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Abstract: Mars life support system models consist of numerous mission-critical, interrelated,
and scenario-specific parameters. The large size and involved nature of these models make them
computationally expensive, with parameters that are subject to several sources of uncertainty.
Accurately characterizing these uncertainties and their impact on overall model predictions
is crucial for decision-support and mission optimization. This paper focuses on uncertainty
quantification of a model of a space crop cultivation system, which is one of several systems
that are required on a long-duration manned Mars mission. The model performs constrained
optimization of the equivalent system mass (ESM) metric, which augments shipped mass costs
with those of pressurized volume, demanded power, thermal control, and needed crew time. This
paper uses surrogate modeling for fast quantification of the effect of probabilistic uncertainty in
mission-critical parameters of semi-empirical equations that describe crop growth and equipment
operation. This work shows sparse polynomial chaos-Kriging (PCK) yields a computationally
cheap-to-evaluate surrogate for the minimum ESM that accounts for probabilistic uncertainty
in 86 model parameters. This surrogate model accelerates a global sensitivity analysis that
elucidates which crop growth and equipment operation parameters are critical to mission
outcome variability. The PCK surrogate model realizes a 100-fold computational speed gain
in the estimation of the probability distribution of the minimum ESM.

Keywords: Mixed integer linear programming; uncertainty quantification; global sensitivity
analysis; sparse polynomial chaos; Kriging; space exploration and transportation

1. INTRODUCTION

Crew life support is the most critical element of long,
deep space, manned Mars missions (Drake, 2009). Life
support systems manage astronaut air, water, and waste,
and include their food, habitation, power, thermal control,
and biomass production (Anderson et al., 2018). Necessary
system technologies and components may be shipped from
Earth at mission start to ensure guaranteed availability.
But shipping all items at their required level for a full
mission duration is uneconomical since the mass and cost
of launch fuel and support structure directly depend on
launch payload. Thus, there are newer, alternative ways
to use available local resources in situ for life support
(Menezes et al., 2015; Do et al., 2016). Food demand
for a two-and-a-half year Mars mission can be met by
shipping all food, producing it on site with novel space
biomanufacturing (Menezes et al., 2015) or with traditional
crop cultivation, or some combination of these options.

? This material is based upon work supported by the National
Aeronautics and Space Administration (NASA) under grant number
NNX17AJ31G. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of NASA.

Shipping food requires freezers and negatively affects food
freshness over the mission horizon. Producing food on site
with local resources ensures that food is fresh, but requires
a (possibly expensive) shipping of agricultural cultivation
setups, lighting systems, and related accessories.

To systematically analyze alternative options for food
production in deep space missions, this paper presents
a mixed integer linear programming (MILP) model that
optimizes a food production life support system with the
objective of minimizing equivalent system mass (ESM)
(Levri et al., 2003). ESM is a metric that accounts for
mission costs, such as pressurization, power, thermal
control, and crew time (Anderson et al., 2018). Here,
ESM provides the cost of generating one or more crop
yields in the food production life support system. Crop
yield is obtained by incorporating the modified energy
cascade (MEC) model (Anderson et al., 2018) in the
MILP formulation. The MEC model is semi-empirical, and
depends on crop growth chambers and supporting device
functionality.

The resultant MILP model has numerous uncertain vari-
ables and parameters. For example, the yield of food crops
over a cultivation period is a function of the varying
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availability of photosynthetic light and carbon dioxide, as
well as the characteristics of the cultivar. Further, currently-
proposed technologies to provide light to the cultivation
chamber, to generate power, and to control temperature
are of unknown design and efficiency 15 years ahead of an
intended mission. These considerations necessitate accurate
quantification of the impact of uncertainty in the MILP
model’s minimization of ESM to inform future decisions
about the food production life support system architecture.

This paper presents a computationally efficient framework
for uncertainty quantification (UQ) of the food production
life support system under probabilistic model parameter
uncertainty. UQ for this system is computationally challeng-
ing due to the relatively large computation time of solving
the MILP model per uncertainty realization, as well as the
large number of uncertain model parameters (86 uncertain
parameters) that can render conventional sample-based UQ
methods prohibitive. In this paper, we employ a surrogate
modeling approach to derive a cheap-to-evaluate model for
predicting the minimum ESM, which is the main quantity
of interest from the MILP model. Polynomial chaos (Xiu
and Karniadakis, 2002) has been widely used for forward
and inverse UQ tasks in the analysis and optimization
of various engineering applications (Paulson et al., 2019;
Paulson and Mesbah, 2019). However, a major challenge
in polynomial chaos arises from handling a large number
of uncertain inputs. To overcome this challenge, we use
sparse polynomial chaos expansions (PCEs) (Deman et al.,
2016), where the expansion is sparsely truncated. Sparsity
is further reinforced by using the least-angle-regression
(Blatman and Sudret, 2013) algorithm for coefficient esti-
mation, retaining only a small number of non-zero terms in
the expansion. The sparse PCEs are then combined with
Kriging, referred to as polynomial chaos-Kriging (PCK)
(Schobi et al., 2015), to increase accuracy and to quantify
the variance of the surrogate model predictions.

We demonstrate the application of PCK surrogate mod-
eling for fast, sample-based estimation of the probability
distribution of the minimum ESM, as well as for global
sensitivity analysis (GSA) with respect to the 86 uncertain
parameters of the MILP model. The GSA is particularly
useful for elucidating the impact of various uncertain model
and mission-critical parameters on the minimum ESM,
toward insights on performance optimization of the food
production life support system. We show that the PCK
surrogate model leads to approximately 100-fold savings in
computational cost of probability distribution estimation
when compared to direct sampling of the MILP model.

2. LIFE SUPPORT MODEL DESCRIPTION

We restrict decision variables in our MILP model that
specify equipment quantities to the non-negative integers,
and we take lighting source selection variables to be
binary. We assume that the remaining decision variables
are continuous and non-negative.

2.1 Model Formulation

We start with a mass balance for all crops in index set C
that are to be cultivated over mission duration T

Ai+1,j = Ai,j + Ci,j −Dj , ∀j ∈ C, i ∈ [1, T ], (1)

where Ai,j is the available quantity of crop j at the start
of day i, Ci,j is the amount of edible food crop j harvested
at the start of day i, and food demand Dj is a fixed model
parameter that depends on human metabolism (Anderson
et al., 2018) and the fractions of different food j in the diet,
which comprise decision variables. These fractions must
sum to one, and are constrained by a minimum requirement.

The mass balance (1) is valid from day 2 to the last day
T for all crops. On day 1 of the mission, the amount of
available food is the same as the amount shipped Sj , also
a decision variable. Sj can be consumed until freshness
expiry, which is crop-specific. The total food shipped
determines the number of freezers Nf to be shipped, an
integer variable, with each being of a fixed, predefined
capacity. Food demand Dj must be met daily. Accordingly,

Ai,j > Dj , ∀j ∈ C, i ∈ [1,T ].

For each crop j, the harvest Ci,j at the end of cultivation
period τj is directly related to the number of agricultural

cultivation receptacles (ACRs) NACRu
i,j that grow the crop

on day i, their fixed predefined cultivation area αACR, and
the areal yield of edible biomass Yj . Hence,

Ci,j = NACRu
i−τj ,j α

ACRYj , ∀j ∈ C, i ∈ [τj + 1,T ]. (2)

In (2), the cultivation period τj for crop j is the crop-specific
maturity period. The yield of edible biomass Yj is also crop-
specific, and is adapted from the MEC model for hydroponic
growth systems (Anderson et al., 2018). This yield is
a function of environmental factors like photosynthetic
photon flux (PPF), carbon dioxide (CO2) concentration,
and crop characteristics that include photon absorption
capacity and carbon use efficiency. Among these parameters,
canopy quantum yield (CQY) and time until canopy closure
are determined using empirical functions of PPF and CO2

concentration.

We compute the required amount of fertilizer by multiply-
ing the edible and inedible biomass amounts with their
respective compositions of essential nitrogen, phosphorus,
and potassium. These quantities then give us the number
of fertilizer container tanks N t that must be shipped. The
total number of ACRs that must be shipped NACR

j is the
maximum number of ACRs in use at any time. Hence,

NACR
j >

i∑
m=max [1,i−τj+1]

NACRu
m,j , ∀j ∈ C, i ∈ [1, T − τj ].

We also optimize the choice of lighting source k ∈ L, which
is captured by the binary variable Bk∑

k∈L

Bk = 1.

The number of ACRs that grow crop j and are connected
to lighting source k are defined by ÑACR

j,k , so that∑
k∈L

ÑACR
j,k = NACR

j , ∀j ∈ C.

The lighting source decision Bk is assumed to be the same
for all crops. Instead of multiplying NACR

j by Bk, we use
a traditional big-M constraint to avoid non-convexity∑

j∈C

ÑACR
j,k 6 BkM, ∀k ∈ L.
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We choose this big-M value judiciously, as too large values
result in numerical instability, while too small values
exclude a segment of the feasible space.

Mass M light
k and power P lightk for lighting system k are

specified by the connection to the number of ACRs growing

crop j, and the thermal control demand T lightk is assumed

to be equal to P lightk (Anderson et al., 2018). Crops are
illuminated for the duration of their photoperiods. Let γk
be the PPF generated per unit power-input for a light
source k, and ηk be its light source efficiency. Then,

P lightk =
∑
j∈C

ÑACR
j,k αACR

PPFj
γkηk

, ∀k ∈ L.

Let M̄ light
k be the specific mass of light source k correspond-

ing to unit power output. Then,

M light
k =

∑
j∈C

ÑACR
j,k αACR

PPFj
γk

M̄ light
k , ∀k ∈ L,

where PPFj is the range of crop-specific allowable values
in the MEC model.

We aim to minimize the total ESM of the shipment that is
required for the food production system

z1 = ESMfo + ESMfr+

ESMACR + ESM li + ESMfe. (3)

Here, z1 is the summation of the ESMs for shipping food
ESMfo, freezers ESMfr, ACRs ESMACR, lighting appa-
ratus ESM li, and fertilizer ESMfe. We obtain ESMfo by
multiplying the shipped food quantity Sj with a packing
factor from Anderson et al. (2018). ESMfr and ESMACR

are the weighted sums of the mass, volume, power, and
thermal demand of the total number of freezers Nf and
ACRs NACR

j to ship, respectively, with ESM weighting
coefficients as defined in Anderson et al. (2018). This is
the same for ESM li except for the volume penalty, since
we assume that the lighting system is embedded in the
ACRs. Likewise, ESMfe has cost weights on the amount
of fertilizer, as well as the mass and volume of the fertilizer
container tanks to ship. A secondary objective function z2

z2 =
∑
j∈C

T∑
i=1

Ai,j

is used to ensure food freshness by minimizing its total
available quantity over the mission.

2.2 Motivation for uncertainty analysis

The above MILP model has numerous crop-specific and
empirical parameters, such as crop maturity period, pho-
toperiod, carbon use efficiency, incident PPF, and CQY,
among others. The predictions of crop growth dynamics
are dependent on these parameters, and are thus subject to
uncertainty. The model also has scenario-dependent param-
eters, such as lighting source efficiency, CO2 concentration,
PPF generation per unit of power, capacity values of ACRs,
fertilizer tanks and freezers. Parameter variations can occur
with changes in environment conditions, crop physiology
differences in a batch, or failures in the system. Moreover,
the ESM coefficients in (3) depend on the choice of power
generation and thermal control technologies, and most
of these values are estimates. Therefore, the substantial

uncertainty in model parameters necessitates a systematic
investigation of impacts of these parameters on optimal
decision variables.

3. SURROGATE MODELS FOR UNCERTAINTY
QUANTIFICATION AND GLOBAL SENSITIVITY

ANALYSIS

Consider a computationally expensive model M that
contains M uncertain parameters ξ = {ξ1, ξ2, ..., ξM}.
Parameter uncertainty is represented by a random vector
Ξ ∈ IRM with some known joint probability distribution
function Ξ ∼ fΞ. Here, we briefly present the procedure
for performing sensitivity analysis based on Sobol’ indices
(Sobol, 2001).

Consider some quantity of interest (QoI) Y predicted by
the model M. We represent the QoI in the form of the
analysis of variance (ANOVA)

Y =M (Ξ) =M0 +
∑
v 6=∅

Mv(Ξv),

where M0 is constant and equal to the expected value of
the response M (Ξ) over the uncertain input space. The
notation v is used to denote subsets of the input space, so
that v = {i1, ..., is} ⊂ {1, ...,M}. Thus, Ξv represents
the corresponding subvector of Ξ. The uniqueness of
the decomposition is guaranteed if the integrals of the
summands over their variables satisfy∫

DΞk

Mv(ξv)fΞk
(ξk)dξk = 0, k ∈ v, (4)

where DΞk
denotes the support, and fΞk

is the marginal
of the uncertainty subspace. Moreover, the following
orthogonality condition holds

E [Mv(Ξv)Mu(Ξu)] = 0, v 6= u. (5)

We represent the total variance of Y as D. Properties
(4)–(5) allow decomposition of the variance of Y

D =
∑
v 6=∅

Dv,

where Dv denotes the partial variance given by

Dv = E
[
M2
v(Ξv)

]
.

This leads to the definition of the Sobol’ index Sv,
which denotes the amount of variance of Y attributed
to perturbations of uncertainties that define subvector Ξv

Sv =
Dv
D
.

The total sensitivity indices STi that account for the main
effects and interactions among the parameters for a single
parameter ξi are defined as

STi =
∑
Ii

Dv
D
, Ii = {v ⊃ i}.

Therefore, the total sensitivity index for a given parameter
accounts for all the subsets that contain this parameter.

There are several approaches for accurately estimating
the total Sobol’ indices. The computational bottleneck,
however, arises from the fact that the partial variances do
not admit a closed-form solution in the general case of non-
linear systems, since they require recursive computations of
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high-dimensional integrals. Thus, sample-based techniques,
such as Monte Carlo sampling, can be utilized. A sample-
based approach is costly for the application considered
in this work, since a MILP problem must be solved for
each uncertainty sample. We address this computational
challenge using surrogate modeling. We seek to learn an
approximation M̂ of the modelM : IRM → IR by utilizing
training data obtained from limited evaluations of the
system modelM. The evaluation of the resulting surrogate
model M̂ per sample should be significantly faster than
M; hence, accelerating sample-based UQ.

The experimental design for surrogate model training

consists of Ned samples Ξ̃ = {ξ1, ξ2, ..., ξNed} with corre-

sponding responses Ỹ = {M (ξ1) ,M (ξ2) , ...,M (ξNed)}.
The quantity and quality of the training data directly affects
the approximation accuracy. A useful metric for evaluating
the goodness of the surrogate model approximation is the
so-called “leave-one-out” cross validation error εLOO

εLOO =

∑Ned

i=1

(
M
(
ξi
)
− M̂\i

(
ξi
))2

∑Ned

i=1

(
M
(
ξi
)
− µ

Ỹ

)2 ,

where µ
Ỹ

is the empirical mean of the training data and

M̂\i denotes the surrogate model trained without taking
the ith data point into account.

In this work, polynomial chaos expansions (PCE) and
Kriging are used for surrogate modeling. According to
polynomial chaos theory (Xiu and Karniadakis, 2002), a
finite-variance QoI denoted by Y can be expressed by an
infinite expansion

Y =
∑

a∈NM

yaΨa (Ξ), (6)

where the basis functions Ψα (Ξ) are multivariate poly-
nomials, orthonormal with respect to fΞ. That is, the
condition

E{Ψα (Ξ) Ψβ (Ξ)} =∫
DΞ

Ψα (ξ) Ψβ (ξ) fΞdξ = δαβ , ∀α,β ∈ NM

holds over DΞ, which is the support of the joint distribution
Ξ, with δαβ denoting the Kronecker delta. The orthogonal
polynomials can be defined based on probability distribu-
tion of uncertainties using the Wiener-Askey scheme (Xiu
and Karniadakis, 2002), or can be directly constructed
from data (Paulson et al., 2017).

The PCE (6) must be truncated up to a finite order
described by the multi-index a∈A, where A ⊂ NM
represents the set of multi-indices kept in the truncated
expansion. The truncation scheme aims to limit the
infinite expansion to a series of maximum order p, so that
AM,p = {a : |a| ≤ p}. Thus, the cardinality of A is equal

to P =
(
M+p
p

)
. Further truncation of the expansion is

introduced by employing the q-norm scheme, so that the
set of multi-indices is given by

AM,p,q = {a ∈ AM,p : ||a||q ≤ p},(
||a||q =

M∑
i=1

aqi

) 1
q

.

Thus, the QoI can be approximated by the truncated PCE

Ŷ =MPC (Ξ) =
∑
a∈A

yaΨa (Ξ). (7)

Once a polynomial basis set is constructed using the q-
norm scheme, the coefficients of the expansion (7) must be
estimated. We take a sparse regression approach (Deman
et al., 2016) to coefficient estimation, as non-intrusive
approaches are more versatile and can treat the model
M as a “black-box.” We solve a regularized regression
problem of the form

ŷ = argminy∈RP

(
E
[
M (Ξ)−

(
yTΨ (Ξ)

)2]
+ λ||y||1

)
,

(8)
where the regularization term ||y||1 =

∑
a∈A ya results in a

sparse approximation, since low order solutions are favored.
Solving (8) requires estimating the regularization parameter
λ ≥ 0 that affects the number of terms with non-zero
coefficient in (7). The problem of finding the regularization
parameter can be efficiently solved using the least-angle-
regression (LAR) algorithm (Efron et al., 2004). Although
the q-norm scheme can reduce the cardinality of the basis
set, we may still have to estimate a much larger number of
coefficients than the available experimental design samples.
LAR avoids this issue by using min (P,Ned − 1) regressors.

In this work, we combine polynomial chaos with Kriging
(Rasmussen, C., Williams, 2006). Polynomial chaos-Kriging
(PCK) (Schobi et al., 2015) enhances the global approxi-
mation capability of PCEs by the local accuracy of Kriging
(i.e., Gaussian process regression). PCK approximates the
predictions of model M as a realization of a Gaussian
process, so that the surrogate model takes the form

Ŷ =MPCK (ξ) = βTf (ξ) + σ2Z (ξ) . (9)

The first term in the PCK model (9) describes the trend
of the Gaussian process, which is given by (7)

βTf (ξ) =
∑
a∈A

yaΨa (ξ). (10)

The zero-mean Gaussian process Z (ξ) in (9) is completely
determined by the so-called kernel function that defines
a pairwise correlation between input samples based on
their distance, defined as R

(
ξ, ξ′

)
= R

(
|ξ − ξ′|;θ

)
; see

Makrygiorgos et al. (2020) for further details. The hyperpa-
rameters θ of the kernel function must be estimated along
with the aforementioned unknowns that characterize the
Gaussian process. β and σ are explicit functions of the
hyperparameters θ and the training data. These parame-
ters can be estimated via maximum likelihood estimation
(Marrel et al., 2008). Here, the PCK surrogate model (9)-
(10) is trained using the sequential algorithm in Schobi
et al. (2015). For every uncertainty sample, the prediction
of the PCK model for the QoI Y consists of a mean value
µŶ and a standard deviation σŶ .

4. RESULTS AND DISCUSSION

We apply the MILP model of Section 2 to cultivate rice,
wheat, potato, and lettuce to meet daily food demands
for a Mars mission that lasts 220 days. The MILP model
has 2,665 continuous, 882 integer, and 4 binary variables.
A single run of the MILP model takes approximately one
minute when solved with the Python interface of GUROBI
solver 8.1.0 on a machine with Intel Xeon(R) CPU @
3.50 GHz with 31.3 GB RAM. We consider 86 uncertain
parameters that follow independent uniform distributions.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7361



Fig. 1. Leave-one-out cross validation error εLOO of the
sparse PCE (red) and PCK (blue) surrogate models
for different sizes NED of experimental design used for
surrogate model training. The inset shows the prob-
ability distribution of the minimum ESM, estimated
using the PCK surrogate model trained with 1,000
samples, on a validation set.

4.1 Building the Surrogate Models

Surrogate models were constructed using the UQLab
toolbox in Matlab. Constructing PCEs with a moderate
basis order of 4 or 5 for the 86 uncertain parameters leads to
an expansion with P ≈ O(106) terms, which is intractable.
The order-adaptive LAR algorithm adopted in this work for
building the sparse PCE and PCK surrogate models allows
for optimal basis selection with limited training data. For
the PCK surrogate model, we used the Matern 3-2 kernel.
We constructed surrogate models for the minimum ESM
using different experimental design sizes. Fig. 1 shows the
estimated εLOO for each surrogate model as a function
of experimental design size NED. We observe that εLOO
decreases rapidly after adding about 300 experimental
design points, reaching a plateau thereafter.

Fig. 1 suggests that sparse PCE and PCK surrogate models
yield comparable approximation accuracy. However, the
PCK surrogate model provides confidence intervals for its
predictions, which is useful in applications where quantify-
ing prediction uncertainty is important. After constructing
an accurate surrogate model for fast estimation of the
minimum ESM, we performed Monte Carlo sampling to
estimate the probability distribution of the minimum ESM.
The estimated probability distribution is inset in Fig. 1.
The probability distribution was constructed using 100,000
samples with the PCK surrogate model, with computations
that took less than 15 s. An identical number of MILP
model evaluations would have taken about 105 minutes.
Thus, the computational speed gains of the surrogate model
are approximately 100-fold after accounting for the time it
took to build the model.

4.2 Global Sensitivity Analysis

The PCK surrogate model was used to perform global
sensitivity analysis of the minimum ESM. Fig. 2 shows
sample-based estimates of the Sobol’ indices that quantify
the sensitivity of the minimum ESM to the 86 uncertain

Fig. 2. Total Sobol’ indices that quantify the sensitivity of
the minimum ESM to the 86 uncertain MILP model
parameters. The black dashed line is STmin threshold.

model parameters. As is typical of systems with high
uncertainty dimension, not all uncertain inputs have a
major effect on model responses (Deman et al., 2016).
Here, we set a threshold of STmin = 0.02, so that uncertain
parameters with sensitivity indices below STmin are deemed
insignificant. Hence, a total of 12 of the 86 parameters
have a significant impact on the minimum ESM. We
observe that the minimum ESM is most sensitive to the
following parameters in descending order: the fraction of
PPF absorbed by potato, two of the several empirical
parameters that determine edible potato yield, the fraction
of PPF absorbed by rice, the ESM coefficient for thermal
control, the blue light efficacy, the minimum rice demand,
the ACR thermal control demand, several of rice and wheat
empirical parameters, and the PPF incident on lettuce.

The fraction of PPF absorbed by each of the crops
significantly impacts the minimum ESM because this
parameter directly affects biomass yield and lighting
requirements. A greater absorbed PPF increases biomass
yield, while decreasing lighting needs. Blue light parameters
are unsurprisingly critical. In fact, it was the chosen light
alternative among the four available options for most of the
training data. Potato yield parameters are dominant, since
its maturity time is the highest of all four crops. Thus, a
change in potato yield has substantial impact on potato
shipments, compared to similar impacts for other crops.

The Sobol’ indices in Fig. 2 allow us to evaluate the
relative impact of the uncertain parameters on system
design decisions. The Sobol’ indices also suggest where
further priorities in mission planning and engineering of
the life support system must be placed. For instance, the
results indicate that future space plant experimental effort
should emphasize better estimation of the absorbed PPF
fraction, and of the empirical coefficients related to crop
growth equations. Additionally, the ACR thermal control
parameters should be estimated accurately due to their
predominance in computed ESM.

4.3 Estimating the Distribution of Decision Variables

The solution of the MILP model comprises optimal values
for the decision variables of the life support system, such as
the amount of food or nitrogen that must be shipped from
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Fig. 3. Estimated distribution of the optimal amount of
nitrogen, Nsh, shipped from Earth. The pink distri-
bution is estimated from the response of the MILP
model, whereas the blue distribution is estimated by
the PCK surrogate model.

Earth. Fig. 3 shows the estimated probability distribution
for the optimal amount of shipped nitrogen, Nsh. This
distribution exhibits a wide variability that encompasses
high values of nitrogen demand due to the nature of the
decision-support problem. The consideration of integer and
binary variables within the MILP model leads to multiple
scenarios that yield disparate optimal values for the decision
variables, resulting in a wide range of scenarios to analyze
for mission design. The global sensitivity analysis provides
a first step towards a better estimation of model parameters
to mitigate uncertainty in the mission design by reducing
the number of mission scenarios to consider.

5. CONCLUSIONS

We demonstrate the usefulness of surrogate modeling for
accelerating forward uncertainty quantification tasks on
a MILP model that optimizes food production for life
support during a Mars exploration mission. We present
a sparse polynomial chaos-Kriging surrogate model for
this MILP model that has 86 uncertain parameters. The
computational time needed to evaluate 100,000 samples of
uncertain parameters using the surrogate model is about
15 seconds, approximately 2.5× 10−4% of the time needed
to perform the same number of MILP model evaluations.
After accounting for the time required to generate data for
surrogate model training and the training procedure itself,
the computational speed gains of the surrogate model are
over 100-fold. This speed-up in computations enables global
sensitivity analysis, which shows that only 12 out of 86
uncertain parameters in the MILP model drive variability
in a quantity of interest. Eliminating uncertainty in these
parameters is crucial, given their drastic impact on key
decision variables in Mars mission planning.
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