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Abstract: This manuscript proposes a distributed Newton seeking for the solution of distributed
optimization problems with locally measured but unknown cost functions. The approach
implements a Newton step for both the primal and dual problems that can be implemented
in a completely decentralized fashion. Unlike existing techniques, no exchange of derivative
information between agents is required. In addition, no explicit inversion of the Hessian
information is required to generate the required Newton step. The local gradients and Hessians
are estimated using a perturbation based extremum seeking control technique. A simulation
study demonstrates the effectiveness of the technique.
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1. INTRODUCTION

The last decade has seen significant advances in the de-
velopment of distributed and decentralized optimization
techniques for large-scale problems operating over commu-
nication networks. The design of distributed optimization
algorithm is now an established problem in the literature.
One of the most studied problem is the consensus opti-
mization problem (e.g. (Bertsekas and Tsitsiklis, 1989),
(Nedić and Ozdaglar, 2009), (Johansson et al., 2009)).
In this problem, agents operating over a communication
network are made to achieve consensus at the optimum
of a total network cost. In the standard framework for
this problem, the agents have access to measurements of
its local costs and they can communicate local decision
variables to neighboring agents.

Two basic classes of techniques are used to solve this class
of problems. The subgradient based techniques such as
(Nedić and Ozdaglar, 2009) are usually recognized to yield
simple algorithms with typically slow convergence. The Al-
ternating Direction Method of Multipliers (ADMM) based
techniques ((Boyd et al., 2011), (Schizas et al., 2008))
decompose the consensus optimization problem in two
alternating optimization problems that provide updates
of dual variables. Newton consensus methods (Wei et al.
(2013), Zanella et al. (2011)) have been shown to provide
significant performance improvements over subgradient
techniques in consensus optimization. However, they have
not been shown to outperform ADMM. In recent devel-
opments, a novel Newton consensus method was proposed
in (Tutunov et al., 2019). This technique enables the ap-
proximation of the Newton step for the consensus problem
without the need to exchange local derivative information
over the communication network.

? The author acknowledges the financial support of the Natural
Sciences and Engineering Research Council of Canada and the Fields
Institute.

The objective of this study is to develop a model-free
distributed Newton seeking that implements a similar
distributed Newton consensus. The approach combines a
local extremum seeking control (ESC) approach for each
agent and a Newton consensus approach inspired by the
dual approach recently proposed by Tutunov et al. (2019).
The proposed ESC technique for the local optimization
problems is based on the Newton seeking approach of
Ghaffari et al. (2012). ESC has demonstrated considerable
potential (Xu and Soh (2013),Michalowsky et al. (2018),
Guay et al. (2018)) for the design of distributed optimiza-
tion and control systems. Most existing technique rely on
gradient based consensus algorithms which suffer from the
same performance limitations of subgradient techniques.
The main contribution of this study is the design of a con-
tinuous time Newton consensus based on the methodology
presented in (Tutunov et al., 2019). The combination with
the local Newton seeking algorithm enables the implemen-
tation of a network wide Newton consensus optimization
using a model-free approach.

The paper is organized as follows. The problem statement
is presented in Section 2 along with some preliminaries
and a brief description of the dual problem. Section 3
presents the proposed Newton consensus technique. A
brief stability analysis is performed to highlights the main
properties of the Newton consensus. A detailed proof
is outside the scope of the current study and will be
presented in future work. The distributed Newton seeking
approach is given in Section 5. A simulation study is
provided in Section 6 followed by brief conclusions in
Section 7.

2. PROBLEM DEFINITION

The objective of this study is the solution of the optimiza-
tion problem:

min
x1, ..., xm

m∑
i=1

fi(xi), s.t. x1 = · · · = xm (1)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5491



where xi ∈ Rn, and each function fi : Rn → R are twice
continuously differentiable functions for i = 1, . . . , m.

Assumption 1. The Hessian of function fi are positive
definite constant matrices and

α1I ≤
∂fi

∂xi∂xTi
≤ α2I

for some positive constants α1 and α2 ∀xi ∈ Rn, for
i = 1, . . . ,m.

Assumption 2. The total objective function

f(x) =

m∑
i=1

fi(x)

has a unique minimum at x = x∗ such that

∂f

∂x

∣∣∣∣
x=x∗

= 0.

Problem (1) is solved over a communication network of
m agents modeled as an undirected connected graph G =
(V, E) where V denotes the set of vertices of the graph with
|V| = m while E denotes the set of edges of G with |E| = p.
Each vertex corresponds to an agent who is allowed to
communication with its immediate neighbors along the
edges of G. The neighborhood of agent i is denoted by
Ni = {j ∈ V | (i, j) ∈ E }. The degree of agent i, di, is given
by the number of neighbors in Ni, |Ni| = di.

The structure of the graph can be summarized by its
Laplacian, L = D − A where D ∈ Rm×m is the degree
matrix and A ∈ Rm×m is the adjency matrix. The
adjacency matrix has elements aij = 1 whenever (i, j) ∈ E
for vi, vj ∈ V and aij = 0 otherwise. A graph G is
undirected if (i, j) ∈ E whenever (j, i) ∈ E . The degree
matrix D is a diagonal matrix where di =

∑m
j=1 aij . The

Laplacian matrix is given by L = D−A. Let 1m be an m
dimensional vector of ones. We consider a m-dimensional
vector r and a m× (m− 1) matrix R such that:

r =
1√
m
1m, r

TR = 0,

RTR = Im−1, RR
T = Im −

1

m
1m1Tn .

For an undirected graph, the Laplacian matrix is such that:

1TmL = 0, L1m = 0.

Throughout this paper, it is assumed that all local costs
fi are unknown but available for measurement for agent i.
The structure of the network L is known.

2.1 Dual problem

In this section, we pose the dual problem of (1). Following
the approach presented in (Tutunov et al., 2019), we define
auxiliary variables, yj ∈ Rm, where yj is the vector of all
jth elements of the local agent state xi, for i = 1, . . . ,m.
That is,

yj = [x1(j), x2(j), . . . , xm(j)]
T

for j = 1, . . . , n.

Using this notation, the original problem can be written:

min
y1,...,yn

m∑
i=1

fi(y1(i), . . . , yn(i)) (2)

s.t. Lyj = 0, j = 1, . . . , n. (3)

We define the matrix M = L ⊗ In×n, an element of
Rnm×nm.

The Lagrangian associated with (1) is given by:

L(y1, . . . , yn, λ1, . . . , λn) =

m∑
i=1

fi(y1(i), . . . , yn(i))

+ λT1 Ly1 + . . .+ λTnLyn.
(4)

where λi ∈ Rm are the Lagrange multipliers.

By the properties of the graph Laplacian (L = LT ), the
Lagrangian can be written as follows:

L(y1, . . . , yn,λ1, . . . , λn) =

m∑
i=1

(
fi(y1(i), . . . , yn(i))

+ (Lλ1)iy1(i) + . . .+ (Lλn)iyn(i)

)
.

(5)

The dual problem associated with (5) is given as follows:

ν(λ) =

m∑
i=1

inf
y1, ...,yn

(
fi(y1(i), . . . , yn(i))

+ (Lλ1)iy1(i) + . . .+ (Lλn)iyn(i)

)
.

(6)

The primal problem can be defined as the minimization of
the Lagrangian at a fixed value of the Lagrange multipliers.
The corresponding primal variables are the corresponding

solutions denoted by y(λ) where y =
[
yT1 , y

T
2 , . . . , y

T
n

]T
and λ =

[
λT1 , λ

T
2 , . . . , λ

T
n

]T
.

3. NEWTON CONSENSUS

In the following, we extend the notation used to de-
fine y and λ to the following auxiliary variables z =[
zT1 , z

T
2 , . . . , z

T
n

]T
and δ =

[
δT1 , δ

T
2 , . . . , δ

T
n

]T
.

Using standard arguments Tutunov et al. (2019), the
gradient of dual function ν(λ) with respect to λ is given
by:

∇ν(λ) =My(λ). (7)

Its Hessian is as follows:

H(λ) = −M(∇2f(y(λ)))−1M. (8)

The objective of this section is to develop a distributed
algorithm that implements a Newton algorithm for the
Newton step, δ(λ),

H(λ)δ(λ) =My(λ). (9)

In Tutunov et al. (2019), this task is achieved using an
approximate inversion algorithm that exploits the sym-
metric diagonally dominant property of the matrices M
and H(λ). In this study, the Newton step is computed
implicitly as the unique equilibrium of a dynamical system.
The prototype dynamical system proposed in this study is
given by:

ż =− γ(Mz−My(λ)) (10)

δ̇ =− γ
(
Mδ +∇2f(y(λ))z

)
(11)

where γ is a positive gain to be assigned.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5492



By the properties of the Laplacian matrix, it follows
that the matrix M is a positive semi-definite symmetric
matrix. As a result, the linear dynamical system (10)
has a unique exponentially stable equilibrium at Mz =
My(λ). Similarly, the dynamical system (11) has a unique
equilibrium at Mδ = −∇2f(y(λ))z.

The corresponding equilibrium value of δ is therefore the
unique solution of the Newton step equation (9). This
Newton step is implemented using the following update
of the Lagrange multiplier:

λ̇ = ρδ (12)

where ρ is a positive constant to be assigned.

3.1 Decentralized Newton consensus

The dynamical systems (10), (11) and (12) can be imple-
mented in a completely distributed fashion requiring the
exchange of the neighboring values of the yj(k),zj(k), δj(k)
and λj(k) for k ∈ Ni, with i = 1, . . . ,m and j = 1, . . . , n.

To see this, we expand the elements of (10) and (11)
componentwise. Elements of the dynamics of the auxiliary
variables, z, are given by:

żr(k) = −γ
( m∑
j=1

Lkjzr(j)−
m∑
j=1

Lkjyr(j)
)
. (13)

For the Newton step variables, one obtains:

δ̇r(k) = −γ
( m∑
j=1

Lkjδr(j) +

n∑
j=1

∂2fk
∂yr(k)∂yj(k)

zj(k)

)
(14)

which yields the following update of the Lagrange multi-
pliers:

λ̇r(k) = ρδr(k) (15)

for r = 1, . . . , n, k = 1, . . . ,m.

It follows that the computation of the updates requires
neighboring values from zr, δr and yr. More importantly,
it can be seen from (14) that the Newton consensus step
for the network can be calculated using only the Hessian
of the local cost with respect to the local variables xk =
[y1(k), . . . , yn(k)]T . Moreover, the proposed approach does
not require any explicit inversion of the Hessian to com-
pute the Newton step.

3.2 Approximation of the primal variables

Formally, the primal variables must be chosen as the
solution of the partial differential equations:

∂fi
∂yj(i)

= −(Lλj)i. (16)

While this is possible for simple quadratic local cost
functions, the computation of primal variables can become
exceedingly complex in a network application. In this
study, we propose a simple approximation that computes
the local minimizer of the Lagrangian at a constant value
of the Lagrange multiplier vector.

We propose the compute the local minimizer using a
Newton method. For agent i, the elements of the gradient
of the Lagrangian function are given by:

∂L

∂yj(i)
=

∂fi
∂yj(i)

+ (Lλj)i = gj(i) (17)

while the elements of the Hessian are of the form:

∂2L

∂yj(i)∂yk(i)
=

∂2fi
∂yj(i)∂yk(i)

= Hjk(i). (18)

The local Newton update requires only the computation
of local derivatives and the values of the neighbouring
Lagrangian multipliers. The proposed local primal updates
is given as:

ẏj(i) = ρdvj(i) (19)

v̇j(i) = −γd
( n∑
k=1

Hjk(i)vk(i) + gj(i)

)
(20)

where ρd and γd are positive constants to be assigned.
Since the local Hessians are all positive definite, it follows
that the update for v(i) has a unique equilibrium at
v(i) = −H(i)−1g(i), which is the local expression of the
Newton step for the minimization of the Lagrangian.

The network’s primal dynamics can be written as follows:

ẏ =ρdv

v̇ =− γd(∇2
yyL(y,λ)v +∇yL(y,λ))

(21)

4. STABILITY ANALYSIS

In this section, we present an abridged version of the
stability analysis. A detailed proof is outside the scope
of the current study and will be presented in future work.
The analysis of the proposed approach utilizes a time-scale
separation. It is assumed that the update of the Lagrange
multipliers λ is slow compared to the the primal local
dynamics and the network dual dynamics.

Let us first summarize the overall closed-loop network
dynamics:

ẏ =ρdv

v̇ =− γd(∇2
yyL(y,λ)v +∇yL(y,λ))

ż =− γ(Mz−My)

δ̇ =− γ
(
Mδ +∇2f(y)z

)
λ̇ =ρδ

(22)

We first consider the gains as γd = γ
ε , ρd = ρ

ε and γ = γ
ε .

We then define the time-scale transformation dτ = εdt.

Let y(λ), z(λ) and δ(λ) denote the equilibrium of the
system for a given fixed λ. As discussed above, the vector
value function y(λ) is the unique solution of the system of
equations:

∇yL(y(λ),λ)) = 0. (23)

The vectors z(λ) and δ(λ) are the solutions of the follow-
ing system of equations:

Mz(λ) = −My(λ), (24)

M(∇2f(y(λ))−1Mδ(λ) =Mz(λ). (25)

Next we consider the error variables, ỹ = y−y(λ), z̃−z(λ)

and λ̃ = λ − δ(λ). We can now write the error dynamics
for the network in the new time-scale τ as follows:
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dỹ

dτ
=ρdv −

∂y(λ)

∂λ

dλ

dτ
dv

dτ
=− γd(∇2

yyL(y,λ)v +∇yL(y,λ))

dz̃

dτ
=− γ(Mz−My)− ∂z(λ)

∂λ

dλ

dτ
dδ̃

dτ
=− γ

(
Mδ +∇2f(y)z

)
− ∂δ(λ)

∂λ

dλ

dτ

dλ

dτ
=ερδ(λ) + ερδ̃.

(26)

The following theorem summarizes that the stability prop-
erty of (26).

Theorem 1. Consider the Newton consensus algorithm ex-
pressed in error for (26). Assume that the communica-
tion network can be represented by undirected graph. Let
γ > 0. Then there exists a constant ε∗ such that for any
0 < ε < ε∗, the origin of the system (26) have a globally
asymptotically stable equilibrium at the origin.

Proof. We consider a singular perturbation analysis ap-
proach. We first define the boundary layer dynamics by
setting ε = 0 in (??). This yields:

dỹ

dτ
=ρdv

dv

dτ
=− γd(∇2

yyL(y,λ)v +∇yL(y,λ))

dz̃

dτ
=− γ(Mz−My)

dδ̃

dτ
=− γ

(
Mδ +∇2f(y)z

)
(27)

We first consider the first two equations that describes the
primal dynamics of the network. The unique equilibrium
of the systems occurs at v = 0 and ỹ = 0. To assess the
stability of the equilibrium, we pose the Lyapunov function
candidate:

V =
ρd
2γd
‖v‖2 + L(y,λ)− L(y(λ),λ). (28)

Its derivative is given by:

V̇ = −ρdvT∇2
yyL(y,λ)v.

Since the Hessian is positive definite for all ỹ, it fol-
lows that V̇ ≤ 0 is negative semi-definite. The manifold{

(v, ỹ)
∣∣∣ V̇ = 0

}
contains only one complete trajectory of

the system which is the trivial point v∗ = 0, ỹ = 0. By
LaSalle’s invariance principle, it follows that the equilib-
rium (0, 0) is a globally asymptotically stable equilibrium
of the primal dynamics of the network.

The last two equations of (27) describe the consensus
dynamics.Since the Hessian of the f(y) is a constant, one
can write the consensus dynamics (27) as follows:

d˜̃z

dτ
=− γ(Mz̃−Mỹ)

dδ̃

dτ
=− γ

(
Mδ̃ +∇2f(y(λ))z̃

)
.

(29)

To perform the stability analysis, we consider the following
coordinate transformations:

z̃ = ([r, R]⊗ In)W , ỹ = ([r, R]⊗ In)Y .

and:

δ̃ = ([r, R]⊗ In)p.

The dynamics are re-expressed in the new coordinates. The
dynamics of W are given by:

Ẇ = −γ
[
rTLr ⊗ In rTLR⊗ In
RTLr ⊗ In RTLR⊗ In

] [
W1 − Y1

W2 − Y2

]
where W =

[
W T

1 W T
2

]
and Y =

[
Y T

1 Y T
2

]
. By the

properties of r and R, we obtain:

Ẇ1 = 0

Ẇ2 = −γRTLR⊗ In(W2 − Y2).

Similarly, the dynamics of p is given by:

ṗ1 = −γ(rT ⊗ In)∇2f(y(λ))([r R]⊗ In)W

ṗ2 = −γ(RTLR⊗ In)p2

− γ(RT ⊗ In)∇2f(y(λ))([r R]⊗ In)W .

The Hessian matrix ∇2f(y(λ)) can be written with re-
spect to Y as:

∂2f

∂Y ∂Y T
=

([
rT

RT

]
⊗ In

)
∇2f(y(λ))([r R]⊗ In).

If one assumes that W1(0) = 0, the dynamics of p can be
written as:

ṗ1 = −γ ∂2f

∂Y1∂Y T
2

W2

ṗ2 = −γ(RTLR⊗ In)p2 − γ
∂2f

∂Y2∂Y T
2

W2.

Since the matrixRTLR⊗In is positive definite, then there
exist constants 0 < λ1 < λ2 such that:

λ1 |p̃2|2 ≤ p̃T2 (RTLR⊗ In)p̃2 ≤ λ2 |p̃2|2 .
We can consider the Lyapunov function candidate: V1 =
1
2W

T
2 W2 + β

2p
T
2 p2 where β is a positive constant. This

yields:

V̇1 =− γW T
2 (RTLR⊗ In)(W2 − Y2)

− βγpT2 (RTLR⊗ In)p2 − βγpT2
∂2f

∂Y2∂Y T
2

W2.

It is assumed that
∣∣∣ ∂2f
∂Y2∂Y T

2

∣∣∣ ≤ M̄ . An upper bound for the

right hand side can be computed using Young’s inequality:

V̇1 ≤− γW T
2 (RTLR⊗ In)W2 − βγpT2 (RTLR⊗ In)p2

+
βγ

2k1
pT2

∂2f

∂Y2∂Y T
2

p2 +
k1βγ

2
W T

2

∂2f

∂Y2∂Y T
2

p2W2

+
γ

2k2
W T

2 (RTLR⊗ In)W2

+
k2γ

2
Y T

2 (RTLR⊗ In)Y2

This yields:

V̇1 ≤−
(
γλ1 −

k1βγM̄

2
− k2γλ2

2

)
W T

2 W2

−
(
βγλ1 −

βγM̄

2k1

)
pT2 p2 +

k2γλ2

2
Y T

2 Y2.

We set k1 = M̄
λ1

, k2 = λ2

λ1
and β =

λ2
1

2M̄2 and obtain:

V̇1 ≤ −
γλ1

4
W T

2 W2 − β
γλ1

2
p̃T2 p̃2 +

γλ2
2

2λ1
Y T

2 Y2.

Therefore, the system is input-to-state stable (ISS) with
Y2 as an input. From the previous analysis, the primal
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dynamics has an asymptotically stable equilibrium at ỹ =
0m v = 0. As a result, we see that system (27) is the
interconnection of an asymptotically stable system and
an ISS system. It follows from (Khalil (1992), Theorem
11.3) that the origin is a globally asymptotically stable
equilibrium of (27).

Next we consider the reduced order system. We let δ =
δ(λ) and write:

dλ

dt
= ερδ(λ). (30)

Since δ(λ) yields a Newton step for the dual problem,
it follows that the reduced order system has a globally
asymptotically stable equilibrium at the optimal value for
Lagrange multiplier λ∗.

Thus, we can apply a standard singular perturbation
argument (Teel et al. (2003)) to conclude that there exists
and ε∗ such that, for all 0 < ε < ε∗, the distributed
network dynamics (22) has an asymptotically stable at
the optimum solution of problem (1). This completes the
proof.

5. DISTRIBUTED NEWTON SEEKING

In this section, we propose a Newton seeking approach to
provide a model-free of the Newton consensus approach
presented in the last sections. Locally, each agent imple-
ments the following primal optimization algorithm:

ẏj(i) = ρdvj(i) (31)

v̇j(i) = −γd
( n∑
k=1

Ĥjk(i)vk(i) + ĝj(i)

)
(32)

where Ĥjk(i) is the estimation of Hjk(i) (the jk element
of the Hessian of fi for agent i) and where

ĝj(i) = ξ̂j(i) + (Lλj)i (33)

is the local estimate of the gradient of the Lagrangian
L(y,λ) with respect to yj(i). Since the communication
network Laplacian is assumed to be known, the second
term on the right hand side of (33) is known. The first

term, ξ̂j(i), is a local estimate of the gradient of the local
cost fi for agent i with respect to yj(i).

For the purpose of this study, we consider a pertur-
bation based Newton-seeking approach (Ghaffari et al.,
2012). To do so, each agent must assign n frequencies,[
ωi1 ω

i
2 . . . ω

i
n

]
, such that:

i) ωij 6= ωik for any j 6= k,

ii) ωij/ω
i
k are rationals for any j 6= k,

iii) ωij + ωik 6= ωi` for all j, k, `.

We let

si(t) =
[
a1 sin(ωi1t), . . . , an sin(ωint)

]T
,

ri(t) =
[

2
a1

sin(ωi1t), . . . ,
2
a1

sin(ωint)
]T
,

and ȳ(i) = [y1(i), . . . , yn(i)]
T
. We also define:

Θi
jj(t) =

16

a2
j

(
sin(ωijt)

2 − 1

2

)
, (34)

Θi
jk(t) =

4

ajak
sin(ωijt) sin(ωikt) (35)

where j 6= k.

Following Ghaffari et al. (2012), we consider the following
ESC based approach for the primal problem:

ẏj(i) = ρdvj(i) (36)

v̇j(i) = −γd
( n∑
k=1

Ĥjk(i)vk(i) + ĝj(i)

)
(37)

˙̂
ξj(i) = −ωd

(
ξ̂j(i)− rij(t)fi(ȳ(i) + si(t))

)
(38)

˙̂
Hjk(i) = −ωd

(
Ĥjk(i)−Θi

jk(t)fi(ȳ(i) + si(t))

)
(39)

for i = 1, . . . ,m, j, k = 1, . . . , n.

The dual problem is considered locally by implementing
the following algorithm:

żj(i) =− γ
( m∑
k=1

Likzj(k)−
m∑
k=1

Likyj(k)

)
(40)

δ̇j(i) =− γ
( m∑
k=1

Likδj(k) +

n∑
k=1

Ĥjk(i)zk(i)

)
(41)

λ̇j(i) =ρδj(i) (42)

for i = 1, . . . ,m, j = 1, . . . , n.

One can then generate an averaged realization of this
system by integrating the right hand sides over the funda-
mental period of oscillation given by:

T (i) = 2π × LCM

(
1

ωij

)
where LCM is the least common multiple of 1

ωi
j

.

The resulting averaged system recovers the dynamics of
the Newton consensus algorithm presented in the previous
sections up to averaged dynamics of the additional filters
(38)-(39). The stability analysis for the Newton seeking is
omitted. However it can be summarized as follows.

By the analysis in the previous section, it follows that
the averaged system achieves Newton consensus and each
agent have an asymptotically stable equilibrium at the
minimizer of Problem (1). We can then use a standard
averaging analysis (as in (Khalil, 1992) ) to show that the
Newton seeking system has a practically asymptotically
stable equilibrium at the optimum and achieves a practical
consensus at that optimum.

6. SIMULATION STUDY

To illustrate the ideas of the manuscript and the design
of the method, we consider a simple 3 agent problem
using the model based Newton consensus approach. The
communication graph’s Laplacian matrix is given by:

L =

[
1 −1 0
−1 2 −1
0 −1 1

]
The local costs are given by:

f1 =y1(1)2 + (y2(1)− 2)2

f2 =(y1(2)− 1)2 + y2(2)2

f3 =4 + (y1(3)− 2)2 + 2y2(2)2.

The initial conditions are set to λ1(0) = λ2(0) = [0 0 0]
with all other variables set to 0 initially. The primal
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Fig. 1. Newton consensus results for Example 1 with
tuning gains ρ = 0.4, γ = 100. The upper plot shows
the consensus on x∗1 = 1 while the bottom shows
consensus to x∗2 = 0.5.
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Fig. 2. Distributed Newton seeking results for Example 1
with tuning gains ρ = 0.4, γ = 4. The upper plot
shows the consensus on x∗1 = 1 while the bottom
shows consensus to x∗2 = 0.5.

dynamics gains are set to ρd = γd = 100. The dual gains
are set to ρ = 0.4, γ = 100. The resulting consensus
performance in given in Figure 1. The results show that
the system correctly identifies the correct optimum x∗ =
[1, 0.5]T . The consensus of y1 to 1 and y2 to 0.5 is
achieved. The Newton consensus shows clearly that all
agents converge to the optimum at exactly the same rate
dictated by the gain ρ.

Next we apply the distributed Newton seeking approach.
The gains used are the same as above. Two frequencies
are required for each agent. They are as follows: ω1

1 = 100,
ω1

2 = 300, ω2
1 = 125, ω2

2 = 375, ω3
1 = 145, ω1

2 = 415.
The amplitudes are set to A1 = A2 = A3 = 0.5. The low
pass filter gain is set to ωd = 200. The results are shown
in Figure 2. The Newton seeking achieves performance
similar to the model-based technique in Figure 1.

7. CONCLUSION

This manuscript proposes a distributed Newton seeking
for the solution of distributed optimization problems with
locally measured but unknown cost functions. The ap-
proach implements a Newton consensus approach that
can be implemented in a completely decentralized fashion.

No exchange of derivative information between agents is
required, and, no explicit inversion of the Hessian infor-
mation is needed. The local gradients and Hessians are es-
timated using a Newton seeking control technique. Under
the conditions considered in this study, the Newton seeking
achieves a semi-global practical asymptotic stability of the
optimum of the centralized optimization problem.
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