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Abstract: The problem of robustly controlling open-loop bistable tubular gasification reactors about its 

ignition stable SS is addressed. To attenuate the effect of measured and unmeasured disturbances on closed-

loop (CL) stability and caloric yield, the air feed flow must be adjusted on the basis of flow as well as 

inside point temperature measurements. The consideration of the problem as an efficient finite-dimensional 

model-based interlaced control-observer design yields a robust dynamic nonlinear (NL) output feedback 

(OF)-feedforward (FF) controller: (i) made by the combination of a passive NL state feedback (SF)-

feedforward (FF) controller with a NL geometric (G) state estimator, and (ii) with CL stability conditions 

accompanied by gain tuning and sensor location guidelines. The approach is applied, through numerical 

simulations, to a 10-component 1-temperature and 2-flow stratified gasification reactor, finding that the 

nonlinear OF dynamic controller (made of 91 ODEs and 300 AEs) robustly stabilizes the reactor with 

preclusion of undesired SS ignition-to-extinction caused by solid feed disturbances. 

Keywords: tubular gasification reactor, distributed parameter system; output feedback control; state 

estimator, disturbance rejection; sensor location.

1. INTRODUCTION 

The industrial scale up of tubular exothermic moving solid bed 

gasification reactors, where solid biomass is efficiently 

disposed with energy generation, is limited by high effluent 

sensitivity composition with respect to feed composition, 

temperature and flowrate disturbances. These reactors have 

from 7 to 15 chemical species and from 1 or 2 temperatures, 

and their complex (with multiplicity and/or bifurcation)-

nonlinear spatially distributed dynamics that modeled by a set 

of 12-to-20 nonlinear PDEs which have been solved, with 

finite-differences (FD) and computational fluid dynamics 

(CFD) methods, for the SS of interest and its start up (Di Blasi 

2000; Rogel and Aguillon, 2006; Perez et al., 2012). The key 

multiplicity property has not been assessed with bifurcation-

based numerical continuation on the basis of FD/CFD PDE-to-

ODE discretization, perhaps due to the difficulty or even 

intractability of handling a high number of ill-conditioned 

nonlinear algebraic equations (Badillo-Hernández et al., 

2019). The associated model-based control problem has not 

been addressed. 

The estimation and control problem of fluidized bed coal 

gasification reactors, of a less distributed nature and easier to 

model in comparison to biomass moving bed reactors, have 

been studied on the basis of a PDE-to- 25 ODE discrete model 

with a diversity of conventional (multivariable PI, model 

predictive control) and advanced (𝐻∞, sliding  mode, genetic 

algorithms, Kalman filter-based) techniques for the well 

known ALSTOM benchmark example (Dixon and Pike, 

2006). The extension of these techniques to the biomass 

moving bed gasification reactor case, with considerably more 

model equations, is by no means a trivial task. 

The control of tubular reactors with complex nonlinear 

dynamics has been addressed with early (PDE-to-ODE model 

discretization followed by control design) and late lumping 

(PDE model-based design with discretization at 

implementation) approaches, the state of the art can be seen 

elsewhere (Beniich et al., 2017; Meurer and Zeitz, 2008), and 

here it suffices to say that: (i) only reactors with few (two and 

three)-state profiles have been considered, (ii) late lumping 

focuses on formal convergence proofs at the const of more 

complex mathematics, (ii) the direct application of early and 

late lumping approaches to many-species reactors, like the 

gasification reactors, lead to discrete control systems, made by 

a large number of (possibly ill-conditioned) nonlinear ordinary 

and algebraic equations with on-line computational load that 

is an obstacle for industrial applicability. 

The preceding consideration motivate the present efficient 

model-based (Badillo-Hernández et al., 2019) control design 

study on biomass moving bed gasification reactors, with 

efficiency meaning: robust (with respect to PDE-to-ODE 

order) and quantitative (up to kinetic-transport parameter 

uncertainty) description of the complex (with multiplicity and 

bifurcation) global-nonlinear PDE dynamics of the open-loop 

(OL) gasification reactor. 

Our points of departure are: (i) the efficient model-based 

stabilizing nonlinear (NL) state feedback (SF) passive control 

of a two-state tubular reactor (Najera et al, 2016), and (ii) the 

geometric nonlinear state estimator for one (Fernandez et al., 

2012) and many (Porru et al., 2013)-state staged distillation 

columns with spatial structure similar to the one of FD-based 

tubular reactor models (Badillo-Hernández et al., 2017). 

The problem is solved by designing an efficient model-based 

robustly stabilizing passive NL SF controller implemented 

with a NL geometric state estimator (GE), including: (i) 

systematic and simple construction-tuning procedure, (ii) CL 

robust state stability conditions coupled with sensor location 
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and gain tuning, and (iii) considerably less on-line 

computational load with respect to previous early and late-

lumping approaches.    

The proposed approach is illustrated through numerical 

simulation with a representative stratified bistable reactor 

example with model calibrated against experimental data 

(Badillo-Hernández, et al., 2019), with 13 state profiles (2-

flows, 1-temperature, and 10-compositions), and undesirable 

OL SS ignition-to-extinction transition by feed disturbance. 

2. CONTROL PROBLEM  

Consider the stratified tubular gasification reactor of length 𝐿, 
transversal area 𝐴 and total metal mass 𝑚𝑤 shown in Fig. 1, 

where solid (s) and gas (g) streams (fed at the top) are 

transformed, through a multicomponent (pyrolysis, 

combustion and reduction) reaction network (Di Blasi, 2000) 

coupled with mass and heat convective-dispersive transport 

and wall heat losses, into an effluent (bottom) stream with 

syngas, char and ashes. 

 

Fig. 1. Stratified gasification reactor and control scheme.  

Without restricting the approach, in this study we will consider 

that the OF-FF controller will be driven by three input 

measurements:  the solid feed flow (𝐹𝑠𝑒), gas (𝑇𝑔𝑒) and solid 

(𝑇𝑠𝑒) feed temperatures, and one output temperature 

measurement at a suitable axial location (to be precised). 

From standard assumptions on (quasistatic –QSS- gas 

dynamics and large gas-solid heat exchange) (Hlavacek, 

1970), the reactor dynamics are described by the following set 

of nonlinear PDEs (Badillo-Hernandez et al., 2019): 

0 = −𝜕𝑧[(𝐹𝑔 𝐴𝑅⁄ )] + 𝒎𝑔
𝑇𝑹(𝑪, 𝑇),   0 < 𝑧 ≤ 𝐿,  𝑡 > 0  (1a) 

0 = −𝜕𝑧(𝐹𝑠 𝐴𝑅⁄ ) − 𝒔𝐶
𝑇𝑹(𝑪, 𝑇),     𝑪 = [𝑪𝑠

𝑇 , 𝑪𝑔
𝑇]

𝑇
   (1b) 

0 = −𝜕𝑧[(𝐹𝑔 𝜌𝑔(𝑇)𝐴𝑅⁄ )𝑪𝑔] + 𝑺𝒈
𝑇 𝑹(𝑪, 𝑇) (1c) 

𝜕𝑡𝑪𝑠 = −𝜕𝑧([𝐹𝑠 𝜌𝑠𝐴𝑅⁄ ]𝑪𝑠) + 𝑺𝒔
𝑇𝑹(𝑪, 𝑇) (1d) 

𝜕𝑡𝑇 = 𝐻𝑠
−1(𝑪𝒔){𝜕𝑧[𝐾(𝑇)𝜕𝑧𝑇] − 𝑉ℎ(𝒗, 𝑪, 𝑇)𝜕𝑧𝑇 (1e) 

              −ℎ𝑤(𝑇)(𝑇 − 𝑇𝑎) + 𝚫𝐇𝑇𝑹(𝑪, 𝑇)} 

with boundary and initial conditions 

𝑧 = 0: (𝐹𝑔, 𝐹𝑠, 𝑪𝑔, 𝑪𝑠)(0, 𝑡) = (𝐹𝑔𝑒, 𝐹𝑠𝑒 , 𝑪𝑔𝑒 , 𝑪𝑠𝑒),  (1f) 

               𝐾(𝑇)𝜕𝑧𝑇 = 𝑣ℎ(𝒗, 𝑪, 𝑇)(𝑇 − 𝑇𝑒)  

𝑧 = 𝐿: 𝐾(𝑇)𝜕𝑍𝑇 = ℎ𝛾(𝑇)(𝑇 − 𝑇𝑎) (1g)  

𝑡 = 0: (𝑪𝑠 , 𝑇)(𝑧, 0) = (𝑪𝑠𝑜, 𝑇𝑜)(𝑧)  (1h) 

• Dynamic (𝝌) and quasistatic (𝜼) state profiles 

𝝌 = (𝑪𝑠, 𝑇)𝑇,        𝜼 = (𝑪𝑔, 𝐹𝑔, 𝐹𝑠)𝑇 (2a-b) 

• Measured (𝒅) and unmeasured (𝝔) disturbances 

𝒅 = (𝐹𝑠𝑒, 𝑇𝑔𝑒 , 𝑇𝑠𝑒),                    𝝔 = (𝑪𝑔𝑒
𝑇 , 𝑪𝑠𝑒

𝑇 ) (3a-b) 

• Control input (u) and output measurement (𝑦) 

𝑢 = 𝐹𝑔𝑒,        𝑦 = 𝑇(𝑧𝑙 , 𝑡),        𝑧𝑙 ∈ 𝒵 = (0, 𝐿) (4a-b) 

where 𝑧 is the axial position, 𝑡 is the time, 𝑪𝑠 is the 𝑛𝑠-

concentration vector, 𝑇 is the temperature, 𝑪𝑔 is the 𝑛𝑔-

concentration vector, 𝐹𝑔 (or 𝐹𝑠) is the mass flow of gas (or 

solid) phase, 𝑇𝑎 is the ambient temperature, 𝐹𝑔𝑒 (or 𝐹𝑠𝑒) is the 

convective gas (or solid) feed rate with concentration 𝑪𝑔𝑒 (or 

𝑪𝑠𝑒) and temperature 𝑇𝑔𝑒 (or 𝑇𝑠𝑒).  

The vector 𝑹 contains the 𝑛𝑟 reaction rates, 𝑺𝒈 (or 𝑺𝒔) is the 

stoichiometric matrix of gas (or solid) phase, 𝒔𝐶 is the vector 

of stoichiometric coefficients of char and (-𝚫𝐇) is made of the 

𝑛𝑟 heats of reaction. 𝐾 is the effective heat conductivity that 

includes dispersion and radiation, 𝑉ℎ (or 𝐻𝑠) is the convective 

heat flux (or capacity), and ℎ𝑤 (or ℎ𝛾) is the wall (or grid) heat 

exchange function.  

In compact form, the PDE model (1) is written as: 

𝜕𝑡𝝌 = 𝓕𝝌(𝝌, 𝝔, 𝒅, 𝑢),   𝓑(𝝌, 𝝔, 𝒅) = 𝟎,   𝝌(0) = 𝝌𝑜      (5a-b)  

𝜼 = 𝓖(𝝌, 𝝔, 𝒅, 𝑢),       𝝅 = (𝝌𝑻, 𝜼𝑻)𝑻  (5c-d)    

𝑦 = 𝒄𝑦𝝌(𝑧𝑙 , 𝑡) = 𝑇(𝑧𝑙 , 𝑡),   𝒄𝑦 = (0, 0, … ,0,1),   𝑧𝑙 ∈ 𝒵  (5e)    

where (RHS: right hand side) 

𝝌(𝑡) = (𝑪𝑠, 𝑇)𝑇,        𝜼 = (𝑪𝑔, 𝐹𝑔, 𝐹𝑠)𝑇 (6a-b) 

𝒅 = (𝐹𝑠𝑒, 𝑇𝑔𝑒 , 𝑇𝑠𝑒),     𝝔 = (𝑪𝑔𝑒
𝑇 , 𝑪𝑠𝑒

𝑇 ),      𝑢 = 𝐹𝑔𝑒 (6c-d) 

dim 𝝌 = 𝑛𝝌 = 𝑛𝑠 + 1,    dim 𝜼 = 𝑛𝜼 = 𝑛𝑔 + 2 (6e-f) 

dim 𝑪𝑠 = 𝑛𝑠,                  dim 𝑪𝑔 = 𝑛𝑔 (6g-h) 

𝓖:  solution for 𝜼 of (1a-c) (6i) 

𝓕𝝌: RHS of (1d-e) with 𝜼 substituted by (6i) (6j) 

𝓑: boundary conditions of (1d-e) substituted by (6i) (6k) 

𝝌 (or 𝜼) is the dynamic (or quasistatic) state, 𝒅 (or 𝑦) is the 

measured input (or point output), 𝝔 is the unmeasured input, 

and 𝑢 is the domain control input.  

The PDE model has the open-loop (OL) steady-state (SS) set 

Σ = {𝝌̅𝐸 , 𝝌̅𝑈, 𝝌̅𝐼} (7) 

with stable desired ignition (or undesired extinction) SS 𝝌̅𝐼 (or 

𝝌̅𝐸), and unstable saddle 𝝌̅𝑈 (between 𝝌̅𝐼 and 𝝌̅𝐸) which 

determines the size of the basin of attraction of 𝝌̅𝐼. The fact 

that feed disturbances (𝒅) (3b) can cause undesired ignition-

to-extinction OL SS transition (Badillo-Hernandez et al. 2019) 

motivates its preclusion through measurement-driven control. 

2.1 Output feedback control problem 

Our problem consists in designing an output dynamic feedback 

(OF)-feedforward (FF) controller (depicted in Figure 1), 

which, driven by the measured input-output signal pair (𝒅, 𝑦) 

(3a,4b), yields a robustly (R)-stable closed loop (CL) operation 

about the nominal ignition SS 𝝌̅𝐼 (7) with admissible state 

profile (𝝅) variability in spite of persistent bounded 
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disturbance (𝝔, 𝒅) (3a-b) that can induce OL extinction. An 

adequate compromise between state profile variability, control 

effort, robustness and on-line computational load (which 

reflects number of equations, and their ill-conditioning) must 

be attained.  

A biomass downdraft stratified gasification bistable (Badillo-

Hernandez et al. 2019) tubular reactor (Manurung and 

Beenackers, 1993) (Figure 1) will be considered as example, 

with: (i) 𝑛𝑟 =  10 reactions and 𝑛𝑔 =  8 (or 𝑛𝑠 =  2) gas (or 

solid) species 

𝐵𝑠 = {𝐵, 𝐶}, 𝐵𝑔 = {𝑂2, 𝐻2, 𝐶𝑂, 𝐶𝑂2, 𝐻2𝑂, 𝐶𝐻4, 𝑇𝑎𝑟𝑠, 𝑁2} (8) 

(ii) kinetic-transport (KT) functions (Di Blasi, 2000) with 

parameters calibrated (Badillo-Hernandez et al. 2019) against 

experimental data (Manurung & Beenackers,1993), and (iii) 

temperature profile triplet (Fig. 2) of the SS set (7) computed 

with a (uniform 200-node) FD PDE numerical solver. 

 

Fig. 2. SS temperature profiles of the bistable reactor (7).          

: experimental data (Manurung & Beenackers,1993). 

3. FINITE-DIMENSIONAL MODEL 

The application to the PDE model (1,6) of the efficient FD-

based convergent  (LeVeque, 2007) spatial discretization (with 

first-order backwards for convection and second-order 

centered differences for dispersion) for heterogeneous tubular 

reactors (Badillo-Hernandez et al, 2019) leads to the low-order 

N-stage differential-algebraic (DAE) model 

𝒙̇ = 𝒇(𝒙, 𝝔, 𝒅, 𝑢),      𝒙(0) = 𝒙𝑜     (9a) 

𝜻 = 𝒈(𝒙, 𝝔, 𝒅, 𝑢),    𝑧 ∈ 𝑍 = [0, 𝐿]         (9b) 

𝝌𝑁(𝑧, 𝑡) = 𝑪𝒙
𝑁(𝑧)𝒙(𝑡),       (9c) 

𝜼𝑁(𝑧, 𝑡) = 𝑪𝜻
𝑁(𝑧)𝜻(𝑡),      (9d) 

𝑦 = 𝒄𝑙𝒙 =  𝑇𝑙,      𝒄𝑙 = 𝒄𝑦𝑪𝒙
𝑁(𝑧𝑙),     𝑙 ∈ [1, 𝑁] (9e-f)   

where 
𝒙 = (𝒙1

𝑇 , … , 𝒙𝑁
𝑇 )𝑇,   𝒙𝑖 = (𝑪𝑠𝑖

𝑇 , 𝑇𝑖)𝑇 ,          dim 𝒙 = 𝑛𝝌𝑁 ≔ 𝑛  

𝜻 = (𝜻1
𝑇 , … , 𝜻𝑁

𝑇 )𝑇 ,   𝜻𝑖 = (𝑪𝑔𝑖
𝑇 , 𝑄𝑔𝑖 , 𝑄𝑠𝑖)

𝑇
, dim 𝜻 = 𝑛𝜼𝑁 ≔ 𝑛𝜻  

𝑁 = 𝜅𝑞(𝑁𝑝𝑑𝑒 , 𝒑̃) < 𝑁𝑝𝑑𝑒 ∈ [200,500]   (10) 

where 𝒙 (or 𝜻) is the dynamic (or quasi-static) state, 𝑪𝒙
𝑁 [or 𝑪𝜻

𝑁] 

is the interpolation matrix that yields the approximation 𝝌𝑁 (or 

𝜼𝑁) of the state profile 𝝌 (or 𝜼) from 𝒙 (or 𝜻), 𝑢 is the control 

input, 𝒅 (or 𝝔) is the measured (or unmeasured) input 

disturbance, 𝑦 is the temperature measurement at the l-th 

sensor location. 

The efficient stage number 𝑁, determined through algorithm 

(10) (Badillo-Hernandez et al, 2019), is the smallest integer 

which ensures that the 𝑁-stage model (9) robustly (with 

respect to single-stage number change) and quantitatively (up 

to KT parameter uncertainty 𝒑̃) describes, the global-nonlinear 

PDE dynamics (5) approximated by a standard 𝑁𝑝𝑑𝑒-node FD  

numerical solver (9). 

The application of the efficient stage algorithm (8) with 

𝑁𝑝𝑑𝑒 = 200 (Di Blasi, 2000) to example (8) yields the efficient 

stage number (Badillo-Hernandez et al., 2019):  

𝑁 = 30 < 𝑁𝑝𝑑𝑒 = 200 (11) 

with OL SS set (≎: topologically equivalent)  

𝑆 = {𝒙𝐸 , 𝒙𝑈, 𝒙𝐼} ≎ Σ,   Σ:(7),   𝒙𝑈: unstable saddle SS  (12) 

         𝒙𝐼 (or 𝒙𝐸): stable desired (or undesired) SS   

         𝒙𝑈: boundary of the bassins of attraction of 𝒙𝐼 and 𝒙𝐸     

In Fig. 3 (bottom panel) is presented the undesired ignition 

(𝒙𝐼)-to-extinction (𝒙𝐸) SS OL transient (with duration of 51 

mins) induced by a squared pulse-like disturbance increase of 

solid feed flow rate (top panel). The settling time of the local 

dynamics is (𝜆𝑟:logaritmic rate of change) 

𝑡𝑠 = 8 min ⇒  𝜆𝑟 = 4 𝑡𝑠 = 1.2⁄  𝑚𝑖𝑛−1 (13) 

 

 

Fig. 3. Open-loop SS ignition (blue curve)-to-extinction (black 

curve) temperature profile transient (bottom panel) induced by 

a solid feed flow squared pulse disturbance (top panel).  

Thus, the OF control task is to maintain the reactor at the 

prescribed nominal SS 𝒙𝐼, in spite of admissible bounded 

disturbances 𝒅̃(𝑡).  

4. STATE FEEDBACK-FEEDFORWARD CONTROL 

Here, the NL SF-FF control problem is addressed by extending 

to the many-profile gasification reactor case the NLSF 

component of the NLOF controller of a two-profile single-
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reaction staged reactor (Najera et al., 2016) and a 

multicomponent distillation column (Porru et al., 2013). 

For this aim, let us write the 𝑁-stage model (9) in the 

partitioned form:  

𝑥̇𝑐 = 𝑓𝑐(𝒙, 𝝔, 𝒅, 𝑢),    𝑥𝑐(0) = 𝑥𝑐𝑜 ,    𝑧 ∈ 𝑍 = [0, 𝐿]    (14a) 

𝒙̇𝑧 = 𝒇𝑧(𝒙, 𝝔, 𝒅, 𝑢),    𝒙𝑧(0) = 𝒙𝑧𝑜     (14b) 

𝜻 = 𝒈(𝒙, 𝝔, 𝒅, 𝑢),     𝑗 = 1, … , 𝑚 − 1 (14c) 

𝑦 = 𝒄𝑙𝒙 = 𝑥𝑐 =  𝑇𝑙,            𝑙 ∈ [1, 𝑁] (14d)   

𝝌𝑁(𝑧, 𝑡) = 𝑪𝒙
𝑁(𝑧)𝒙(𝑡),    𝜼𝑁(𝑧, 𝑡) = 𝑪𝜻

𝑁(𝑧)𝜻(𝑡)     (14e-f) 

where 

𝒙 = 𝑰𝒑(𝑥𝑐 , 𝒙𝑧
𝑇)𝑇,       dim 𝒙𝑧 = 𝑛 − 1 

𝑦 is the output measurement of the temperature state 𝑥𝑐 = 𝑇𝑙  

at 𝑙-th location 𝑧𝑙 (9e-f) to be (directly) regulated by the SF-FF 

controller and 𝑰𝒑 is the state permutation matrix. 

4.1 Passive SF-FF control 

The task is to adjust the air feed flow 𝑢 to regulate the 

temperature measurement 𝑦 about the setpoint 𝑦̅.  

The enforcement of the prescribed linear output regulation 

dynamics (where 𝑘 is an adjustable gain) 

𝑒̇𝑦 = −𝑘𝑒𝑦,     𝑒𝑦 = 𝑦 − 𝑦̅ (15a-b) 

on (14) yields the NLSF controller in implicit form  

𝑓𝑐(𝒙, 𝝔, 𝒅, 𝑢) + 𝑘(𝑥𝑐 − 𝑦̅) = 0          (16) 

and the unique solution for 𝑢 of this algebraic equation yields 

the SF-FF temperature controller 

𝑢 = 𝜇𝑦(𝒙, 𝝔, 𝒅, 𝑦̅) (17) 

whose application to (14) yields the CL dynamics 

𝑥̇𝑐 = 𝑘(𝑥𝑐 − 𝑦̅),          𝑥𝑐(0) = 𝑥𝑐𝑜;     𝑦 = 𝑥𝑐    (18a-b) 

𝒙̇𝑧 = 𝓯𝑧(𝒙, 𝝔, 𝒅, 𝑦̅),    𝒙𝑧(0) = 𝒙𝑧𝑜    (18c) 

𝜻 = 𝓰(𝒙, 𝝔, 𝒅, 𝑦̅)   (18d) 

𝝌𝑁(𝑧, 𝑡) = 𝑪𝒙
𝑁(𝑧)𝒙(𝑡),    𝜼𝑁(𝑧, 𝑡) = 𝑪𝜻

𝑁(𝑧)𝜻(𝑡)     (18e-f) 

where 

𝓯𝑧(𝒙, 𝝔, 𝒅, 𝑦̅) = 𝒇𝑧[𝒙, 𝝔, 𝒅, 𝜇𝑦(𝒙, 𝝔, 𝒅, 𝑦̅)] 

𝓰(𝒙, 𝝔, 𝒅, 𝑦̅) = 𝒈[𝒙, 𝝔, 𝒅, 𝜇𝑦(𝒙, 𝝔, 𝒅, 𝑦̅)] 

The setting of 𝑦 = 𝑦̅ in the CL dynamics (18) yields the sensor 

location (𝑧𝑙)-dependent (𝑛-1)-dimensional zero dynamics 

(ZD) (19) and their associated NL SF control (20) 

𝒙̇𝑧
∗ = 𝓯𝑧

∗ (𝒙𝒛
∗ , 𝝔, 𝒅, 𝑦̅),  𝒙𝑧

∗(0) = 𝒙𝑧𝑜
∗ ;      𝑥𝑐

∗ = 𝑦̅   (19a-b) 

𝜻∗ = 𝓰∗(𝒙𝒛
∗ , 𝝔, 𝒅, 𝑦̅) ,             𝒙∗ = 𝑰𝒑(𝑥𝑐

∗, 𝒙𝑧
∗𝑇)𝑇 (19c) 

𝝌𝑁
∗ (𝑧, 𝑡) = 𝑪𝒙

𝑁(𝑧)𝒙∗(𝑡),       𝜼𝑁
∗ (𝑧, 𝑡) = 𝑪𝜻

𝑁(𝑧)𝜻∗(𝑡)     (19d-e) 

𝑢 = 𝜇𝑧(𝒙𝑧
∗ , 𝝔, 𝒅, 𝑦̅) (20) 

where 

𝓯𝑧
∗(𝒙𝒛

∗ , 𝝔, 𝒅, 𝑦̅) = 𝒇𝑧[𝑦̅, 𝒙𝒛
∗ , 𝝔, 𝒅, 𝜇𝑧(𝒙𝒛

∗ , 𝝔, 𝒅, 𝑦̅)] 
𝓰∗(𝒙𝒛

∗ , 𝝔, 𝒅, 𝑦̅) = 𝒈[𝑦̅, 𝒙𝒛
∗ , 𝝔, 𝒅, 𝜇𝑧(𝒙𝒛

∗ , 𝝔, 𝒅, 𝑦̅)] 

(20) is the solution for 𝑢 of the algebraic equation (>𝑟: 

robustly -sufficiently- larger than zero) 

𝑓𝑐(𝑦̅, 𝒙𝑒
∗ , 𝒙𝑧

∗ , 𝝔, 𝒅, 𝑢) = 0,   𝜕𝑢𝑓𝑐 >𝑟 0   (21a-b) 

and the corresponding passivity solvability conditions are 

given by 

𝑟𝑑(𝑢, 𝑦) = 1 ↔ 𝑓𝑐: 𝑢-invertible,   𝑍𝐷 (19)  R-stable (22a,b) 

The sensor location (𝑧𝑙) is the one for which the ZD (19) has 

the best compromise between robustness, speed, and control 

effort. 

5. OUTPUT FEEDBACK-FEEDFORWARD CONTROL 

The efficient 𝑁𝑜-stage model-based NL OF-FF controller is 

constructed by combining the NL SF-FF controller (17) with 

the geometric estimator (GE) [Fernandez et. al., 2012] closed-

loop counterpart (23a-d) of the open-loop one for the reactor 

example (Badillo-Hernandez et al., 2017): 

𝑥̇̂𝑐 = −𝑘(𝑥̂𝑐 − 𝑦̅) + 2𝜁𝜔(𝑦 − 𝑥̂𝑐) + 𝜄,̂  𝑥̂𝑐(0) = 𝑥̂𝑐𝑜  (23a) 

𝒙̇𝑧 = 𝓯𝑧(𝒙, 𝝔̅, 𝒅, 𝑦̅),   𝒙𝑧(0) = 𝒙𝑧𝑜 (23b) 

𝜄 ̂̇ = 𝜔2(𝑦 − 𝑥̂𝑐),           𝜄(̂0) = 𝜄𝑜̂   (23c) 

𝜻̂ = 𝓰(𝒙, 𝝔̅, 𝒅, 𝑦̅) ,         𝑙 ∈ [1, 𝑁] (23d-e) 

𝑢 = 𝜇𝑦(𝒙, 𝝔̅, 𝒅, 𝑦̅),         𝒙 = 𝑰𝑝(𝑥̂𝑐 , 𝒙𝑧
𝑇)𝑇 (23f-g) 

𝝌̂(𝑧, 𝑡) = 𝑪𝒙
𝑁(𝑧)𝒙(𝑡),    𝜼̂(𝑧, 𝑡) = 𝑪𝜻

𝑁(𝑧)𝜻̂(𝑡)     (23h-i) 

where  

𝒙𝐸 = (𝒙𝑇 , 𝜄 ̂𝑇)𝑇,  dim 𝒙𝐸 = 𝑛𝑒 = 𝑛 + 1 

The closed-loop (CL) R-convergent 𝑁-stage state estimator 

(23a-d) is constructed by applying the GE approach with 

detectability index equal to one (Alvarez and Fernandez et. al., 

2009; Fernandez et. al., 2012) to the CL efficient 𝑁-stage 

reactor model (18). 

5.1 Closed loop stability 

The SS 𝒙 of the nonlinear system (L: Lipschitz) 

𝒙̇ = 𝒇[𝒙, 𝝔(𝑡), 𝒅(𝑡)],    𝒙(0) = 𝒙𝑜,  𝒈(𝒙, 𝝔̅, 𝒅̅) = 𝟎 (24a) 

|𝝔(𝑡) − 𝝔̅| ≤ 𝜀𝜚,|𝒅(𝑡) − 𝒅̅| ≤ 𝜀𝑑, 𝒈: L-bounded (24b) 

is robustly stable -with respect to admissible bounded inputs 𝝔 

and 𝒅- if 𝒙 is exponentially ultimately bounded [also called 

input-to state stable (ISS) (Sontag, 2000)] (Khalil, 2002) if the 

state motions 𝒙(𝑡) of (24) are bounded as 

|𝒙(𝑡) − 𝒙| ≤ 𝑎𝑥|𝒙𝑜|𝑒−𝜆𝑧𝑡 + 𝑏𝑑𝜀𝑑 + 𝑏𝜚𝜀𝜚, 𝜆𝑧 , 𝑏𝑑 , 𝑏𝜚 > 0 (25) 

The CL dynamics (18) is the interconnection  

𝒙̇ = 𝓯(𝒙) + 𝓯̃(𝒙, 𝒙𝐸 , 𝒅̃𝑎), 𝒙(0) = 𝒙𝑜, 𝓯̃(𝒙, 𝟎, 𝟎) = 𝟎   (26a) 
𝒙̇̃𝐸 = 𝓯𝑬(𝒙̃𝐸) + 𝓯̃𝐸(𝒙, 𝒙̃𝐸 , 𝒅̃𝑎), 𝒙̃𝐸(0) = 𝒙̃𝐸𝑜, 𝓯̃𝐸(𝒙̅, 𝟎, 𝟎) = 𝟎 (26b) 

𝒅̃𝑎 = (𝝔̃𝑇 , 𝒅̃𝑇)
𝑇
,  |𝒅̃𝑎(𝑡)| ≤ 𝜀𝑑𝑎

,  𝓯̃, 𝓯̃𝐸:  L-bounded (26c) 

of two by-construction individually robustly stable (24) 

subsystems: (26a) CL state dynamics (18) with NLSF 

disturbance and estimation errors (26c), and (ii) CL state 

estimation error dynamics: (19a-d) minus (18).  

Following a similar analysis for a polymerization tank reactor 

(Gonzalez and Alvarez, 2005), the per-subsystem application 

of Lyapunov's Converse theorem followed by Gronwall 

Inequality (LaSalle and Lefschetz, 1961) yields that the CL 

state and state error motions are bounded as 

|𝒙(𝑡)| ≤ 𝑠𝑥(𝑡), |𝒙𝐸(𝑡)| ≤ 𝑠𝐸(𝑡) (27a) 

𝑠̇𝑥 = 𝑙𝑧𝑠𝑥 + 𝑎𝑥(𝑙𝑥
𝒻

𝑠𝑒 + 𝑙𝑑
𝒻

𝜀𝑑𝑎
),        𝑠𝑥(0) = 𝑠𝑥𝑜 (27b) 

𝑠̇𝐸 = 𝑙𝐸𝑠𝑥 + 𝑎𝐸(𝑙𝑥
𝒻𝐸𝑠𝑥 + 𝑙𝑑

𝒻𝐸𝜀𝑑𝑎
),   𝑠𝐸(0) = 𝑠𝐸𝑜 (27c) 

where 

𝑙𝑧 = 𝜆𝑧 − 𝑎𝑥𝑙𝑥
𝒻

> 0,       𝑙𝐸 = 𝜆𝐸 − 𝑎𝐸𝑙𝑥𝐸

𝒻𝐸 > 0 
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or equivalently 

|𝒙(𝑡)| ≤ 𝑠𝑥(𝑡), |𝒙𝐸(𝑡)| ≤ 𝑠𝐸(𝑡)  (28a) 

𝒔̇ = 𝑨(𝜔)𝒔 + 𝒃𝜀𝑑𝑎
,    𝒔(0) = 𝒔𝑜 (28b) 

where 

𝒔 = [
𝑠𝑥

𝑠𝐸
],     𝑨(𝜔) = [

𝑙𝑧 𝑎𝑥𝑙𝑥𝐸

𝒻

𝑎𝐸𝑙𝑥
𝒻𝐸 𝑙𝐸

],     𝒃 = [
𝑎𝑥𝑙𝑑

𝒻

𝑎𝐸𝑙𝑑
𝒻𝐸

] 

 

with 𝑨(𝜔) Hurwitz if and only if 

𝜆𝐸(𝜔) >𝑟 𝑎𝐸𝑙𝑥𝐸

𝒻𝐸 + 𝑎𝑥𝑎𝐸𝑙𝑥𝐸

𝒻
𝑙𝑥

𝒻𝐸 (𝜆𝑧 − 𝑎𝑥𝑙𝑥
𝒻

)⁄ : = 𝜆𝐷(𝜔) 

or (∈𝑟: robustly inside) 

𝜆𝑇(𝜔) >𝑟 0  ⇔  𝜔 ∈𝑟 Ω ∶= [𝜔−, 𝜔+] (29) 

where 𝜔−and 𝜔+ are the two roots of the threshold equation 

𝜆𝑇(𝜔): = 𝜆𝐸(𝜔) − 𝜆𝐷(𝜔) = 0   

where the stabilizing (or destabilizing) term 𝜆𝐸 (or 𝜆𝐷) 

depends linearly (or linearly and quadratically) on the 

estimator gain 𝜔. This result is stated next in proposition form. 

Proposition 1. The CL system (18) is robustly stable if the 

estimator gain 𝜔 of the G estimator (23a-d) is robustly inside 

the gain interval Ω (29), i.e., 

𝜔 ∈𝑟 Ω ∶= [𝜔−, 𝜔+]. • (30) 

The lower limit condition (𝜔 >𝑟 𝜔−) ensures stability with 

small gain, and the upper one (𝜔 <𝑟 𝜔+)  (which corresponds 

to the ultimate gain in industrial tuning) precludes 

destabilizing by excessive noise-like high frequency 

amplification of modeling, measurement and actuator errors.  

Following the tuning guidelines of the GE [Alvarez and 

Fernandez et. al., 2009] and regulation gain (𝑘) [Alvarez et al., 

2004; Gonzalez and Alvarez, 2005] in the light of the closed-

loop stability considerations of Section 5.1, the OF controller 

(23) is set with industrial-like guidelines:  

𝜁 ∈ [1, 4],        𝜔 = 𝑛𝜔𝜆𝑟,          𝑛𝜔 ∈ [5, 30]  (31a)  

𝑘 = 𝑛𝑐𝜆𝑟,        𝑛𝑐 ∈ [2, 5],         𝜆𝑟: (13) (31b)      

followed by simulation and/or plant testing-based gain 

calibration, with an important addition: the sensor location 

(23e) of the proposed NL OF controller (23) is determined by 

structural (with respect to axial position) tuning, starting with 

the industrial sensitive location (with maximum temperature 

slope change before the hot spot) for control (Bashir et al., 

1992) and estimation (Van den Berg, 2000). 

6. FUNCTIONING 

In this subsection, the efficient model-based OF-FF control 

(23) is applied to the gasification reactor example (8).  

The application of the tuning guidelines (31), with initial 

sensor placed at the sensitive location (𝑙 = 1 ⇒ 𝑧𝑙 = 1.6 cm), 

yields 

𝜁 = 3.5,  𝑛𝜔 = 10,  𝑛𝑐 = 4;  𝑙 = 4  ⇒   𝑧𝑙 = 6.5 cm (32a-b)  

It must be pointed out that the CL system with: (i) the best 

sensor location 𝑙 = 4 converged to the nominal ignition SS of 

interest, manifesting ZD is robust monostability, and (ii) for 

(incorrect) location 𝑙 ∈ [14, 30] the CL converged to an 

extraneous (undesired) ignition attractor, manifesting ZD 

multistability. 

In Fig. 4, the response of the CL reactor temperature profile to 

the solid flow disturbance (top panel fig. 3) with sensor at 𝑧𝑙 =
6.5 cm is presented, showing that after a towards-extinction 

excursion, the controller steers back the reactor to the 

prescribed ignition SS avoiding the OL extinction (fig. 3).  

 

Fig. 4. Closed-loop (CL) responses of the temperature profile 

to the solid feed flow disturbance (top panel fig. 3) with sensor 

at 𝑧𝑙 = 6.5 cm (𝑙 = 4). 

 

 

Fig. 5. Open (dashed curve) and closed (black and blue 

curves)-loop responses of the air feed flow control (top panel) 

and effluent hydrogen fraction (bottom panel) to the solid feed 

flow disturbance (fig. 3), for: (i) best location 𝑧𝑙 = 6.5 (𝑙 = 4), 

and (ii) incorrect location 24.2 cm (𝑙 = 15). 

For comparison and illustration purposes, the CL reactor 

subjected to the solid feed flow disturbance of Fig. 3 was set 

with the right (or wrong) sensor location 𝑙 = 4 at 𝑧𝑙 = 6.5 cm  

(32b) (or 𝑙 = 15 at 𝑧𝑙 = 24.2 cm), yielding the effluent 

hydrogen concentration (top panel) and air feed flow rate 

control action (bottom panel) compared with the OL ignition-
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to-extinction SS response. The OL reactor reaches the 

extinction SS with null hydrogen production, evidencing the 

need of feedback control. While CL reactor with the right 

sensor remains at the ignition SS of interest, the CL reactor 

with the wrong sensor reaches an extraneous ignition SS with 

60 % lower nominal hydrogen production. This demonstrates 

the disturbance rejection capability of the proposed controller, 

preventing reactor extinction. The 10 concentration-1 

temperature-2 flows-state profile estimate quickly converges 

(in approx. 10 s), with robustness to noise and reasonable 

parameter error (not shown due to space limit). 

7. CONCLUSIONS 

The problem of robustly controlling an open loop bistable 

tubular gasification reactor about its ignition stable SS has 

been resolved with an efficient model-based OF-FF control 

with: (i) solvability assessment according to passivity and 

detectability, (ii) conventional-like tuning, and (iii) sensor 

location tuning through spatial calibration.   

The proposed methodology was applied to a 10 concentration-

1 temperature-2 flows biomass stratified gasifier through 

simulations, yielding an OF-FF made by a 30-stage model-

based 90 ODEs and 300 AEs with sensor location at the slope 

inflection point (one tenth of the reactor length) after the hot 

spot. The importance of the sensor location was verified: when 

it is located in the middle of the reactor, the admissible input 

disturbance reactor reaches an extraneous CL SS with caloric 

content significantly smaller than the one of the SS of interest.      

The present study is a point of departure to: (i) formally 

characterize, with bifurcation analysis, the passivity and 

detectability properties, and (ii) improve behavior through 

incorporation of more sensors and stage number reduction.    
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