1

γinf − 1
, γinf =

∏
i

∣∣∣∣ λui√β
∣∣∣∣ . (13)

More specifically, for any ρ ∈ (1, ρsup), the solution P > 0
to the matrix inequality in (9) exists, with which it holds
that V (Ax + Bq(Kx)) ≤ βV (x) with the feedback gain
K = −BTPA/(BTPB).

Note that the definitions in (13) are obtained by reversing
(8). By setting β = 1 in this result, the largest expansion
ratio ρ∗sup for achieving quadratic stabilization given in (7)
can be obtained.

Finally, in view of the bounds on the changes in the
Lyapunov function V (xk) in the presence/absence of DoS
attacks in (12), we can relate them to the DoS duration
bound as follows.

Lemma 3. Suppose that the duration of the DoS attacks
are bounded as in Assumption 1. Then, the Lyapunov
function V (xk) satisfying the bounds in (12) characterized
by α > 1 and β ∈ (0, 1) exponentially decreases if the DoS
parameter νd satisfies (11).

The proof of Theorem 1 now follows by combining the
three lemmas above.

4. FINITE-LEVEL TIME-VARYING QUANTIZER

In this section, we focus on an implementable finite-level
quantizer. It has a dynamic structure and uses the same
coarseness as the static one in the previous section. The
coarsest quantizer defined in Section 3 has an infinite
number of quantization levels. This is mostly because the
quantization steps become infinitesimally small as u→ 0.
Moreover, no upper bound on the quantizer output is
defined. Both of these issues should be resolved for the
coarse quantizers to be implemented in a real system.

Here, we introduce a time-varying variant of the logarith-
mic quantizer having finite levels and develop a quantized
control scheme for quadratically stabilizing the process G
in (1). The finite-level logarithmic quantizer is expressed
as follows. First, it has two parameters: A positive integer
N ∈ Z+ and the initial quantized output v0 > 0. Its output
set is given byQN = {±vi | i = 0, 1, . . . , N−1}∪{0}. Then,
let the finite-level quantizer qv0 : [−(ρ+ 1)ρN−1v0/2, (ρ+
1)ρN−1v0/2]→ QN be given by

qv0(u) =


vi, u ∈

(
ρ+ 1

2ρ
vi,

ρ+ 1

2
vi

]
,

−vi, u ∈
[
−ρ+ 1

2
vi,−

ρ+ 1

2ρ
vi

)
,

0, u ∈ [−ε, ε],

(14)

where vi = ρiv0, i = 0, 1, . . . , N − 1, ε = v0(ρ + 1)/(2ρ).
Note that this quantizer has the same structure as the
infinite-level logarithmic one in (6), but has a truncated
output set QN . In particular, the outputs are bounded
from above and from below (larger than 0 in magnitude).
Moreover, for small inputs u ∈ [−ε, ε], the output will be
approximated to zero.

In what follows, we will adopt the same level of coarseness
for this quantizer as that in the previous section. Hence,
by following the design procedure there and by Theorem 1,
we take the expansion ratio ρ from the interval (1, ρ∗sup].

To make this quantizer dynamic, we can use a time-varying
parameter v0(k). In such a case, the control input vk is
given by vk = qv0(k)(Kxk). The parameter v0(k) changes
the domain and step widths of the quantization dynam-
ically. This quantizer takes only a finite number 2N + 1
of quantization levels at each time. Moreover, the bit-rate
necessary for updating v0(k) is finite, which is relevant
because we are looking for minimal and implementable
use of a communication network. Therefore, the proposed
quantization method can be realized using finite capacity
(Tsumura et al., 2009). This type of “zooming in/zooming
out” quantization was first introduced in Brockett and
Liberzon (2000).

The following preliminary result is presented. At first, take
N large enough such that

N ≥ logρ

(
F0/

√
β
)
,

where

F0 :=

√
binf(ρ+ 1)|µ+|

2
√
λmin(P )‖Q̃−1A>PB‖
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and b = binf as in (Elia and Mitter, 2001, pp.1395–1397),
i.e., the minimum positive solution to the LMI problem

∃τ > 0 : bΓ− Ā>P̄ Ā− τΣ ≥ 0,

where Γ = diag(0, 0, . . . , 0, 1) ∈ Rn×n, Ā = T−1AT ,
P̄ = T>PT , and Σ = Ā>P̄ Ā− P̄ . Moreover

T =

[
W

K>

‖K‖2

]
,

such that the columns of W span the orthonormal null-
space of K.

Define the level set LV (c) = {x ∈ Rn|V (x) ≤ c} of the
Lyapunov function V (x) and let

c1(v0(k)) :=

(
ρ+ 1

2ρ
v0(k)

)2

binf , (15)

c2(v0(k)) := λmin(P )

(
‖Q̃−1A>PB‖vN−1

|µ+|

)2

, (16)

where δ > 0 is a small scalar and

Q̃ := Q+ δI =
A>PBB>PA

B>PB

1

γ̂2
+ δI,

µ± := −B
>PAQ̃−1A>PB

B>PB

±

√
B>PAQ̃−1QQ̃−1A>PB

B>PB
.

Here, because P and Q̃ are positive definite and Q non-
negative definite, the following lemma holds.

Lemma 4. For the given Q and Q̃, µ± is real and |µ+| ≤
|µ−|.

Recall that we are looking for a finite-level quantizer,
which is the coarsest possible quantizer such that the
system is quadratically stable under a DoS attack. To this
end, two areas are defined. The first area is the dead-zone
area, whereas the second area represents the area in which
all states – which includes those outside of the dead-zone
– should lie. The next lemma introduces bounds on the
Lyapunov function both inside and outside the dead-zone
as a step towards a finite-level quantizer.

Lemma 5. There exists an updating sequence v0(k)
with initial condition v0(0) under the control law v(k) =
qv0(k)(KGDxk) such that the following holds:

V (xk+1) ≤ c1(v0(k + 1)), ∀xk ∈LV (c1(v0(k))),

V (xk+1) ≤ c2(v0(k + 1)), ∀xk ∈LV (c2(v0(k))) \
LV (c1(v0(k))),

where LV (c2(v0(k))) \ LV (c1(v0(k))) is non-empty and
c1(·), c2(·) as in (15), (16), respectively.

With the above lemma, the bounds for inside and outside
the dead-zone are defined. A sequence for v0(k) is needed
for achieving V (xk) → 0 when k → ∞, for which the
dynamics remain within the bounds c1(v0), c2(v0). Note
that these bounds are time-varying depending on the
states of DoS attacks. Specifically, both should grow in
the “DoS present” mode and decrease otherwise.

Given a positive scalar R0 > 0, suppose the initial state
satisfies ‖x0‖ ≤ R0. Let the initial value of v0 be

v0(0) =

√
λmax(P )

λmin(P )

|µ+|R0

‖Q̃−1A>PB‖ρN−1

and let v0(k) update as

v0(k + 1) =


F0ρ

−Nv0(k), if (σk, wk) = (1, 1),√
βv0(k), if (σk, wk) = (1, 0),√
αv0(k), if σk = 0,

(17)

where σk ∈ {0, 1} indicates whether the system experi-
ences DoS at time k and

wk :=

{
1, if xk ∈ LV (c1(v0(k))),

0, if xk ∈ LV (c2(v0(k))) \ LV (c1(v0(k))).

Note that the update for v0 requires the knowledge of σk
at time k+1, which can be realized by the utilization of an
acknowledgment-based protocol (e.g., TCP protocol). At
each time k the index of the quantized signal v(k) as well
as the binary signal wk need to be transmitted between
the encoder and decoder. In both the encoder and decoder,
v0(k) can be constructed because of the acknowledgments.

Now we are ready to present the main result of this paper.

Theorem 2. Given the process (1) with controller uk =
Kxk, with state feedback gain K = −(B>PA)/(B>PB).
Given a value ρsup > 0, if there exists a P > 0 satisfying
(9) and the DoS attack satisfies (11), then the process (1)
is quadratically stable under the design of the quantizer
qv0(k)(u) in (14) with v0(k) in (17).

It is worth mentioning that the level of tolerable DoS
attacks under dynamic quantized control in Theorem 2
is the same as the one for the static quantized controller
in Section 3.

5. NUMERICAL RESULTS

We examine the same second-order unstable system as in
Tsumura et al. (2009), given by

x(k + 1) =

[
0 1

1.8 −0.3

]
x(k) +

[
0
1

]
v̂(k).

The eigenvalues are 1.2,−1.5. We run a numerical sim-
ulation in Matlab to test the finite-level, time-varying
quantizer qv0 from (14) for this system.

The worst-case DoS attack would be an attack launched
with its full budget at k = 0, i.e., the start of simulation.
Let Θ := bkν̄dc be the total amount of allowed DoS
samples on an interval [0, k] for a given β. With this
attack, there is no absolute decrease in the state before the
attack is launched, such that the Lyapunov function will
reach its peak at V (x(Θ)) = αΘV (x(0)). Consequently,
compensating this maximum value takes the most amount
of time-steps where control is applied, before it converges
to the origin.

The simulation is run for a fixed value of the convergence
parameter β = 0.49 (recall that β should lie in (0, 1)
and that the corresponding coarseness parameter ρ can be
obtained from β) for k = 150 samples with initial condition

x0 = [−10 2]
>

. In the simulation, we take Πd = 0 as
this does not affect overall stability for k → ∞. The
resulting DoS bound is ν̄d ' 0.2632, such that Θ = 39.
The expansion ratio ρsup follows from inserting this value
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Fig. 2. Simulation of the system with time-varying quan-
tizer under DoS, showing the resulting norm of xk
and the Lyapunov function V (xk), for a stable and
unstable amount of DoS samples.

for β in (13). Moreover, all parameters are chosen in a
coarsest or worst-case scenario, i.e., ρ = ρsup ' 1.7481,
R0 = ‖x0‖2, N = dlogρ(F0/

√
β)e = 3, and so on. The

DoS budget is maximized as well. Hence this simulation
is a ‘worst-case’ simulation of the theory if the attack is
launched at the start of the simulation. Additionally, a P
satisfying (9) is given by

P =

[
0.2231 −0.0511
−0.0511 0.4553

]
.

To numerically demonstrate the tightness of the quadratic
stability condition (11), we simulate for νd = Θ/k =
39/150 < ν̄d and ν∗d = 42/150 > ν̄d, such that σk = 0
when 0 ≤ k ≤ 39 and 0 ≤ k ≤ 42, respectively. Moreover,
σk = 1 when 40 ≤ k ≤ 150 and 43 ≤ k ≤ 150, respectively.

The simulation results are shown in Fig. 2. The plots
first show an exponential increase due to the DoS attack,
which is launched with the complete budget at the start
of simulation, followed by convergence after no more DoS
is allowed by the DoS bound νd. As can be seen, the
states converge for νd, but they do not converge for ν∗d
whose simulation results diverge. Increasing the number
of samples k over which the simulation is run would only
further increase the divergence in the case of ν∗d , while still
guaranteeing convergence for νd. This shows the tightness
of the quadratic stability condition in Lemma 3.

Note that the solution for P that satisfies (9) has not been
optimized, such that it would result in the lowest value
of α in (10). Therefore, the bound ν̄d in this numerical
example is likely not the largest value and it is possible
that the most amount of DoS allowed for β = 0.49 is larger
than 39 to still achieve quadratic stability. However, this
example does show that it will be smaller than 42 samples
of DoS, as this would not result in quadratic stability as
depicted in Fig. 2.

6. CONCLUSION

In this paper, we have proposed the design of the possible
coarsest quantizers that can lead to closed-loop stability
guaranteed by a quadratic Lyapunov function under the
considered class of DoS attacks. In particular, we have
presented the design of the finite-level dynamic quantizer,

and it is shown that the system under dynamic quantized
control has a comparable resilience as the one under
infinite-level static quantized control.
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