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Abstract: We address the problem of trading energy flexibility, derived from pools of residential
Photovoltaic and battery-storage systems, to the Day-ahead electricity market. By flexibility,
we imply any additional energy that can be stored to or withdrawn from the participating
batteries/households at a given time during the next day. The optimization variables include
the selection/activation of a subset of participating batteries and the amount of flexibility
that should be extracted. Furthermore, the optimization objective corresponds to the expected
forecast revenues that can be generated by trading this flexibility to the Day-ahead electricity
market. Given the high computationally complexity of a full scale optimization in the case of a
large number of participating batteries, we propose a reinforcement-learning-based methodology,
which admits linear complexity with the number of participating batteries. The proposed
methodology advances prior work with respect to the integration of a large number of
batteries. Furthermore, it extends prior work of the authors with respect to providing analytical
performance guarantees in comparison with the baseline/nominal operation of the battery.
Finally, we compare through simulations the performance of the proposed method with a Linear-
Programming-based optimization that provides the exact optimum.

Keywords: Control of renewable energy resources; Smart grids; Approximate dynamic
programming; Day-ahead spot electricity market

1. INTRODUCTION

Recently, the number of Photovoltaic (PV) and battery-
storage systems in residential buildings constantly in-
creases, Kairies et al. (2016). So far, such storage systems
are mainly used to maximize the on-site absorption of
the PV generation. Given the current need for increasing
the percentage of renewable energy fed into the grid, the
available charging/discharging flexibility can also be used
to react to price variations in the Day-ahead (DA) or the
Intra-day (ID) electricity spot-market. The representative
agent (or aggregator) could make such decisions over the
specific use of the storage units with respect to the optimal
participation at the DA and ID spot markets, the benefits
of which can then be transferred to the owners of the
participating batteries.

In this paper, we focus on addressing the problem of
optimal activation of a set of residential battery-storage
systems in the DA spot market. The underlying assump-
tion is that an aggregator directly controls a set of bat-
teries, thus any charging/discharging flexibility potential
can be extracted in real-time. The proposed scheme will
be based upon an approximate-dynamic-programming (or
reinforcement-learning) methodology. According to this
scheme, an approximation function of the performance is
being trained (using historical data) that can be used to

? This work has been supported by the Austrian Research Agency
FFG through the research project Flex+ (FFG # 864996).

generate optimal biddings/schedules for the DA market.
By design, the proposed scheme is flexible enough to ac-
commodate the possibility of erroneous forecasts as well
as the need for re-optimizing in real-time upon receipt
of corrected/updated forecasts. The main novelty of the
proposed methodology lies on the possibility of incorpo-
rating a large number of batteries, while we also provide
analytical performance guarantees.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present related work and the main contributions
of this paper. Section 3 provides the main framework and
challenges of this problem. Section 4 discusses the opti-
mization problem and objective and Section 5 presents a
reinforcement-learning-based scheme that it is specifically
tailored for this class of problems. Section 6 presents an
evaluation of the proposed framework on real-world data
and a comparative analysis with a linear-programming-
based methodology that provides the exact optimum. Fi-
nally, Section 7 provides concluding remarks.

2. RELATED WORK AND CONTRIBUTIONS

Demand response is either commitment-based, where con-
sumers agree on reducing the load during peak hours Ruiz
et al. (2009), Chen et al. (2014) or incentive-based, where
financial incentives are offered to the consumers Herter
(2007), Triki and Violi (2009), Xu et al. (2016). For exam-
ple, a commitment-based approach has been proposed by
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Chen et al. (2014), where the operator distributes portions
of its desired aggregated demand to the households, using
an average consensus algorithm. On the other hand, an
incentive-based approach has been proposed by Xu et al.
(2016), where each participating household communicates
to the operator a bidding curve, that is a function that
provides the load adjustment that each user is willing to
perform at a given price.

Apart from these approaches, there is an alternative
methodology which can be considered as a combination
of the two and it is closer to the one employed in this
paper. According to such methodology, an aggregator di-
rectly extracts the required flexibility from the participat-
ing equipment when necessary. In return the aggregator
offers to the owners of the equipment an agreed financial
compensation. Such methodology is usually referred to as
demand-response aggregation Parvania et al. (2013). It has
been employed in Parvania et al. (2013), where aggregators
can activate load reduction in a set of consumers according
to an agreed demand-response strategy for each consumer.
Similar in spirit is also the work in references Iria et al.
(2017); Nan et al. (2018), where an aggregator directly
controls a set of different types of loads in residential build-
ings to reduce total electricity consumption. As expected,
a feature that distinguishes demand-response aggregation
is the self-scheduling or activation optimization problem,
that is the optimization of optimally utilizing the available
flexibility (stemming from several households) over a fu-
ture time horizon. Such feature (of multiple households) is
not usually considered in the context of participation in a
wholesale electricity market (see, e.g., Gomez-Villalva and
Ramos (2003); Philpott and Pettersen (2006)).

In the context of battery-storage systems, demand-response
aggregation (as discussed in the previous paragraph) has
not yet been addressed in an effective and computationally
efficient way. In this context, the aggregator wishes to
compute an optimal (day-ahead) schedule for extracting
flexibility (charge, discharge or do nothing) for each one
of the participating batteries. So far, such optimization
problem has mostly been addressed for single battery sys-
tems, e.g., Mohsenian-Rad (2016); He et al. (2016). Exist-
ing methodologies also include a detailed modeling of the
battery as well as a detailed description of the cycle costs
of the battery due to the frequent charging/discharging
He et al. (2016). It may include computations of optimal
charging/discharging bids for the day-ahead electricity
market, as in Mohsenian-Rad (2016); He et al. (2016), or
the intra-day/hour-ahead electricity market, as in Jiang
and Powell (2015). In order to effectively address the un-
certainty of the initial/final stage-of-charge of the battery,
Jiang and Powell (2015) also employs an Approximate
Dynamic Programming (ADP) formulation.

In this paper, participation to the DA wholesale electricity
market is implemented by directly controling the battery-
storage systems, as in Mohsenian-Rad (2016); He et al.
(2016); Jiang and Powell (2015). Recent work of the au-
thors Chasparis et al. (2019) has proposed an ADP frame-
work that can efficiently be employed for a large number
of battery-storage systems. It extended prior work by ad-
dressing multiple battery-storage systems, contrary to the
single battery-storage system in Mohsenian-Rad (2016),
He et al. (2016), and Jiang and Powell (2015). In com-

parison with Chasparis et al. (2019), this paper presents
an improved design that provides analytical guarantees
over the long-term performance in comparison to the base-
line/nominal operation of the battery. Furthermore, in the
case of a single battery, a comparison is performed through
simulations with a linear-programming-based optimization
that provides the exact optimum.

3. FRAMEWORK AND CHALLENGES

Time is divided into intervals ∆T , that define the instances
at which measurements are collected and decisions are
revised regarding the operation of the battery. Throughout
the paper, we will assume that ∆T = 1/4h, which implies
that each day is divided into N = 96 time intervals.
In several cases, we will interchangeably use the time
variable t to also denote the index of the corresponding
time interval. Thus, t + 1 will often denote the next time
interval.

We are provided with a set I of households that are
equipped with PV panels and battery-storage systems.
Let also i be a representative element of this set. At
any given time interval t each of these households can
be characterized by the electrical power generated from
the PV panels PPV,i(t) ≥ 0, the electrical load consumed
by the users/residents of the household Pload,i(t) ≥ 0,
and the state-of-charge SOCi(t) of the battery. Given the
small duration of these time intervals (15min), all power
variables (such as, PPV,i(t) and Pload,i) will always be
defined as the corresponding mean value over the current
time interval t. Thus, PPV,i(t) and Pload,i(t) will assume
a constant value over the time interval t. On the other
hand, any energy variable, e.g., EPV(t) = PPV,i(t)∆T ,
will denote the total energy exchanged during the time
interval t. Finally, the SOCi(t) will correspond to the state-
of-charge at the beginning of time interval t.

In several cases, we will also use the notation ∆Pi(t) =
PPV,i(t) − Pload,i(t) to denote the excess power during
time-interval t (which can be positive or negative). Also,
let Pg,i(t) denote the power received from the grid at
time interval t, and Pb,i(t) the power that flows to the
battery (before any charging/discharging losses apply). At
any given interval t, the power balance in the household
dictates: 1 Pg,i(t) = Pb,i(t)−∆Pi(t).

3.1 Baseline battery operation

Each of these batteries is equipped with its own (logical)
controller that considers autarky as the main priority.
According to such baseline controller, a) if ∆Pi(t) > 0,
then the battery is charged and, if full, the excess power
is fed into the grid, and b) if ∆Pi(t) < 0, then the battery
is discharged and, if empty, additional power is procured
from the grid.

At the beginning of each time interval t, and given SOCi(t)
of battery i, as well as the current excess power ∆Pi(t), we
can compute the baseline power to the battery (i.e., the
power to the battery under the standard, autarky-based
controller). This is a straightforward calculation that is

1 For the sake of clarity of presentation, we neglect the (generally
small) energy losses in the AC-DC inverter.
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based upon several features of the battery (such as the
maximum charging/discharging power, the capacity and
the charging/discharging loss rates of the battery). The
details of such computation can be found at (Chasparis
et al., 2019, Algorithm 1). We will denote this computation
by the following function:

Pb,base,i(t) = Bi(∆Pi(t),SOCi(t)).

Similarly, we may define the corresponding baseline power
from the grid, denoted by Pg,base,i(t).

3.2 Energy flexibility potential

The charging and discharging energy (flexibility) potential
at time interval t of household i refers to the amount of
energy that the household may additionally procure from
and feed into the grid during time interval t, respectively.
In order to accurately compute the energy potentials, we
need to take into account the current baseline operation
of the battery at time interval t. The quantities vc,i(t) ≥
0 , vd,i(t) ≤ 0 will denote the charging and discharging
potential that is available in household i, respectively. The
charging potential is defined as: 2

vc,i(t)
.
=
[
P ∗b,c,i(t)− Pb,base,i(t)

]
+

∆T, (1)

where P ∗b,c,i(t) ≥ 0 is the maximum possible (mean)
charging power to the battery. Similarly, the discharging
potential is defined as:

vd,i(t)
.
=
[
P ∗b,d,i(t)− Pb,base,i(t)

]
−∆T (2)

where P ∗b,d,i(t) ≤ 0 is the maximum (in absolute value)
mean discharging power from the battery. We will briefly
express the above computations of the energy potential by

[vd,i(t), vc,i(t)] = Vi(Pb,base,i(t),SOCi(t)).

In order to better understand the notions of charg-
ing/discharging flexibility potential, let us consider the
SOCi(t) schematic profile of a battery in Figure 1. Specif-
ically, let us consider the first time interval ∆T on the
left-hand side. Given that ∆Pi(t) > 0 during this time
interval, i.e., there is a positive excess of energy, we should
expect that under the baseline operation of the battery, the
battery will be charged and Pb,base,i(t) > 0. The energy
that would be charged to the battery due to the baseline
operation has been highlighted with the yellow shaded
area. This implies that the available charging potential
on that interval will be the remaining green shaded area.
On the other hand, the positive excess energy ∆Pi(t)∆T ,
together with the energy available in the battery (red
shaded area), corresponds to the discharging potential.

3.3 Control variables and system dynamics

In this work, we will be concerned with activating or
committing part of the available charging/discharging
potential to the DA electricity market. The parameter
ui(t) ∈ [−1, 1] will denote the activation factor of battery
i at time interval t. If ui(t) ≥ 0, then |ui(t)| represents
the fraction of the charging potential that is activated.
Analogously, if ui(t) ≤ 0, then |ui(t)| represents the
fraction of the discharging potential that is activated.

2 We use the notation [x]+
.
= max{x, 0} and [x]−

.
= min{x, 0}.

Fig. 1. Example of charging/discharging flexibility poten-
tial over a time interval ∆T .

We will define Ei(t) as the energy traded/committed to
the DA market during time interval t. We will also adopt
the convention that the energy is positive if it is charged
to the household/battery and negative otherwise. In other
words, if ui(t) ≥ 0, then Ei(t) = ui(t)vc,i(t) ≥ 0 (energy
is charged to household i), and if ui(t) ≤ 0, then Ei(t) =
−ui(t)vd,i(t) ≤ 0 (energy is discharged from household i).
In several cases, we will also denote E(t) to be the total
energy charged to/discharged from I.

Optimal activations over the duration of a future hori-
zon require an explicit knowledge of how the flexibility
potential varies due to prior activations. In particular,
and given the previous definitions, the flexibility potential
can recursively be computed for each time interval t by
executing the following recursions in sequence.

SOCi(t+ 1) = Σi(SOCi(t), Pb,base,i(t), ui(t))

Pb,base,i(t+ 1) = Bi(∆Pi(t+ 1),SOCi(t+ 1))

[vd,i(t+ 1), vc,i(t+ 1)] = Vi(Pb,base,i(t+ 1),SOCi(t+ 1))

The mapping Σi provides the SOCi(t+1) at the beginning
of the next time interval, given the previous state-of-
charge, the baseline power to the battery, and the ac-
tivation. We may view the state-of-charge SOCi(t) and
the baseline power to the battery Pb,base,i(t) as internal
states of the above system dynamics, and the flexibility
potentials vd,i(t), vc,i(t) as the outputs of this system. The
state equations are sub-linear, as presented in Chasparis
et al. (2019).

3.4 DA-optimization and challenges

We assume that there is a representative agent (or ag-
gregator) of the set of households/batteries I which has
direct access to the operation of all batteries. We will
briefly denote it by RA. For example, in the context of the
Flex+ project 3 , such representative agent or aggregator
corresponds to a software platform that automatically
computes the available flexibility and optimal activations.

The RA tries to exploit any market opportunities that
may arise in the DA spot electricity market, due to
variations in the electricity price. In this context, and at
the beginning of each day, the RA has available (in the
form of estimates) the initial state-of-charge of the next

3 https://www.flexplus.at
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Fig. 2. Schematic of DA optimization framework. The
RA trades energy directly in the DA spot electric-
ity market through activation schedules of charg-
ing/discharging flexibility potential.

Fig. 3. Long-term negative impact of DA commitment
schedules. An example is depicted of the differences
in the baseline operation of the battery after feeding
a discharging commitment into the grid (red line).

calendar day SOCi(0), the time series of excess energy
{∆Pi(t)}96t=0 for each battery i ∈ I, and the time series
of the DA electricity price {λDA(t)}96t=0 over the duration
of the next day.

Given that the DA electricity price forecast is only avail-
able for the following day or for the next two days,
naturally an optimization horizon will be restricted to
one or two days ahead. However, under such restricted
optimization horizon, the exact impact of the day-ahead
schedules on the long-term utility (over several days) might
be unknown.

Figure 3 demonstrates such a scenario of negative long-
term impacts due to myopically derived schedules. In
this scenario, a one-day-ahead optimization may dictate
some energy discharges, which are temporarily profitable,
since they increase the household’s revenues by feeding in
energy. However, this decision significantly drops the state-

of-charge of the battery. Thus, if in the following day(s),
the load increases and the state-of-charge cannot cover for
it, the household will need to procure additional energy
from the grid. In other words, under the new baseline
operation of the battery (which results from the activation
of earlier energy commitments), the household increases
its costs in the long term, as compared to the original
baseline operation of the battery (without the activation
of these commitments). Thus, short-term one-day-ahead
optimization may have negative long-term impacts in the
utility of the household (i.e., higher costs), which need to
be taken into account. This complicates the optimization
problem since we need to guarantee that decisions are also
optimal in the long term.

4. OPTIMIZATION PROBLEM AND OBJECTIVE

Assuming a set of participating batteries I, we are inter-
ested in maximizing the long-term utility received through
the activation of day-ahead commitment schedules in the
DA market. The difficulty emerges from the fact that
although the optimization criterion expands over a large
(or infinite) horizon, in reality decisions may only be made
once per day. In fact, schedule bids may be submitted once
per day for the DA market of the next day and cannot be
revised during execution. Thus, we are facing an infinite
horizon optimization criterion that may only be addressed
through repeated one day-ahead optimizations.

The optimization variables are {u(1), u(2), ..., u(N)} ∈
U .

= [−1, 1]|I| × ... × [−1, 1]|I|, where u(t) = [ui(t)]i is
the vector of activations over the set of batteries I. The
discussion of Section 3.4 on the possible long-term impacts
of the DA commitments suggests the following decompo-
sition of the (instantaneous) utility/objective function

g(x, u) = gDA(x, u) + gBA(x, u). (4)

The objective function depends on the current state vari-
ables x ∈ X , as defined in Section 3.3, and the current
activations u. The state variables x may also incorporate
forecasts of future prices and excess available energy, which
may help us make more informative decisions. This will
be specified in a forthcoming section. We decompose the
utility function into the gDA(x, u) utility that includes the
utility of the DA commitment schedules, and the gBA(x, u)
utility that captures the difference with the utility un-
der the baseline operation. Note that the definition of
gBA(x, u) also requires a reference initial time and state
based on which the baseline profile is defined.

We are facing an infinite horizon optimization criterion,
which may only be addressed through repeated one-day-
ahead optimizations, computed at the beginning of each
day (DA bids) and executed during the following day. The
infinite-horizon optimization criterion can be expressed as:

Jµ∞(x0) =

∞∑
t=0

δtg(x(t), µ(x(t))) , x(0) = x0 (5)

where the process is initiated at x0, for some discount
factor δ ∈ (0, 1). Decisions on activations are also given
by u(t) = µ(x(t)), where µ : X → U is our stationary
policy for generating activations.

In practice, such optimization will be based upon forecasts
(of, e.g., DA prices, PV generation and non-flexible load),
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which implies that the above expression should be writ-
ten in terms of expectations. Although the forthcoming
methodology can accommodate the possibility of erro-
neous forecasts, the presentation will focus only on
the case of perfect forecasts.

5. ZERO-STEP-CONTROL APPROXIMATE
DYNAMIC PROGRAMMING

In this paper, we propose a methodology that is based on
ADP. Such approach can capture long-term impacts on
the utility through a large number of simulated scenarios.
The complexity of the problem though as well as the
rather limited amount of real-world data do not allow
for considering a full-scale black-box approach. Instead,
we will introduce a methodology that is tailored to the
specifics of the problem, while providing performance
guarantees over the long-term impact of the DA schedules,
captured by the original objective (5).

For the sake of clarity of presentation, the forthcoming
analysis will be restricted to a single battery. An
extension to multiple batteries will be straightforward. In
this section and by abusing notation, the time index t may
appear as a subscript of the state and control variable, e.g.,
xt and ut.

5.1 Notation and state variables

Let us first introduce the following notation:

− We define the infinite-step utility function under the
baseline operation as

Jbase(x0)
.
=

∞∑
t=0

δtg(xt, 0),

i.e., it corresponds to the infinite-step utility function
when no commitments are offered to the DA spot
market.

− We define the k-step-control utility as

Jµ,k∞ (x0)
.
=

k∑
t=0

δtg(xt, µ(xt)) + δk
∞∑

t=k+1

δt−kg(xt, 0),

i.e., it corresponds to the infinite-step utility when for
t ≤ k we employ policy µ, while for any time t > k
we follow the baseline controller.

− We define the k-plus-L-step-control utility as follows:

Rµ,kL (x0)
.
=

k∑
t=0

δtg(xt, µ(xt)) + δk
k+L∑
t=k+1

δt−kg(xt, 0),

where the baseline controller is applied for L ≥ 1
steps after k. Under the baseline controller, we also
define:

Rbase,k
L (x0)

.
=

k+L∑
t=0

δtg(xt, 0).

− We define ∆RL(x, µ(x))
.
= Rµ,0L (x)−Rbase,0

L (x), which
captures the difference between the 0-plus-L-step-
control utility with the corresponding one under the
baseline controller.

The state xt at the beginning of time interval t will
comprise the following parameters for all batteries i ∈ I:

− SOCi(t), state-of-charge of battery i at time t,
− vc,i(t), charging potential of i at time interval t,
− vd,i(t), discharging potential of i at time interval t,
− {λDA(t), λDA(t + 1), ..., λDA(t + L)}, the L-length

sequence of future DA prices,
− λDA,f (t), the average future price over the time hori-

zon of L time steps ahead, i.e., within time intervals
t+ 1 until t+ L,

− ψbi (t) ∈ R+, total energy that is procured from the
grid by battery i under the baseline controller over
a future time horizon of L steps, i.e., within time
intervals t+ 1 until t+ L,

− φbi (t) ∈ R−, total energy that is fed into the grid by
battery i under the baseline controller over a future
time horizon of L steps, i.e., within time intervals t+1
until t+ L.

Finally, denote ηc,i, and ηd,i to be the charging and
discharging efficiency rates of battery i, respectively, and
χi to be the energy capacity of battery i.

5.2 Zero-step-control guarantees

In this section, and given the above definitions, we estab-
lish long-term guarantees over the original criterion Jµ∞(x),
and under certain conditions. For some ε > 0, let us define
the zero-step-control optimal policy µ∗ε : X 7→ [−1, 1] such
that, for any state x we have

µ∗ε(x)
.
=


arg max

u∈U(x)
{∆RL(x, u)− ε}︸ ︷︷ ︸

.
=×

, if × > 0

0 if × ≤ 0

(6)

where 4

U(x)
.
=

[
max{vd,i(t), ηd,iηc,iφbi (t)}

vd,i(t)
,

min{vc,i(t), ψbi (t)}
vc,i(t)

]
.

This policy maximizes the 0-plus-L-step-control utility in
comparison to the corresponding baseline utility starting
from the same state x. Note that the optimal policy sug-
gests a non-zero control µ∗ε(x) 6= 0 only if ∆RL(x, µ∗ε(x)) >
0, i.e., the 0-plus-L-control utility increases with respect to
the corresponding baseline utility starting from x. We will
impose the following design assumption on the definition
of time horizon of L steps.

Assumption 5.1. The time horizon of L steps is sufficiently
small such that for any time interval t: a) either {φbi (t) ≤
0, ψbi (t) = 0} or {φbi (t) = 0, ψbi (t) > 0} but not both, b)
if ψbi (t) > 0 then φbi (t + 1) = 0, and c) if φbi (t) < 0, then
ψbi (t+ 1) = 0.

Essentially, Assumption 5.1 requires that the horizon of
L steps ahead is short enough such that the household
does not procure and feed-in energy concurrently within a
window of L time steps.

Lemma 5.1. Let L ≥ 1 satisfy Assumption 5.1. For some
initial state x0, let the control input sequence {u∗0, 0, ..., 0}
be implemented, where at zero-step u∗0 = µ∗ε(x0) is
applied, followed by an L-step implementation of the
baseline controller. Let also {x0, x01, x02, ..., x0L} denote the
evolution of the state under this control sequence, and

4 In case vc,i(t) = 0 or vd,i(t) = 0 the corresponding fraction is
assigned the 0 value.
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{x0, xb1, xb2, ..., xbL} denote the corresponding sequence un-
der the baseline operation. Then, x0L+1 ≡ xbL+1.

Proof. Without loss of generality, let us consider the case
that {φbi (0) = 0, ψbi (0) > 0} within the upcoming L time
steps. (The case of {φbi (0) ≤ 0, ψbi (0) = 0} follows similar
reasoning.) Recall that according to the baseline controller,
the household procures energy from the grid at time t only
if SOCi(t) ≡ 0 and Pload,i(t) > 0. Thus, ψbi (0) > 0 implies
that, under the baseline controller, there exists a time step
indexed by 1 ≤ t′ ≤ L within which the battery reaches
the empty state. Let also t′ ≤ t′′ ≤ L be the last time step
within which the battery is at an empty state. Also,

0 ≤ ψbi (0) = −SOCi(0)χiηd,i−

∆T

t′′∑
t=1

{
[∆Pi(t)]− + [∆Pi(t)]+ ηc,iηd,i

}
(7)

i.e., the energy that household i procures from the grid
during the upcoming t′′ steps will be at least as much as the
total energy needed during the same period (taking also
into account the energy losses when charging/discharging
the battery). Given our control decision u∗0 ≥ 0, energy
0 ≤ Ei(0)

.
= u∗0vc,i(0) ≤ ψbi (0) is procured within time

interval 0. This implies that, under the control sequence
{u∗0, 0, ..., 0}, the battery will also reach the empty state
within interval t′′ or earlier. As a consequence, at time
steps t > t′′, where the baseline controller is implemented,
the state will coincide with the corresponding state under
the baseline controller profile. Thus, at the end of the
Lth time interval, we should have x0L+1 ≡ xbL+1, which
concludes the proof. �

Lemma 5.1 relates the state variables at the end of the
zero-step-control sequence with the corresponding ones of
the baseline process. This further allows for establishing
performance guarantees when µ∗ε is implemented repeat-
edly, as the following proposition demonstrates.

Proposition 5.1. Under the hypotheses of Lemma 5.1 and
for a discount factor δ ∈ (0, 1), let the zero-step-control
optimal policy µ∗ε, ε > 0, be implemented repeatedly for all
future time intervals t = 0, 1, ..., starting from any initial
state x0 ∈ X . Then,

J
µ∗ε∞ (x0) ≥ Jbase(x0).

Proof. As in Lemma 5.1, let x0, x
b
1, x

b
2, ..., x

b
L, ... denote

the evolution of the state under the baseline controller,
and x0, x

0
1, x

0
2, ...x

0
L, ... denote the evolution of the state

when implementing the optimal zero-step-control sequence
{u∗0, 0, 0, ...}, where u∗0 = µ∗ε(x0). Without loss of general-
ity, consider the case that ψbi (0) > 0 which will lead to a
potential activation 0 ≤ Ei(0)

.
= u∗0vc,i(0) ≤ ψi(0). Given

Lemma 5.1, we have x0L+1 ≡ xbL+1, x0L+2 ≡ xbL+2, ..., which
implies that

J
µ∗ε ,0∞ (x0) =

g(x0, u0) + δg(x01, 0) + ...+ δLg(x0L, 0) + δL+1Jbase(x
b
L+1).

Given the definition of the optimal zero-step-control policy
µ∗ε in (6), we should also have:

J
µ∗ε ,0∞ (x0)− Jbase(x0) =R

µ∗ε ,0
L (x0)−Rbase,0

L (x0)

= ∆RL(x0, µ
∗
ε(x0)) ≥ 0.

Under the new profile of the states x0, x
0
1, x

0
2, ...x

0
L, ..., let

ψ0
i (1) denote the energy needed within the upcoming L

time steps under the baseline controller when starting from
state x01. By Assumption 5.1, ψ0

i (1) ≥ 0 and φ0i (1) = 0,
i.e., the battery may not feed-in energy within interval
t = 2 until t = L + 1. (If energy is fed-in before time
interval L + 1, it contradicts the fact that under u∗0 the
energy charged is less than the energy needed, i.e., the
battery gets empty before L + 1.) It suffices to consider
the case that ψ0

i (1) > 0, which implies that we still need
energy under the new baseline. Given that u∗0 > 0 (i.e.,
we charged energy) and x0τ ≡ xbτ for all τ ≥ L+ 1, then
ψ0
i (1) ≤ ψbi (1), i.e., we need less energy as compared to

the original baseline. We conclude that under an updated
control sequence {u∗0, u∗1, 0, ...}, where the state evolves as
{x0, x01, x12, x13, ..., x1L, x1L+1}, we have x1L+2 ≡ xbL+2, i.e.,
the state merges again to the baseline profile. In this case,

J
µ∗ε ,1∞ (x0)− Jbase(x0)

=R
µ∗ε ,1
L (x0)−Rbase,1

L (x0)

= g(x0, u
∗
0) + δR

µ∗ε ,0
L (x01)−Rbase,1

L (x0)

= g(x0, u
∗
0) + δRbase,0

L (x01) + δ∆RL(x01, u
∗
1)−Rbase,1

L (x0)

=R
µ∗ε ,0
L (x0) + δL+1g(xbL+1, 0) + δ∆RL(x01, u

∗
1)−

Rbase,1
L (x0)

=R
µ∗ε ,0
L (x0)−Rbase,0

L (x0) + δ∆RL(x01, u
∗
1)

= ∆RL(x0, u
∗
0) + δ∆RL(x01, u

∗
1).

Analogously, we can show that for any k = 1, 2, ...

Jµ
∗,k
∞ (x0)− Jbase(x0)

= ∆R
µ∗ε
L (x0) + δ∆R

µ∗ε
L (x11) + ...+ δk∆R

µ∗ε
L (xkk)

= ∆RL(x0, u
∗
0) +

k∑
t=1

δt∆RL(xt−1t , u∗t ) ≥ 0,

where xt−1t is the state after implementing the optimal pol-
icy µ∗ε for t consecutive steps and starting from x(0) = x0.
Given the boundedness of the involved functions and a
discount factor δ < 1, the conclusion follows by taking the
limit as k →∞. �

Proposition 5.1 guarantees that, when an optimal policy
is designed on the basis of the 0-plus-L-step-control util-
ity and it is implemented repeatedly, then the infinite-
step utility may not decrease. Such observation simplifies
significantly the design process of an optimal policy. In
particular, note the following:

− Given the finite length of L steps ahead, based
on which the 0-plus-L-step-control is defined, there
are no long-term impacts on the utility. Thus, the
main challenges of this optimization discussed in Sec-
tion 3.4 have indirectly been addressed.

− Note that it is sufficient to accurately approximate
the 0-plus-L-step-control utility difference ∆RL(x, µ)
in order to design an optimal policy. This provides
an additional computational advantage compared to
standard ADP approaches, where an approximation
is usually performed on the generic infinite-step util-
ity Jµ∞.
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5.3 Zero-step-control and arbitrage

The selection of the L-step horizon, over which poli-
cies/controls are computed, is based on Assumption 5.1.
The size of L corresponds to the time within which the
battery cannot reach both its two extreme states (fully
charged and empty). For standard batteries the future
horizon of L steps will correspond to 4-5 hours, which is
a rather short optimization horizon as compared to the
one-day optimization horizon. The question that naturally
emerges is whether such myopic decision-making process
neglects significant profit opportunities. Additional profit
opportunities could have been generated through arbi-
trage, when charging the battery at times when the price
is low, and discharging when the price is higher. Such
reasoning though would neglect the long-term impacts on
the baseline operation of such actions (as we discussed in
Section 3.4). Even if we neglect such long-term impacts on
the baseline operation, arbitrage could never be profitable
for the following reasons: a) any energy procurement is
additionally charged with grid tariffs (which are fixed and
usually in the range of 60 Euros / MWh); b) any ex-
tra battery charge/discharge (outside the baseline needs)
incurs additional energy losses; c) in several countries,
green certificates should be issued for any energy that is
fed into the grid. The above limitations render arbitrage
practically impossible. As a consequence, we could only
gain by appropriately shifting the charging/discharging
(baseline) schedules of the battery, and this can always
be performed by exploiting the forecast quantities φbi (t)
and ψbi (t), computed over the L-step horizon.

5.4 Zero-step-control approximation

Given the guarantees of Proposition 5.1, it remains to pro-
vide an approximation function for the zero-step-control
utility difference ∆RL(x, µ(x)). We introduce the following
approximation %(x, u), which is defined as follows:

%(xt, ut)
.
=

α1 · [utvc,i(t)]+ · [ηc,iηd,iλDA,f (t)− λDA(t)]+−
α2 · [utvd,i(t)]+ · [λDA,f (t)− ηc,iηd,iλDA(t)]− + α3. (8)

The control input ut is given by (6) where we replace
∆RL with %(xt, ut). The parameters α1, α2 and α3 are
unknown and need to be estimated. We impose the addi-
tional constraint that α1 > 0 and α2 > 0. The approx-
imation function %(x, u) can be trained using standard
linear regression (with a non-linear basis functions). This
approximation function tries to generate profitable shifts
of procurement and feed-in times. For example, if the
baseline operation of a household i in the upcoming short-
term horizon of L steps procures energy from the grid,
then we may consider procuring this energy earlier if the
price satisfies ηc,iηd,iλDA,f (t)− λDA(t) > 0.

The specific choice of % function can be used to generate
actions in place of ∆RL in (6). It generates policies that
are specifically tailored to increase the utility within the
L-step future horizon. Let µ̄ be the resulting policy based
on the approximation %. It is straightforward to check that
if the accuracy of the approximation satisfies ‖%(x, µ̄(x))−
∆RL(x, µ∗ε(x))‖ ≤ θ uniformly on x, then the performance
guarantees of Proposition 5.1 are satisfied as long as θ < ε.
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Fig. 4. Approximation of the zero-step-control utility dif-
ference.

6. EVALUATION

To evaluate the proposed framework, we performed simu-
lations on real-world data collected from N = 30 battery-
storage systems located in the state of Upper-Austria, over
the duration of approximately one year. According to such
simulations, at the beginning of each day, we generate
actions over the 96 intervals of the following day (by
employing the approximation function %(x, u) and using
forecast data). We implement this sequence of actions and
at the end of the day we perform a training update of
function % given the actual utility recorded. Given that
one year of data is usually not enough, we used these data
more than once. A small subset was reserved for testing.

Figure 4 provides the performance of the training process,
and shows that indeed function % approximates well the
zero-step-control utility difference. Figure 5 provides a
sample response of the controller when generating the
optimal commitment levels for the next day and for a
single household. In the first figure, we see the commitment
decisions (black line) which are positive when charging and
negative when discharging. In the second figure, we see
the impact of the commitments on the total and baseline
utility. Finally, in the last figure, we see how the state-of-
charge evolves. Note that the decision, based on the zero-
step-control approximation, was to shift the discharging of
the battery at an earlier time, when the price was higher.

Finally, Figure 6 provides a comparison of the proposed
zero-step-control ADP methodology with the correspond-
ing solution under a Linear-Programming formulation of
the problem and over one week. We observe that the over-
all credit created by the two methods is almost identical.
Furthermore, we also observe that indeed the zero-step-
control ADP methodology quite robustly increases the
utility as Proposition 5.1 dictates.

7. CONCLUSIONS

This work presented an optimization framework for opti-
mal participation of an aggregator in the DA spot-market
through the direct control of a set of residential battery-
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Fig. 5. Sample response of zero-step-control ADP over one
day and for a single household.
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Fig. 6. Comparison between zero-step-control ADP and
LP solutions.

storage systems. The aggregator optimizes the amount
of flexibility (energy that can be charged/discharged in
the participating batteries) that can be offered to the
DA market during the next day. Given the possibility of
erroneous forecasts, as well as the complexity of the in-
volved optimization, we proposed a reinforcement-learning
methodology that trains over time and provides a con-
trol strategy for each time interval of the next day. The
derivation was based on a zero-step-control approximate-

dynamic-programming architecture that takes advantage
of the specifics of this problem, and can provide analytical
guarantees with respect to the derived long-term perfor-
mances.
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