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Abstract: This paper proposes an online, data-driven method to detect in which position
(lying or standing) a women is performing Kegel exercises from measurements collected with a
vaginal pressure sensor array. Pressure data has been collected with the vaginal pressure sensor
from women performing Kegel exercises by playing a dedicated mobile app, which is controlled
by contracting their pelvic floor muscles. Depending on their position while playing (lying or
standing), the recorded pressure patterns exhibit different characteristics in terms of intensity,
location and width of the pressure peak, which may be used to detect the human position.
For this, the recorded data is filtered, opportune features are extracted and a suitable classifier
is trained to distinguish the two positions. The results show that the human position can be
accurately detected online when using individual models for each patient (in our experiments,
up to 1% of false positives and 4% false negatives), whereas the detection capabilities might
decrease drastically when considering the same classifier for another women (e.g., up to 95% of
false positives).

Keywords: physiological modelling, activity recognition, activity classification, pelvic floor
muscles

1. INTRODUCTION

The Pelvic Floor Muscles (PFM) support several inner
organs such as the bladder, the bowel and, in females,
the uterus. Several factors can contribute to damaged
or weak PFM, including pregnancy, childbirth related
injuries, and aging. Weakened PFM may lead to urinary
incontinence; estimated to affect one third of women,
Walker and Gunasekera [2010]; or pelvic organ prolapses.
Moreover, these conditions frequently intensify after the
menopause.
To strengthen the PFM, and hence alleviate or even cure
the issues above, women are encouraged to perform so
called “Kegel exercises” consisting of repeated contrac-
tions and relaxations of the PFM, Bø [2004]. Advice on
how to practice these exercises are often given by health
practitioners as verbal instructions, brochures, or videos.
To be effective, Kegel exercises must be repeated over long
periods of time and be performed correctly. Consequential,
they tend to be experienced as tiring or boring, leading
to many women either neglecting, or failing to exercise
sufficiently often.
In order to encourage women to exercise their PFM suf-
ficiently and regularly, we have developed a game app
that uses real time data from an array of pressure sensors
and motivates women through an appropriately chosen
game design (see more details on the game and the vagi-

nal pressure sensor array in Section 2). Indeed, gamified
treatment strategies, including game mechanisms such as
rewarding- and sanctioning systems, compels the user to
remain invested in the task at hand, McCallum [2012].
Gamification is expected to also encourage and motivate
women to do regular Kegel exercising and thus enjoy the
long-term benefits of a well-conditioned pelvic floor mus-
culature. Furthermore, gamifying the exercises is not only
expected to make Kegel exercising fun and engaging, but
also to increase awareness and destigmatize female health.
This is in line with positive evidence that mHealth based
interventions (i.e., medicine supported by mobile devices)
improve health outcomes [Webb et al., 2010, Eapen and
Peterson, 2015].
Apart from being perceived as tedious or boring; leading
to many women not exercising as regularly as require;
approximately 30% of the women do the exercises incor-
rectly, McDougal et al. [2012]. This may be due to the
location of the muscles and the inability to recognize if
the pelvic floor muscles are being activated, as opposed to
the surrounding pelvic, abdominal or hip muscles. This is
particularly important since using the abdominal muscles
instead of PFM means “pushing down” onto the pelvis,
which might damage the PFM rather than training them.
Hence, being able to distinguish between correct Kegel
exercises and incorrect muscle contractions is important
to prevent harm and give feedback to women to encourage
correct execution of Kegel exercises.
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Since the used pressure sensor (described further in Sec-
tion 2.1) can distinguish between muscle activity from the
PFM and the abdominal muscles, data recorded through
the game app can be used to understand which muscles
the player has been using when playing the game. Indeed,
when inspecting data recorded from women playing the
game app, we could distinguish between different muscle
patterns. For instance, it appeared that women were more
likely to use their abdominal muscles rather than their
PFM when standing (compared to lying) since Kegel ex-
ercises are considered more difficult to initiate correctly
when standing, especially after fatigue during a prolonged
game play. Intuitively, the players may resort to contract
their abdominal muscles when the PFM contractions are
too hard or too tiring, and in this way miss the desired
medical outcome (i.e., training the PFM). It is desirable
thus to detect such behaviour and prevent it whenever
possible.
As one option, when detecting that women mostly use
their abdominal muscles, the game dynamics could ac-
count for this effect by automatically lowering the difficulty
to indirectly encourage women to use their PFM. In a more
direct fashion, the game could issue a warning message
to the player informing her of the detected muscle activ-
ity. Alternatively, the game dynamics might be adapted
to include a sanctioning system for using the abdominal
muscles.
In any case, it is important to develop real-time algorithms
that use measurements from wearable and portable units 1

that can detect which muscles are being activated. To this
purpose, it is essential to note that the muscular activation
patterns depend on several factors, such as:

• the position in which the game is being played (lying,
sitting, or standing);

• the muscular tonicity, and the current fatigue levels.
Being able to estimate these latent variables; for example,
by estimating the playing positions from the data; clearly
enables more detailed analyses of the gaming patterns.
However, differentiating between these factors, which con-
tribute in a non-deterministic way to the measured pres-
sure, requires careful modelling of the dynamics of the
measured system.
Regarding this modelling step, we note that the dynam-
ical model of the PFMs of interest associates muscular
stimulation levels with the corresponding pressure (or
force) outputs. For the general problem of associating
stimuli to pressure (or force), researchers have devel-
oped many generic models of variable complexity. These
include, among others: i) physiologically based models,
which relate the input output maps as interactions of the
fibers at a microscopic level, Huxley [1957], ii) Hill-type
models, which relate stimulation levels and correspond-
ing forces through mechanically-inspired concepts such as
mass-spring-damper systems, Hill [1977], and iii) black-box
models, that relate input-output relations starting from
numerical evidence. The most common strategies in this

1 To this point we note that there exist some literature about EMG
biofeedback devices for the training of PFM; however to the best of
our knowledge EMG-based approaches do not guarantee the comfort
levels that wearable and portable PFM status units may bring.

case use Hammerstein-Wiener or Nonlinear autoregres-
sive exogenous (NARX) models, including neural networks
and fuzzy models. We notice that physiological models of
muscular dynamics are typically nonlinear; for this reason,
nonlinear identification approaches tend to provide better
results than linear ones.
In this paper, we consider the very specific case of control-
oriented PFM muscular models. As for the literature, we
recall the model derived in Knorn et al. [2018], analysing
the effects of dilation using a vaginal dilator of adjustable
size, and proposing a data-driven dynamical model of the
muscular response as a response to the vaginal dilation
patterns. The model in Knorn et al. [2018] uses time-
series data of pelvic floor pressure collected from healthy
patients during ad-hoc medical trials to investigate which
type of dynamical model can most accurately describe
the recorded data as a response to the physical dilation
input. This model was then extended in Knorn et al.
[2019], where the authors included psychological input
signals in the dynamics (namely, subjective assessments
of pleasure/discomfort levels).
We also note that there exist a plethora of non-control-
oriented models of the behaviour of the pelvic floor muscles
in other situations, e.g., in connection with childbirth [Li
et al., 2010]. Considering the specific case under investiga-
tion in this paper, we report the existence of several models
focusing specifically on fatigue. For example, the authors
of Liu et al. [2002] presented a model capturing muscle
activation, fatigue, and recovery, where the behaviour of
muscles is described as a group of motor units activated
by voluntary effort. Assuming that the brain effort is con-
stant, it models the biophysical mechanisms of voluntary
drive, fatigue effect, and recovery in stimulating, limiting,
and modulating the force output from muscles. The model
in Moxnes and Hausken [2008], instead, considers fatigue,
but also increased fitness due to training using simple, first
order dynamics and defining the overall performance as
the difference between fitness and fatigue. The model also
captures the effects of decreased fitness if the muscles are
not trained further. As for the specific case of PFM fatigue,
to the best of our knowledge, the first model was presented
in Kask et al. [2019]; here the authors built their model on
the one that was derived in Liu et al. [2002] to allow for
non-constant brain stimuli.

Contributions The medical literature advocates the need
for using physiologically sound Kegel exercising principles,
and for following a progression of PFM rehabilitation
(training) that starts in the lying position, and continues
towards standing positions (sometimes passing through
a ‘supported standing’ phase where she supports herself
against a wall or something, before going to a completely
free standing) when the person is more confident about
how to correctly activate her muscles [Bø, 1995].
Our goal is to determine effective information flows that
enable the real-time detection of a player’s human position
(standing or lying), a stepping stone towards algorithms
that can i) suggest the players whether to change their
playing position, and ii) induce adaptations in the game
mechanics (e.g., thresholds) and statistical data analysis
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routines (that may indeed need to be adapted depending
on the position of the person while playing).
As a constraint, we aim at understanding how the game
is being played without using information from other sen-
sors embedded in the mobile device (e.g., accelerometers
and gyroscopes), but rather only through measuring the
pressure field. Our intuition is indeed that it is intuitively
better to avoid including external variables that may be
spuriously correlated with the intended estimands, and
inspect instead what can be obtained using the quantities
that are for sure involved in the investigated process.
We thus propose and assess an online classification al-
gorithm that discriminates the players’ current gaming
positions using only vaginal pressure field measurements.
The approach is based on a combination of: 1) treating
the pressure field as a spatiotemporal Gaussian random
field, and filtering it using standard regularized regres-
sion approaches; 2) extracting opportune features from
the filtered data; 3) training a standard Support Vector
Classifier, using thus a supervised learning approach on
top of some opportunely labelled datasets; 4) testing the
trained classifier online on non-labelled data.
Postponing the numerically oriented claims on the efficacy
of the approach, we can summarize the main result as
follows: the here proposed information flow constructed
leads to confusion matrices and Cohen’s Kappa values that
are very promising (e.g., sum of false positives and false
negatives rates that are below 5%), but only if we consider
“personalized” classifiers. In other words, if both training
and test data are from the same player, then the approach
returns the desired results. But if using the classifier from
one person on an other person, the results are completely
meaningless. Degradations were actually expected: differ-
ent players have different physiological statuses, and this
calls for having individually trained procedures. However,
the assessed sheer of degradation is, at least for us authors,
exceeding the expectations. Summarizing, the specific ap-
plication that we are considering seems needing much more
individualization and tailoring than initially forecasted.

Organization of the manuscript The paper continues
with the description of the sensor and the gamified app in
Section 2. The proposed estimation algorithms (together
with the relative results from the field tests) are given in
Section 3. The paper closes then with some concluding
remarks in Section 4.

2. EXPERIMENTAL SETUP

2.1 The FemFit pressure sensor

The femfit®, see Figure 1, is an intra-vaginal pressure
sensor array that can be used to gain detailed insights
into PFM dynamics. The device has been developed by the
Auckland Bioengineering Institute, University of Auckland
(NZ), and includes a sensor array of eight evenly spaced
pressure sensors, connected to a flexible Printed Circuit
Board (PCB) encapsulated in a soft medical grade silicone,
and with a range from 0 kPa to 5 kPa. The PCB is attached
to a telemeter encased in plastic which sits outside the
body that transmits the measurements from the pressure

sensor 1
↓

sensor 8
↓

Fig. 1. Photo of a femfit® pressure sensor. The device is
80 mm long, 24 mm at its widest point and 4 mm
thick and contains eight pressure sensors within a soft
medical grade silicon enclosing (in gray), connected
to a Bluetooth communication module (in light blue)
through a dedicated flexible wiring.

sensors above via a Bluetooth connection. The femfit® is
flexible and able to conform to the vaginal anatomy, and
enables measuring in real-time the pressure profile along
the length of the vaginal duct. For the sake of interpreting
the subsequent results, the sensors at the most distal end
of the vaginal canal (sensors 7 and 8) measure abdominal
pressure, while sensors 3 to 6 are most likely to measure
the pressures due to pelvic floor muscles activity. Sensors
1 and 2 tend to be placed towards the introitus, and
typically do not contribute with information regarding the
PFM dynamics. The ability of distinguishing abdominal
vs. pelvic floor activity when wearing the femfit® and while
performing Kegel exercises enables determining whether
the Kegel exercises are being performed correctly, e.g.,
contracting the PFM rather than the abdominal muscles.

2.2 The gamified biofeedback application

As mentioned in the introduction, the here described game
app is designed to motivate and encourage women to
exercise their PFM sufficiently and regularly. The game
is an android mobile application featuring a female char-
acter (called Juno) immersed in a fictive world. The user
wears the femfit® and uses the pressure sensor as a game
controller: indeed the application is driven by the mea-
surement data collected by the femfit® and communicated
via Bluetooth. Thus, by contracting the PFMs, the user
triggers Juno to jump upwards to avoid some incoming
obstacles (as in the screenshot shown in Figure 2). Before
playing the game, the user can calibrate her personal max-
imum contraction pressure through a dedicated routine.
This registered pressure acts as a threshold: while playing,
the user shall exceed this pressure if she wants to make
Juno jump. In each game session players are awarded one
point for each avoided obstacle; in contrast, when failing to
jump over an incoming obstacle, the player loses one health
point. The session terminates at the fourth lost health
point or when the player decides to exit. The aim of the
game is thus to avoid obstacles, and in this way promote
exercising. The most relevant parameters of each gameplay
are therefore the required length and frequency of the
jumping actions, combined with the number of jumping
actions required from the user to finish the session.
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Fig. 2. In-game screenshot from an exercising session.
2.3 Collected data

During each gaming session, the pressure time series from
the eight pressure sensors are recorded. The vector of
pressure measurements is denoted with

p(t) =
[
p1(t), p2(t), . . . , p8(t)

]T
.

The scalar components of p(t) refer to the individual
pressure sensor measurements, according to the numbering
introduced above – hence p1(t) is the pressure at the
introitus, while p8(t) is the abdominal pressure. In the
following we will treat p(t) as the measurement process
over a spatiotemporal random field defined over the (con-
tinuous) spatial domain [1, 8], and the (continuous) tem-
poral domain [0, T ] (i.e., where the units refer to seconds, 0
refers to the start of the game, and T the end of the game
– that, as written before, may depend on the gameplay
itself). This means considering formally p(t) as induced
by the spatio-temporal pressure field

fx(t) = value of the field f at height x and at time t
(1)

and the measurement model
px(t) = measured pressure field at height x at time t

(2)
connected through

px(t) = fx(t) + νx(t) x ∈ {1, . . . 8} (3)
with νx(t) a zero-mean Gaussian i.i.d. measurement noise
with variance σ2

ν that shall be identified from the data.
Importantly, given the fact that the muscles fatigue in
time, the spatial covariance

cov (px(t), px′(t)) := K (x, x′) (4)
should be modelled as potentially time-varying. For the
sake of our purposes (see also Section 3.1), though, we did
not (yet) identify structures that help achieving better sta-
tistical performances, and for this reason in the remainder
of the paper we ignore this refinement.
We finally note that, actually, there are two other indexes
associated to each measurement stream p(t): i) the player,
and ii) the actual starting date of the session. Given the
purposes of this paper, it is safe to omit them for the sake
of readability.

3. DETECTION ALGORITHMS

As mentioned in the introduction, our aim is to detect
whether a game is being played standing or lying by

inspecting the evolution of the measured pressure field
p(t). Note that since each gameplay may last several
minutes, the users may well change their position while
playing. Approaches for which a user informs about her
posture via the app are impractical, since relying on the
user having to remember when and how she changed her
position while playing. We thus aim at automating this
detection step.
We also recall that different players have different physio-
logical statuses and dynamics, and that this calls for hav-
ing individually trained estimators. Condensing all these
intuitions, the proposed strategy is in practice to verify if
the same player has distinct and recognizable behaviors
when playing in different positions. More verbosely, the
overall algorithm can be divided into the following four
steps, each described and illustrated in the following sub-
sections:
(1) filtering the pressure field p(t);
(2) extracting opportune features from the filtered signal;
(3) using these features to train an opportune gaming

position classifier;
(4) using this classifier to perform online classification

tasks.

pr
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su
re

[k
Pa

]

time [sample index]

Fig. 3. Example of a pressure field typically measured when
a player is playing in position “Lying”. Here the y axis
corresponds to the sensor index.
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]
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Fig. 4. Example of a pressure field typically measured when
a player is playing in position “Standing”. Here the y
axis corresponds to the sensor index.

To give a qualitative intuition as to why the overall scheme
is feasible, we consider Figures 3 and 4, that plot the
detrended field p for a subset of time indices t for a specific
player (say, “Amy”) in two consecutive days (so that the
overall tiredness levels and fit levels of the person can
be considered constant) but playing in different positions.
Note that p is here detrended, in the sense that the plot
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actually shows the actual pressure minus the pressure
measured in resting state (a baseline that for the purpose
of this paper is non-informative).
Figures 3 and 4 highlight the two alternating behaviors:
the inactive zones, i.e., when the player does not need
to jump because there are no incoming obstacles (qual-
itatively speaking, the periods corresponding to “darker”
colours), and the activity zones (the ones corresponding to
“lighter” colors), that occur when the player is jumping.
Comparing the two figures, and recalling that they are
relative to the very same player in equivalent fatiguing
& fit conditions, one can immediately see a known effect
in Kegel exercising, i.e., the fact that exercising while
in a standing position is more difficult than when lying,
because standing involves additional, involuntary contrac-
tions of the abdominal muscles as an inherent effect of
human balancing efforts.

3.1 Filtering p(t)

Given the assumptions in Section 2.3, a natural approach
for smoothing and interpolating the individual pressure
profiles p(t) is to formulate the problem as a Gaussian
smoothing one, defined over the various t’s independently
of each other. More precisely, assuming that K (·, ·) in (4)
and ν(t) in (3) have been estimated from the data, then
the point estimate p̂x′(t) over a generic x′ ∈ R (thus
not restricted anymore to 1, . . . , 8) can be defined as the
conditional expectation

p̂x′(t) := E [fx′(t) | p(t) ]
= K (x′, x)

(
K (x, x) + σ2

νI
)−1

p(t) (5)

with x := {1, . . . , 8} and x′ ∈ R (see, for example, [Ras-
mussen and Williams, 2006, chap. 2] for more details and
additional probabilistic information for the computation of
p̂x′(t)). Instrumental to our real-time computation needs,
we also note that given the structure of our problem, the
term

(
K (x, x) + σ2

νI
)−1 shall be computed only once, af-

ter the hyperparameters of K and σ2
ν have been estimated.

Regarding the estimation of these two last quantities,
• for K, it is sufficient to consider a simple squared

exponential

K (x, x′) = σ2
f exp

(
−1

2
(x − x′)2

`2

)
(6)

with hyperparameters
[
σ2

f , `
]

estimated using a Max-
imum Likelihood 2 (see, for example, [Rasmussen
and Williams, 2006, chap. 5]) and 20% of the whole
available dataset;

• for estimating σ2
ν in a real-time fashion, we may

exploit the structure of our experimental setup in the
following sense: we assumed that the measurement
noise is homoskedastic, and thus its variance does
not change between the periods where there is brain
activity (i.e., when the player is pressing her PFM)
and when there is not. Periods of no brain activity
are easily detectable and the variability of the signal
is almost only due to noise effects (especially if we de-
trend the baselines of the measured pressure signals).
We thus estimate σ2

ν by first detecting inactivity
periods using simple thresholding, and then compute
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Fig. 5. Raw and filtered data for the various cases “playing
position, pressing the PFM or not”. Note that these
signals are de-trended (i.e., subtracted of the baseline
pressure that is measured just before playing a game).
Data from the same player as in Figures 3 and 4.

the variance of the measurement noise directly by
assuming the true p(t) = 0 during that period.

To give a qualitative intuition of the type of results one
obtains when implementing the regression problem as ex-
plained above, we plot in Figure 5 the four possible com-
binations of pressure profiles that are typically obtained
while either lying or standing, and while either relaxing or
pressing the PFM. For the sake of completeness, in these
figures we highlight in gray the extent of the feature “peak
width”, a quantity that will be defined and motivated in
Section 3.2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16584



0 0.2 0.4 0.6

0.5

1

0

20

40

peak width

po
sit

io
n

of
th

e
m

ax
im

um

m
ax

im
um

va
lu

e

lying
standing

Fig. 6. Qualitative summary of the features that are
typically measured when considering two typical game
sessions played in different conditions by the same
player. Data relative to player Amy.

The plots in Figure 5 are typical and representative of
what happens when a person is exercising correctly, in the
sense that:
when relaxing the PFM, if lying, we cannot distin-

guish any muscular activity from the measurements;
if standing, instead, it is possible to see a broad peak
whose maximum value tends to be placed at the
height of the PFM;

when pressing the PFM, it is similarly possible to see
a peak in the measured field, whose maximum value
is again typically placed at the height of the PFM.

Importantly, the qualitative behavior of this peak changes
sensibly depending on the situation: when standing and
pressing, this peak is typically much higher and wider
than all the other cases (with the width feature defined
more precisely in Section 3.2). When lying and pressing,
instead, the peak is still relatively high, but much more
defined (i.e., “narrower”), indicating that in the specific
“lying, pressing” case the person seems to be more able to
control their PFM.

3.2 Extracting features from the filtered p(t)

The considerations above lead to identifying three natural
features that may be first extracted from the filtered field
p̂ and then used in the considered estimation problem: i)
maximum value of p̂(t), ii) spatial location of the max-
imum (here assumed to be unique, and actually always
identified as unique in our dataset of hundreds of hours of
gameplays), iii) width of the peak informally introduced
above, and mathematically defined as the smallest contigu-
ous interval containing the maximum above representing
50% of the L2 norm of the estimated pressure field p̂.
To illustrate the type of results that can be obtained using
these features, we consider Figure 6, where we scatter-
plot the features measured in two different gameplays (i.e.,
data recorded in separate sessions) in different positions
from Amy, i.e., the same player considered in Figure 5.
Qualitatively speaking, the results are as expected, in the
sense that the data exhibit clearly separated patterns,
making it meaningful to perform classification tasks.

3.3 Using the extracted features to train a Support Vector
Classifier

Several classification algorithms may be used in our spe-
cific situation. Among them, we choose to consider a linear
Support Vector strategy, i.e., focus on finding separating
hyperplanes directly in the original input space repre-
sented in Figure 6. While this may look simplistic, it is
in a sense a crude way of preventing overfitting (in the
sense that, after all, we are presenting the first results that
have been obtained - and thus avoided testing competing
strategies for then selecting the best one). We also note
that this strategy enables performing very easy compar-
isons of the models that are obtained for different players,
since corresponding to simple hyperplanes in the original
input space. Besides this, the decision boundaries are also
i) immediately explainable, something that is desirable in
our medical setup, ii) requiring a negligible computational
overhead (both in terms of storage allocation and compu-
tational requirements), helping thus the implementation
of the schemes in real-time settings.

3.4 Performing online classification

Testing the classifier trained on the data shown in Figure 6
on the rest of the datasets from the very same person led to
the confusion matrix reported in Table 1. It can be noted
that, despite using no statistical sophistication whatsoever
(cf. the “standard” kernel structure in (6) and the linear
SVC in Section 3.3), the results are very good.

Table 1. Confusion matrix when used to classify
games played by Amy using the classifier trained

using data from the very same Amy.

actually lying actually standing
estimated as lying 0.96 0.01
estimated as standing 0.04 0.99

One may feel then optimistic, and believe that this strike of
obtaining good results with minimal efforts will continue;
however, testing the classifier trained on the data from
Amy on data from a different person (say, Ida), we get the
confusion matrix in Table 2.

Table 2. Confusion matrix when used to classify
games played by Ida using the classifier trained using

data from Amy.

actually lying actually standing
estimated as lying 0.05 0.00
estimated as standing 0.95 1.00

Clearly, the classifier trained on Amy is useless when
considered on Ida. Indeed, if we plot in Figure 7 the same
plot of Figure 6 but this time for player Ida, we note that
her features have a different distribution; in particular,
they are so that Amy’s classifier considers almost all of
them as standing.
Note that this might be explained by Amy having well-
trained PFMs, which is known to lead to better coordi-
nation of the muscles, leading to more targeted muscle
activation and hence narrower peaks. Since Ida’s muscles
seem to be not as well-trained, the peaks when lying are
wider and hence are categorized as standing. This also
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Fig. 7. Qualitative summary of the features relative to
player Ida.

hints that the SVC might change over time due to training
effects. Indeed, it may even be expected that upon further
training, the peaks in Amy’s data when standing might
get narrower making the distinction between lying and
standing harder. This might be less of a practical problem
since we wish to distinguish between the two positions to
detect when a player resorts to activating her abdominal
muscles due to fatigue and tiring, which is expected to
affect the player more when standing. Instead, once the
PFMs are trained further, so that the player is less likely
to resort to her abdominal muscles, the peaks also become
narrower in the standing position. These narrow peaks
may prevent correct detection of human position; however,
the risk of harm due to incorrect muscle activation is
reduced, which make this a less pressing issue.

4. CONCLUSIONS

We considered the problem of detecting activities of per-
sons that are performing gamified Kegel exercises, an issue
whose practical importance lies on being a stepping stone
for implementing adaptable game dynamics.
We followed a rather standard information processing
approach for discriminating these activities, composed of
standard filtering, feature extraction, training and testing
of the activities classifier, and found results that are
notable in two distinct ways:

• the first is the surprising effectiveness of the strategy
when considering the case of individualized classifiers:
the overall strategy is based on standard estimation
building blocks and even in this case, the quantitative
results are well beyond what were expected;

• the second is the surprising decay of performance
when doing cross-training (i.e., training on one per-
son, testing on an other). Decays were actually ex-
pected: different players have different physiological
statuses, and this calls for having individually trained
procedures. However, in our examined cases, cross-
training is leading to practically useless results.

This means that the application that we are considering
needs more individualization and tailoring in the estima-
tion step than initially forecasted, and this is in some sense
undesirable – therapies will likely require the inclusion of
several estimator training steps.

We note that we are still considering datasets comprising
of limited numbers of persons (below 10). Planned medical
trials are expected to provide information from several
hundreds of players; it may then be that with that amount
of information, we may discover patterns that are currently
undetectable.
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