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Abstract: This paper proposes a novel nonlinear feedback control strategy for velocity and
attitude control of fixed wing aircrafts. The key feature of the control design strategy is the
introduction of a virtual control input in order to deal with the underactuation property of such
vehicles and to indirectly control the orientaion of the aircraft. As such, the proposed strategy
consists of three control loops each realising a specific task. Simulation results on Jetstream-
3102 aircraft show very good performance in terms of convergence towards the desired reference
trajectories and in terms of robustness with respect to modeling uncertainties.
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1. INTRODUCTION

Defining proper control strategies for aircraft control is
essential to avoid fatal accidents. The most common fatal
accidents are: loss of control inflight, controlled flight into
terrain and runway excursion during approach and land-
ing. For this reason, it is imperative to adopt a proper
control strategy of attitude and speed of aircrafts Stevens
et al. (2015). In general, when designing a controller, the
control system designer usually based its design on the
mathematical model of the aircraft and used appropriate
mathematical tools to demonstrate the convergence or ro-
bustness properties of the controller. In this regards, many
control design strategies has been proposed for attitude
and speed in the presence of both modelled and unmod-
elled uncertainties and by using different methods such as
linear quadratic control Stevens et al. (2015), feedback lin-
earization technique Meyer et al. (1984), Lane and Stengel
(1988), eigenstructure assignment Smith (1990), Farineau
(1989), H∞ robust control Safonov (1980), (n.d.), dy-
namic inversion Luo et al. (2011), backstepping Härkeg̊ard
and Glad (2001) and sliding mode control, to mention
a few. Traditional flight control systems use PID control
with scheduled gains. It is well-known that this approach is
very important and convenient for conventional aircrafts of
the second and third generation. However, gain scheduling
suffers from the inherent deficiency of relying on time-
invariant linear models based on small perturbations of
the full nonlinear aircraft model at a particular point in
the flight envelope. In addition, the dynamic properties
deteriorate when the scheduling parameters, such as speed
and pitch angle, change rapidly over the small time inter-
vals (see eg Luo et al. (2011)). However, it is not always
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judicious to choose one control design method over another
based solely on the mathematical description of the system
as it might not make practical sense. In effect, in Stevens
et al. (2015) it is shown that it is important to consider
the aircraft as an energy system, whereby the energy gain
or loss is distributed into the kinetic and the potential
energy of the aircraft. This translates into the fact that
it is not possible to control the thrust independently to
the rudder, elevator and the aileron deflections. Also, it
is important to realise that aircraft systems are underac-
tuated systems. This means that there are less actuators
than the degrees of freedom, meaning that it is not always
possible to control some variables of the aircraft directly
using the available actuators. Indeed, the aircraft is a 12
order system with 4 actuators. The 12 state variables are:

• X = (x, y, z)T ∈ R3 which is the aircraft position
expressed in the earth fixed reference frame RE ;

• W = (u, v, w)T ∈ R3 is the inertial speed vector
expressed in the body reference frame RB ;

• Φ = (φ, θ, ψ)T ∈ R3 which are the Euler angles
describing the orientation of the aircraft relative to
RE ;

• Ω = (p, q, r)T ∈ R3 the angular velocity of the aircraft
expressed in the body fixed reference frame

The 4 control variables are:

• U = (δa, δe, δr)
T ∈ R3 where δa, δe, δr, are the aileron,

elevator and rudder deflections respectively and
• FT which is the thrust force due to the propulsion

system.

The dynamics of the angular velocity Ω and the inertial
speed vector W are directly affected by the control U and
FT , while the position X and the orientation Φ are not.
Instead, X and Φ are coupled with W and Ω respectively.
On the other hand, since 4 inputs variables can only
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Fig. 1. Jetstream-3102 aircraft.

control 4 states variables, one must find judicious ways to
affect and indirectly control the rest of the state variables.
In this paper, we propose a novel strategy for velocity
and attitude control of an aircraft based on the above
considerations. For this, we first reduce the model of the
aircraft by considering the norm of the inertial speed V =
‖W‖2 = WTW rather than its individual components. In
that case, the model is reduced to a systems of 10 variables.
The input variable FT is used to track a reference speed
trajectory Vref . Next a virtual control Ωv is introduced
to indirectly control the orientation Φ towards a desired
reference trajectory Φref . This is a crucial point in the
design strategy since Φ is not directly affected by any
real actuators as mentioned above. The input U is then
used to steer Ω towards a desired reference trajectory
Ωref . Another key point in the design strategy is that
the reference angular velocity Ωref is chosen in such a
way that it permit the virtual control input to track the
desired orientation. The derived controller U is dependent
on the control FT ensuring indirectly a natural distribution
between the kinetic and potential energy of the aircraft.
As such, 3 control loops are designed each realising a
specific control objective. Furthermore, the three control
loop are design so as to make sure that the aircraft
does not stall. This is measured by ensuring that ‖Ẋ‖
remain bounded. The performance of the proposed control
design is evaluated using a model of a fixed wing aircraft
(Jetstream 3102). This paper is organized as follows: in the
next section, the dynamic model of a fixed wing aircraft
attitude is presented. In Section 3, the autopilot design
methodology is presented. In Section 4, the performance of
the proposed design methodology is shown via simulation
using a Jetstream-3102 aircraft. Finally, some conclusions
are drawn in Section 5.

Notations:Cθ = cos (θ) , Sθ = sin (θ); Tθ = tan (θ) .

2. AIRCRAFT AERODYNAMICAL MODEL

In what follows, a brief description of the main features
of the aircraft is introduced as well as its dynamic model.
The system structure is presented and a model reduction is
performed in order to facilitate the development of a speed
and attitude control design. The considered aircraft is a
British Aerospace (Jetstream-3102), which is a fixed wing,
twin turboprop aircraft as illustrated in Figure 1. This
type of aircraft has as control inputs the throttle setting
command (δth), and the deflection angles of the three
control surfaces: elevator (δe), ailerons (δa), and rudder
(δr) (see Figure 1). We consider this particular aircraft
due to the fact that all its aerodynamic coefficients are

available in the literature. For more details, the reader may
refer to Jameson (2013),Cooke (2006). The wing surface
area s = 280ft2, the wingspan b = 46ft, the mean
aerodynamic chord c̄ = 6.5ft, and the mass m = 6890lbs
of the aircraft are considered to be constant. The forces F
and moments MG acting on the aircraft at the center of
gravity are issued from three major sources: gravity (FG),
engine thrust (FE) and aerodynamic forces (FA); that is

F = FG + FE + FA (1)

MG = ME +MA (2)
The gravitational force FG is directed along the normal
of the earth plane and is considered constant over the
attitude envelope. More precisely FG = mgζ, where ζ =

(−Sθ SφCθ CφCθ )
T

and g is the acceleration due to
gravity. We assume that the engines are positioned in such
a way that the thrust force due to the propulsion system
FE acts parallel to the x-axis of the aircraft body, that

is FE = (FT , 0, 0)
T
. Using Newton-Euler convention, in

the body-fixed reference frame the force and aerodynamic
moments is given as:

F = m
dW

dt
+ Ω×W (3)

MG =
d(IGΩ)

dt
+ Ω× IGΩ (4)

where IG is the moment of inertia, Ω = (p, q, r)T is the
angular velocity of the aircraft and W = (u, v, w)T is the
inertial speed vector of the aircraft center of gravity of
the aircraft. The aerodynamic force FA = (Fx, Fy, Fz)

T =
pas(Cx, Cy, Cz)

T where pa = 1
2ρV is the aerodynamic

pressure with ρ being the ambient air density and V =
WTW aircraft velocity and Cx, Cy, Cz are the aerody-
namic coefficients given as Jameson (2013), Cooke (2006):

Cx = Cx,0 + Cx,1α+ Cx,2α
2 + Cx,3q

c√
V

+Cx,4δa + Cx,5δe + Cx,6δr + Cx,7FT

Cy = Cy,0 + Cy,1β + Cy,2β
2 + Cy,3p

b

2
√
V

+Cy,4δa + Cy,5δe + Cy,6δr + Cy,7FT

Cz = Cz,0 + Cz,1α+ Cz,2α
2 + Cz,3q

c√
V

+Cz,4δa + Cz,5δe + Cz,6δr + Cz,7FT

(5)

Note that the above coefficients are given up to a second
order Taylor approximation in the side-slip angles and up
to a first order Taylor approximation in the control inputs.
Now as the influence of the of δa and δr are minimal
in the x-direction, we assume that Cx,4 = Cx,6 = 0.
By a similar reasoning and taking into account physical
structural consideration, we have Cy,2 = Cy,5 = Cz,2 =
Cz,4 = Cz,6 = 0. Hence, the above expression simplifies
into:

Cx = Cx,0 + Cx,1α+ Cx,2α
2 + Cx,3q

c√
V

+Cx,5δe + Cx,7FT

Cy = Cy,0 + Cy,1β + Cy,3p
b

2
√
V

+ Cy,4δa

+Cy,6δr + Cy,7FT

Cz = Cz,0 + Cz,1α+ Cz,3q
c

2
√
V

+ Cz,5δe + Cz,7FT

(6)
From equations (1), (2) and (3), the dynamics of the
inertial speed, W, is given by
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Ẇ = R1(Ω)W + gζ +
1

m
FA +

1

m
B0FT (7)

Ẇ = R1(Ω)W + Ψ + B2U +
1

m
B3FT (8)

Where Ψ = gζ + Ψ̃, with U = (δa, δe, δr)
T , Ψ = gζ + Ψ̃

Ψ̃ =
ρsV

2m


Cx,0 + Cx,1α+ Cx,2α

2 + Cx,3q
c√
V

Cy,0 + Cy,1β + Cy,3
pb

2
√
V

Cz,0 + Cz,1α+ Cz,2q
c√
V



R1(Ω) =

(
0 r −q
−r 0 p
q −p 0

)
, B0 =

(
1
0
0

)

B2 =
1

2
ρsV

(
0 Cx,4 0

Cy,3 0 Cy,4
0 Cz,3 0

)
, B3 =

1

2
ρsV

(
Cx,5 + 1
Cy,5
Cz,4

)
In other words,

FA = mΨ̃ +mB2U +m (B3 −B0)FT (9)

The propulsive forces can also create moments if the thrust
does not act through the aircraft center of gravity. We
assume the engine is mounted in such a way that the thrust
point lies in the body axes xz-plane and offsetted from
the center of gravity by ZTP in the body-axes z-direction
so that ME = (0, FTZTP , 0)T . The moments caused
by aerodynamic forces MA and aerodynamic moments
coefficients are given by:

MA =
1

2
ρsV (bCl, cCm, bCn)T

where Cl, Cm and Cn are given by a first order Taylor
approximation in the various variables involved the aero-
dynamic moments coefficients as well as taking in account
the physical constraints:
Cl = Cl,1β +

b

2
√
V

(Cl,2p+ Cl,3r) + Cl,4δa + Cl,5δr

Cm = Cm,0 + Cm1α+
c

2
√
V

(Cm,2α̇+ qCm,3) + Cm,4δe

Cn = Cn,1β +
b

2
√
V

(rCn,2 + pCn,3) + Cn,4δa + Cn,5δr

(10)
It is important to note that the above two Taylor ap-
proximations in the aerodynamic moment and coefficients
leads to modeling errors and uncertainties on the systems
parameters. Consequently, we get

Ω̇ = γ(Ω)+
1

2
ρsVP1Π (Ω,W )+

1

2
ρsVP1B1U+P2FT (11)

where:

γ(Ω) =

 q(a1p+ a2r)
a5pr − a6(p2 − r2)

q(a8p− a1r)

 ,P1 =

(
a3 a4 0
0 0 a7

a4 a9 0

)

Π =


b

(
Cl,1β +

b

2
√
V

(Cl,2p+ Cl,3r)

)
c

(
Cn,1β +

b

2
√
V

(rCn,2 + pCn,3)

)
b

(
Cm,0 + Cm,1α+

c

2
√
V

(Cm,2α̇+ qCm,3)

)



P2 =

(
0

a7ZTP
0

)
,B1 =

(
bCl,4 0 bCl,5
cCn,4 0 cCn,5

0 bCm,4 0

)

The dynamics of the aircraft position, X = (x, y, z)T , is
given by:

Ẋ = R0(Φ)W (12)

with

R0(Φ) =

(
CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ SφCθ Cθ

)
In the earth fixed reference frame, the rotational velocity
is described by the variables φ̇, θ̇ and ψ̇. However, in
the body-fixed frame, the rotational velocity is described
by roll p, pitch q and yaw rates, r. The relation between
those two sets of variables are given by:

Φ̇ = Γ (Φ) Ω (13)

and

Γ (Φ) =

 1 TθSφ TθCφ
0 Cφ −Sφ
0

Sφ
Cθ

Cφ
Cθ


In summary, the dynamical behavior of the aircraft model
using Newton–Euler convention, is given by:

Ẋ = R0W

Ẇ = R1W + Ψ +B2U +
1

m
B3FT

Ω̇ = γ +
1

2
ρsVP1Π +

1

2
ρsVP1B1U + P2FT

Φ̇ = ΓΩ

(14)

where we have dropped the arguments for simplicity of
notations.

3. AUTOPILOT DESIGN METHODOLOGY

The main aim of the present work is to design an autopilot
in order to track a desired attitude and velocity in spite of
modeling errors and/or uncertainties on parameters that
can affect the aircraft model. For this, one has first to make
some observation about the aircraft systems’ structure.
From the above equations (14), one can see that the system
possesses the structure as illustrated in Figure 2, where for
simplicity, we have denoted:

g(.) = R1W + Ψ +B2U +
1

m
B3FT

f(.) = γ +
1

2
ρsVP1Π +

1

2
ρsVP1B1U + P2FT

(15)

As mentioned in the introduction, it can be observed that
the dynamics of angular velocity Ω and inertial speed W
are directly affected by the control inputs U and thrust
force FT while the other two variables X and Φ are not.
The dynamics of the Φ and X are indirectly affected by
the actuators U and FT through their tight coupling with
Ω and W . Now, it is well-known that the 4 inputs variables
U and FT can only control 4 states variables. Therefore,we
need to find judicious ways to indirectly control the rest
of the state variables. For this we start by reducing the
model of the aircraft given by (14) by taking into account
the practical consideration of piloting. In effect, the pilot
does not control the individual components of the velocity
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but rather its magnitude or norm V = WTW = ‖W‖2.
The dynamics of V is given by:

V̇ = 2WT Ẇ = 2WT

(
R1W + Ψ + B2U +

1

m
B3FT

)
Since R1 is skew-symmetric, we have WTR1W = 0, so
that

V̇ = 2WTΨ + 2WTB2U +
2

m
WTB3FT .

Next, the pilot has to ensure that the aircraft does not
stall. For this, we have to ensure that the derivative of
the position X does not escape to infinity. As a result, we
impose the following condition:

‖Ẋ‖2 ≤M
where M > 0. Note that since R0 is an orthogonal matrix
(i.e. RT

0 = R−1
0 ), we have

‖Ẋ‖2 = ẊT Ẋ = WTW = V.

Therefore, the non-stalling condition reduces to ensuiring
that V ≤ M. As the result, the above aircraft model can
be reduced to an 8th order system described by:

‖Ẋ‖2 = V

V̇ = 2WTΨ + 2WTB2U +
2

m
WTB3FT

Ω̇ = γ +
1

2
ρsVP1Π +

1

2
ρsVP1B1U + P2FT

Φ̇ = ΓΩ

(16)

Based on the above observations, we adopt the following
design strategy, which is also illustrated in Figure2:

• First, we introduce a virtual control Ωv to control the
orientation Φ towards the desired reference trajectory
Φref . We refer this controller as Controller 1 as
depicted in Figure2.
• Next, we use the input variable FT to design a

controller to track a given speed trajectory Vref . This
is Controller 2 in Figure 2.

• Finally, we employ the input U is to steer Ω towards
a given reference trajectory Ωref ; which is chosen in
such a way that it permit the virtual control input to
track the desired orientation Φref . This is referred to
as Controller 3 in Figure2.

In what follows, we detail the development of each con-
trollers.

3.1 Design of Controller 1

Let Φref = (φref , θref , ψref )
T

be the desired orientation.
Our objective is to steer Φ = (φ, θ, ψ)T to Φref =
(φref , θref , ψref )T using a virtual control input Ωv since
Φ is not directly affected by the real actuators. We have

Φ̇ = ΓΩv
We seek for a controller of the form

Ωv = −Γ−1K0(Φ−K−1
0 Ω) (17)

where K0 = diag(k0,1, k0,2, k0,3) is a gain matrix with
k0,i > 0, i = 1, 2, 3. The closed-loop system is given by:

Φ̇ = −K0(Φ−K−1
0 Ω)

Consequently, the closed-loop system simplifies to

Φ̇ = −K0Φ + Ω (18)

It can easily be seen that the above closed loop system
is stable. We want Φ(t) = Φref when t → +∞. In other
words, we want

Φ̇ref = −K0Φref + Ωref (19)

when t → +∞ where Ωref = Ω(∞). We therefore deduce
that

Ωref = Φ̇ref + K0Φref (20)

By subtracting (18) with (19), we get

Φ̇− Φ̇ref = −K0 (Φ− Φref ) + (Ω− Ωref )

Setting eΦ = Φ− Φref , one can see that

ėΦ = −K0eΦ + (Ω− Ωref )

which shows that eΦ(t)→ 0 when t→ +∞ if Ω(t)→ Ωref
when t → +∞. We have therefore to make sure that
Ω(t) → Ωref when t → +∞. This will be realised by
Controller 3 subsequently.

3.2 Design of Controller 2

Consider again the dynamics of V ; that is

V̇ = 2WT (Ψ + B2U) +
2

m
WTB3FT

Equivalently, we can write

V̇ − V̇ref = −V̇ref + 2WT (Ψ + B2U) +
2

m
WTB3FT

where Vref = WT
refWref = ‖Wref‖2 is a desired time-

varying speed. We choose the aerodynamic and thrust
forces such that

−V̇ref +
2

m
WTB3FT = −l1 (V − Vref )− Vref

where l1 > 1. That is,

FT =
1

2
mW

TB3

(
V̇ref − l1 (V − Vref )− Vref

)
(21)

Note that

WTB3 =
1

2
ρV s ( u v w )

(
Cx,5 + k
Cy,5
Cz,4

)

=
1

2
ρV s [u (k + Cx,5) + vCy,5 + wCz,4] 6= 0.

Then in closed loop we have:

V̇ − V̇ref = −l1 (V − Vref )− Vref + 2WT (Ψ + B2U)

Setting eV = V − Vref , we have

ėV =−l1eV − Vref + 2WT (Ψ + B2U)

≤−l1eV − Vref +
∣∣2WT (Ψ + B2U)

∣∣
By using the Cauchy-Schwarz inequality, we get

ėV ≤−l1eV − Vref + ‖W‖2 + ‖Ψ + B2U‖2

≤−l1eV − Vref + V + ‖(Ψ + B2U)‖2

since V = ‖W‖2. Consequently,

ėV ≤ − (l1 − 1) eV + ‖Ψ + B2U‖2

It is therefore clear that if ‖Ψ + B2U‖2 is bounded, one
can choose l1 large enough so that eV (t) → 0 asymptoti-
cally when t→ +∞.

The boundedness of ‖Ψ + B2U‖2 is ensured by Controller
3 hereafter.
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Fig. 2. Control design architecture.

3.3 Step 3: Design of Controller 3

The purpose of Controller 3 is to make sure that Ω tracks
Ωref as t → +∞. This will be done using the control
input U . Consider again the angular velocity equation from
system (16):

Ω̇ = γ +
1

2
ρV sP1Π +

1

2
ρV sP1B1U + P2FT

which can be equivalently written as

Ω̇− Ω̇ref = −Ω̇ref +γ+
1

2
ρsVP1Π+

1

2
ρsVP1B1U+P2FT

Proceeding as before, we impose

Ω̇− Ω̇ref =−Ω̇ref + γ +
1

2
ρsVP1Π +

1

2
ρsVP1B1U + P2FT

=−η (Ω− Ωref )

with η > 0. Then,

U =
1

1
2ρsV

(P1B1)
−1
[
Ω̇ref − η (Ω− Ωref )

−P2FT −
1

2
ρsVP1Π− γ

]
(22)

In closed-loop, we have

Ω̇− Ω̇ref = −η (Ω− Ωref )

Set eΩ = Ω− Ωref , then

ėΩ(t) = −ηeΩ(t)

so that
eΩ(t) = e−ηteΩ(0)

From this we can see that eΩ(t) → 0 when t → +∞. In
other words, Ω→ Ωref when t→ +∞.
Remark 1: Note that to further improve the convergence
of the controller, one can add an integral term in the
controller so that

U =
1

1
2ρsV

(P1B1)
−1
[
Ω̇ref − η (Ω− Ωref )

+η

∫
(Ω− Ωref ) dt− P2FT −

1

2
ρsVP1Π− γ

]
(23)

Summary of result: To summarise, we can state that
under the following control laws:

Ωv = −Γ−1K0(Φ−K−1
0 Ω) (24)
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Fig. 3. Tracking of roll angle Φ.
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Fig. 4. Tracking of pitch angle .

U =
1

1
2ρsV

(P1B1)
−1
[
Ω̇ref − η (Ω− Ωref )

−P2FT −
1

2
ρsVP1Π− γ

]
(25)

FT =
1

2
mW

TB3

(
V̇ref − l1 (V − Vref )− Vref

)
(26)

Φ̇ref = −K0Φref + Ωref (27)

where

• l1 > 1, η > 0 and K0 = diag(k0,1, k0,2, k0,3) is a gain
matrix with k0,i > 0, i = 1, 2, 3

• Ωref and Vref are the desired orientation and speed
respectively,

the aircraft overall closed-loop system
‖Ẋ‖2 = V

Ω̇ = Ω̇ref − η (Ω− Ωref )

Φ̇ = Φ̇ref −K0 (Φ− Φref ) + (Ω− Ωref )

V̇ = V̇ref − l1 (V − Vref )− Vref + 2WT (Ψ + B2U)

converges towards the desired trajectories Ωref and Vref
while avoiding stalling condition.

4. SIMULATION RESULTS

A MATLAB/Simulink model is developed for Jetstream-
3102 aircraft using the equations described in Section
2.The aerodynamic coefficients are taken from [13]. Simu-
lation results are carried out corresponding to roll, pitch
and yaw angles respectively as:

Φref = (Φref , θref ,Ψref )
T

= (1.5, 0.2, 1)
T

and the refer-
ence speed Vref = 80ms−1. Figures 4, 5, 6, 7 and 8 shows
the tracking results for respectively roll, pitch, yaw angles
and speed, with η = 1500 and K0 = diag(150, 20, 200).
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Fig. 5. Tracking of yaw angleΨ.

0 200 400 600 800 1000 1200 1400 1600 1800

time  [ms]

20

30

40

50

60

70

80

Sp
ee

d 
 [K

ts
]

V-ref

V-real

Fig. 6. Speed tracking.

0 100 200 300 400 500 600 700 800 900

time  [ms]

-2

0

2

4

6

8

10

i  [r
ad

]

a

e

r

10*
th

Fig. 7. Control surfaces.

0 500 1000 1500

time  [ms]

0

1000

2000

3000

4000

5000

6000

F T

Fig. 8. Thrust force.

According to the obtained results we make the following
observation:

• The parameter η affects the rise time of the system
and at the same time the amplitude of the overflow.
• The parameter K0 affect the precision. Therefore, one

have to make a compromise between precision, rising
time and overflow.
• This strategy of control give a good tracking of at-

titude references but to the detriment of the speed
control as shown on Figure 9. This is normal since
the convergence is asymptotic rather than exponen-
tial. The asymptotic convergence of the speed to its
reference value is not critical in practice. In fact, it

is more important to have a precise and exponential
convergence of the orientation rather than the speed.

5. CONCLUSION

In this paper we have proposed a new nonlinear feedback
control design methodology for velocity and attitude con-
trol. For this we first reduce the aircraft model so that
its is suitable for the specific control design objective.
The proposed strategy consists of three control loops each
realising a specific task. The key feature of the control
strategy is the introduction of a virtual control input in
order to cater for the underactuation property of such ve-
hicles. Simulation results on a Jetstream-3102 aircraft have
showed very good performance in terms of convergence
towards its desired reference trajectories and in terms of
robustness with respect to modeling uncertainties. The
methodology developed here can be easily extended to
other underactuated mechanical systems.
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