
A novel high speed multi-objective
evolutionary optimisation algorithm ?

Viviane De Buck ∗ Ihab Hashem ∗ Jan Van Impe ∗

∗ BioTeC+, Chemical and Biochemical Process Technology and Control
Department of Chemical Engineering, KU Leuven, Belgium (e-mail:

viviane.debuck@kuleuven.be, ihab.hashem@kuleuven.be,
jan.vanimpe@kuleuven.be).

Abstract: Multi-objective optimisation problems (MOOPs) consider multiple objectives simultaneously.
Solving these problems does not render one unique solution but instead a set of equally optimal solutions,
i.e., the Pareto front. The goal of solving a MOOP is to accurately and efficiently approximate the Pareto
front. The use of evolutionary optimisation algorithms is widespread in this discipline. During each
iteration, parent solutions are combined and mutated to create new offspring solutions. Both populations
are subsequently combined and sorted. Only theN fittest solutions of the combined set are selected as the
parent solutions for the subsequent iteration. The fitness of a solution is defined by its convergence to the
Pareto front and its contribution to the overall solution diversity. Widely used evolutionary algorithms,
like NSGA-II (Deb et al., 2002), use non-dominated sorting to assess the convergence of solutions and
the concept of crowding distance to ensure a high solution diversity. Both concepts, however, require
that allN solutions of the population are compared with all other (N−1) solutions for both aspects, and
this for all M objectives. This results in a computational complexity of O(MN2). In this contribution,
a novel evolutionary algorithm is presented, boasting a significantly lower computational complexity
of O(N log(N)). This is achieved by subdividing the feasible space into angular sections. Solutions
are scored based on their distance from the current Utopia point and the overall crowdedness of their
respective section. Sorting the population based on the attributed scores allows the selection of the N
fittest solutions, without having to mutually compare them.

Keywords: Evolutionary optimisation algorithms, Algorithm development,

1. INTRODUCTION

The (bio-)chemical industry is one of the most competitive in-
dustries in the world resulting in tight profit margins. Addition-
ally, due to strict regulations, especially in the pharmaceutical
and biotechnological sector, the possibilities to increase profits
or adapt the process are limited. It is therefore of the essence
that processes are executed as optimally as possible. As opti-
mality is a broad spectrum and the already mentioned regula-
tions often constrain the process possibilities in certain aspects,
optimisation problems are often conceptually and mathemati-
cally challenging problems to design and solve. Multi-objective
optimisation (MOO) gives the process operator the opportunity
to optimise his/her process with respect to multiple, and often
conflicting, objectives. Commonly, optimisation objectives are
of economical (e.g., profit), societal (e.g., required full-time
equivalents), or environmental (e.g., energy use or production
of greenhouse gasses (GHGs)) nature (Ozcan-Deniz and Zhu,
2017). As multiple objectives are considered simultaneously,
the resulting multi-objective optimisation problem (MOOP)
will not provide a single unique optimal solution. Instead, an
infinite set of equivalent trade-off, or non-dominated, solutions
is obtained. When the decision maker (DM) would switch from
one non-dominated solution to another, the cost of certain ob-
jectives will decrease (i.e., become more optimal), while the
? This work was supported by KU Leuven [PFV/10/002] Center-of-Excellence
Optimization in Engineering (OPTEC). V. De Buck is supported by FWO-SB
Grant 1SC0920N. I. Hashem is supported by FWO Grant 1S54217N.

cost of others will increase. This phenomena is called a trade-
off. While it mostly possible to translate all M considered
objectives into a common unit, e.g., money, and combine into
a single objective, MOO has some distinct advantages over
single-objective optimisation (SOO) (Marler and Arora, 2004).

One of the most important advantages of MOO over SOO is that
a MOO allows the user to examine how the different objectives
correlate to each other. This is aspect is especially interesting
when one of the objectives is less sensitive to changes in the
optimisation variables than another objective. The resulting
Pareto front in these scenarios will display so-called plateaus,
which are Pareto front regions in which one objective cost
will change drastically while the cost for another objective
stays more static. Decision makers are not prone to selecting
working points that are located on a plateau of the Pareto
front because it is possible to improve at least one objective
without significantly demoting the other (Mattson et al., 2004;
Hashem et al., 2017). In the case of an SOO, it is impossible
to do this assessment as only one solution is provided and the
correlations of the objectives remain unknown. An additional
advantage of MOO over SOO is that the different objectives
remain intact and can be expressed on different scales and units.
Especially when regulations, or other rapidly changing process
aspects, or a high number of objectives are considered, it is
advisable to not translate them into one objective. Also note
that some qualitative objectives that might be considered, like

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6838

environmental or societal impact, are not easily translated into
a common, quantitative unit (Coello et al., 2019).

MOOPs are generally mathematically challenging problems
and are dealt with using algorithms especially designed for
the purpose (Bhonsale et al., 2018). Two main algorithm cat-
egories can be distinguished: (i) Deterministic algorithms, and
(ii) Stochastic algorithms (Logist et al., 2010). Deterministic
algorithms transform the MOOP into a finite set of SOOPs
using parameters. The generated SOOPs are subsequently iter-
atively solved using a SOO-algorithm. The unique solutions of
the generated SOOPs are also solutions of the original MOOP.
Deterministic algorithms are however prone to converge to lo-
cal optima on the Pareto front, can have difficulties generating
solutions located within non-convex Pareto front section, and
can only generate one solution during each iteration. Stochastic
algorithms on the other hand tackle the MOOP in its entirety.
Unlike the deterministic algorithms, they are considered as
global optimisation algorithm while they are less prone to con-
verge to local optima and are able to generate solutions in the
non-convex Pareto front sections. Additionally, they are capable
of generating multiple Pareto-optimal solutions in a single run
(Logist et al., 2010; Deb et al., 2002). The overall concepts of
multi-objective optimisation, as well as the background of evo-
lutionary algorithms, are discussed more into detail in Section 2

Evolutionary optimisation algorithms are a subcategory of the
stochastic algorithms. Their overall functionality mimics the
concept of selection of the fittest as seen in nature. A set of
parent solutions is used to generate new offspring solutions with
the use of crossovers, which are based on sexual reproduction,
and mutations. Solutions are subsequently sorted and selected
based on their fitness. The fitness of a solution is defined by
its convergence to the Pareto front and its contribution to the
solution diversity. One of the most commonly used evolutionary
optimisation algorithms is NSGA-II, developed by Deb et al.
(2002). For the fitness-assessment of the generated solutions, it
uses fast non-dominated sorting and crowding distances. Both
concepts, however, rely on the mutual comparison of each of
the N generated solutions with all other (N − 1) solutions
of the population, and this for all M objective functions. This
results in a computational complexity of O(MN2) (Deb et al.,
2002). Both non-dominated sorting and crowding distances are
explained more into detail in Section 2.2.

A multitude of efforts have already been undertaken to re-
duce the computational complexity and/or time requirements
of evolutionary algorithms. One approach to reduce the time
requirements of evolutionary algorithms is to provide them with
a problem-relevant stopping criterion, allowing to terminate
the algorithm once solutions have converged. De Buck et al.
(2019) presented, amongst others, a novel stopping criterion
for an evolutionary algorithm based on NSGA-II. This resulted
in a significant time gain compared to NSGA-II. However, the
computational complexity of the proposed algorithm remains
O(MN2). Reducing the computational complexity of evolu-
tionary algorithms is mainly obtained by omitting the non-
dominated sorting step. Usually, divide-and-conquer schemes
are used for this purpose. The basic philosophy behind these
schemes is that the computational complexity of the algorithm
can be significantly decreased if mutual comparison can be
replaced with comparing only a small subset of solutions with
each other. Mishra et al. (2019), for instance, introduced a
divide-and-conquer based non-dominated sorting scheme, re-

sulting in an evolutionary algorithm with a best case computa-
tional complexity of O(N logN +MN).

This contribution presents a novel high-speed multi-objective
optimisation algorithm with a computational complexity of
O(N logN), which is the computational complexity of the
Quick sort algorithm, as implemented in Matlab. The presented
algorithm does not employ non-dominated sorting, nor does
it use the concept of crowding distance to maintain a high
solution diversity. Instead it uses an angular sorting scheme,
which subdivides the feasible space into angular subsections.
The fitness of solutions is subsequently assessed based on
their distance to the Utopia point, i.e., the point containing
all M individual minimisers of the considered objectives, and
the crowdedness of their respective angular section. Previous
efforts at subdividing, or decomposing, the feasible space of
the MOOP in order to increase the performance of evolutionary
algorithms (EA’s) include, among others, the MOEA/D as
proposed by Zhang and Li (2007).

The developed Genetic Angular SorTing O(N logN) al-
gorithm, or the GASTON-algorithm for short, is discussed
more into detail in Section 3. The NSGA-II, MOEA/D and
GASTON-algorithm are applied to the CONSTR- and DO2DK-
case studies (see Section 4). The obtained results are discussed
in Section 5 and a conclusion is drafted in Section 6.

2. MULTI-OBJECTIVE OPTIMISATION

2.1 Mathematical definitions

Equation (1) presents the mathematical definition of a MOOP
that will be used in this contribution (Das and Dennis, 1997;
Logist et al., 2010):

min
x∈C

F(x) = {J1(x), . . . , JM (x)} (1)

The feasible space C is defined by (Das and Dennis, 1997;
Logist et al., 2010):

C = {x : h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b} (2)
with h(x) = 0 the (non-)linear equality constraints, g(x) ≤ 0
the (non-)linear inequality constraints, and a and b the respec-
tive lower and upper boundaries of the variables x ∈ Rn.

2.2 Evolutionary algorithms

Evolutionary algorithms are powerful multi-objective optimi-
sation algorithms that are widely used within the field. Their
main advantages over other optimisation algorithms are their
ability to generate multiple optimal solutions per iteration, their
capability to generate optimal solutions in non-convex Pareto
front regions, and the fact that they are less prone to converge to
local optima. Additionally, while they do not require derivative
information, they are extensively used for black-box multi-
objective optimisation problems. Their main outline is based
on Darwinian selection where only the N fittest solutions are
selected from a combined solution set of parent solutions and
offspring solutions. The initial phase of an evolutionary algo-
rithm consists of generating a random set of parent solutions
P0 within the feasible space which is defined by the (non-
)linear constraints and the optimisation variables lower and
upper boundaries (Deb et al., 2002).

Considering the t-th iteration, the parent set Pt−1 (|Pt−1| =
N) is used to generate an offspring set Qt (|Qt| = N) via

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6839

crossovers and mutations. A crossover is the algorithmic equiv-
alent of sexual reproduction and consists of a linear recombi-
nation of two parent solutions, rendering two new offspring
solutions. A mutation on the other hand consists of randomly
changing several optimisation variables of a parent solution,
resulting in one new offspring solution. To increase the con-
vergence speed of evolutionary algorithms, elitism is applied,
which states that the best solutions of the previous iteration re-
main unchanged in the current one. This is obtained by merging
the parent set Pt−1 and the offspring setQt of the t-th iteration
into the combined solution set Rt = Pt−1 ∪ Qt (|Rt| = 2N).
Only theN fittest solutions of the combined solution setRt are
selected for the parent set Pt of the (t + 1)-th iteration (Deb
et al., 2002).

As already mentioned, the fitness of a solution is defined
by its convergence to the Pareto front and its contribution
to the solution diversity. NSGA-II, designed by Deb et al.
(2002), employs a fast non-dominated sorting step for sorting
the solutions of the combined solution population Rt based
on their convergence to the Pareto front. The non-dominated
sorting step appoints each solution to one and only one non-
dominated front Fi. All solutions that are part of the same non-
dominated front Fi display the same degree of convergence
to the Pareto front and cannot be considered better or worse
than each other. These solutions do not dominate each other.
However, they do dominate all solutions that are located in the
higher non-dominated fronts Fj (j > i), and are dominated
by all solutions located in the lower non-dominated fronts Fk

(k < i). A solution p dominates q if and only if (Deb et al.,
2002; Logist et al., 2010):

p ≺ q⇔ F(p) ≤ F(q) ∧ ∃ l : Jl(p) < Jl(q) (3)

with l ∈ {1, . . . ,M}. Worst case scenario is that all N
solutions are located in a different non-dominated front. In that
scenario, for all N solutions, the objective cost of all (N −
1) solutions must be compared with the objective cost of the
considered solution, and this for all M objectives, resulting in a
computational complexity of O(MN2). The solutions located
in the lowest non-dominated fronts are favoured for selection.

Subsequently, in order to maintain a good solution diversity,
the crowding distance of all solutions is calculated and this
for each non-dominated front. The crowding distance of a
solution is the average length of the edges in each objective
direction of the cuboid that has the neighbouring solutions of
the considered solution as vertices. When a solution has a high
crowding distance, it implies that its neighbouring solutions
are located at a high distance, and thus that the solution in
question is located in an under-explored part of the Pareto
front. The solutions with the highest crowding distances are
favoured for selection. Again, the crowding distance concept of
the NSGA-II algorithm requires all N solutions to be mutually
compared, and this for all objectives. However, the objective
costs of the solution are now only compared to those of the
solutions that are located within the same non-dominated front,
resulting in a lower amount of required comparison, and thus
a lower overall complexity than the non-dominated sorting
step. The GASTON-algorithm presented in this contribution
boasts a non-dominance free fitness assessment, resulting in a
significantly lower computational complexity.

3. GASTON ALGORITHM CONCEPT

The main idea of the algorithm is to design an evolutionary
system where Darwinian selection acts to select for solutions
that get as close as possible to the Pareto front, while at the
same time selecting against crowdedness. Also, this has to be
done while avoiding computationally expensive pairwise com-
parison of solutions. The algorithm starts by creating an initial
population of solutions P0 of size N . Then, as typically done
in genetic algorithms, crossover and mutation mechanisms are
used to generate an offspring populationQ0 of size N , with the
probability of a certain offspring to be a result of a crossover
or mutation event as µc and µm respectively, µc + µm = 1. A
combined population of size 2N is hence generated, denoted by
R1. This population gets processed via three steps: normalisa-
tion, angular sorting and fitness calculation. The normalisation
step aims to overcome the differences in scale between different
objectives values. This is done via finding the minimum and
maximum value for each objective Ji for the set of solutions in
the population, denoted as amin

i and amax
i respectively. After-

wards, the normalised value of each objective for each solution,
J̄i(x), is calculated as follows:

J̄i(x) =
Ji(x)− amin

i

amax
i − amin

i

(4)

The second step is the angular sorting of solutions, illustrated in
Fig. 1. First, the distance between each solution and the Utopia
point, d, is calculated where d =

√
J̄1(x)2 + J̄2(x)2 for a bi-

objective problem. Then, the angle at which every solution lies
with respect to the origin can be subsequently calculated as θ =

sin−1
J̄2(x)

d
. After each solution gets assigned a θ, a number

of reference r lines, entered a priori by the user, is uniformly
drawn in the space to span all solutions. Subsequently, each
solution gets assigned to the reference line which has the closest
angle to it, such that for each reference line, a set of solutions
Sj gets assigned to it, with j ∈ {1, 2, ..., R}. The third step in
the algorithm is calculating the fitness of the points belonging
to each reference line in the solution space. For a reference line
set, Sj of size R, the fitness of any solution k, Πk, is calculated
as follows:

Πk =

1

dk
1

d1
+

1

d2
++

1

dR

(5)

Using this fitness equation ensures the realisation of two crit-
ical conditions. First, solutions closest to the origin will get
assigned highest fitness. Secondly, the sum of fitness of solu-
tions belonging to any reference line will be equal to 1. Hence,
solutions belonging to less crowded reference lines will enjoy
a competitive advantage over solutions in crowded sets. And
selection will tend to spread solutions across reference lines.
Finally, to ensure that solutions quickly spread to cover the
whole Pareto front, the two solutions with lowest and highest
θ will get always selected, whatever their position with respect
to other points on their reference line. Hence, even if the initial
population lay at close angles with respect to each other in the
solution space, subsequent generations will angularly spread
quickly. Finally, the population is sorted according to fitness
and the bestN individuals are selected to generate a new parent
population. The flowchart of the algorithm is shown in Fig. 2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6840

Fig. 1. Illustration of the angular sorting used in the algorithm.
Each reference line is assigned a group of points, where
the sum of the fitnesses of the points belonging to the same
group is equal to 1. Also, the two points with lowest and
highest angle get assigned maximum fitness.

Fig. 2. Flowchart of the GASTON algorithm.

4. CASE STUDY

The multi-objective optimisation case study considered in this
paper to benchmark the algorithm is the CONSTR-problem,
first presented by Deb et al. (2002). The mathematical formula-
tion of this problem is as follows:

min
z

(J1, J2) (6)

with the two objectives J1 and J2 defined as follows:

J1(z) = z1 (7)
J2(z) = (1 + z2)/z1 (8)

under the following constraints:
g1(z) = z2 + 9z1 ≥ 6 (9)
g2(z) = −z2 + 9z1 ≥ 1 (10)

where
z1 ∈ [0.1, 1.0] (11)
z2 ∈ [0, 5] (12)

The CONSTR-problem is a bi-objective optimisation problem
is typically used to test the performance of multi-objective
optimisation algorithms. NSGA-II algorithm has been applied
to it before and successfully provided a complete representation
of the Pareto front in O(N2) time. Hence, this case study is
ideal for an initial comparison of the algorithm provided in this
work and an established algorithm in literature. Additionally,
the Pareto front of this problem is characterised by a a steep
region, ending up with a sharp knee and a flat segment. This
abrupt changes in the geometry of the Pareto front could pose
a difficulty for optimisation algorithms to capture them. Also,
the flat segment is expected to pose a potential challenge for the
GASTON algorithm since points lying in this segment will have
similar angles to each other. For these reasons, the CONSTR-
Problem is a rich case study to test the novel algorithm.

The Pareto front of the DO2DK-problem has an overall similar
shape to that of the CONSTR-problem, as it also has a flat
segment. Additionally, it has both convex and concave Pareto
fronts areas, which could pose additional difficulties regard-
ing the convergence of the solutions. The DO2DK-problem is
mathematically defined as follows (Branke et al., 2004):

min
z

(J1, J2) (13)

with

J1(z) = g(z)r(z1) sin

(
π
z1

2s+1
+

(
1 +

2s − 1

2s+2
π

)
+ 1

)
(14)

J2(z) = g(z)r(z1)
(

cos
(
π
z1
2

+ π
)

+ 1
)

(15)

and

g(z) = 1 +
9

n− 1

n∑
i=2

zi (16)

r(z1) = 5 + 10(z1 − 0.5)2 +
1

k
cos(2kπz1)2s/2 (17)

zi ∈ [0, 1], i = 1, 2, . . . , n (18)

The skewness of the Pareto front can be adapted using the s-
variable, whereas the number of so-called Pareto front knees
can be altered using the k-variable. n represents the number of
decision variables. The DO2DK-parameters are set as follows:
s = 1.00, n = 300, k = 4.

5. RESULTS AND DISCUSSION

The NSGA-II algorithm and GASTON-algorithm are both ap-
plied to the CONSTR and DO2DK-case studies, as presented
in Section 4. The general algorithm parameters, like the popula-
tion size, the crossover and mutation probabilities, and the max-
imum number of iterations, are the same for both algorithms.
For the GASTON-algorithm, in order to assess the influence of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6841

the number of reference lines on the quality of the solutions,
for different algorithm set-ups are tested. The numerical values
of the algorithm parameters are presented in Table 1. Note that
the MOEA/D-algorithm does not employ a mutation step for
solution reproduction.

Table 1. Values of the parameters of the NSGA-II
and GASTON-algorithm.

NSGA-II, MOEA/D & GASTON
Population size 250
Crossover probability 0.9
Maximum iterations 500

NSGA-II & GASTON
Mutation probability 0.1

GASTON
Reference lines 18, 36, 72, 144

The Pareto fronts of the CONSTR-case study generated by
the GASTON-algorithm are presented in Fig. 3 (using 18, 36,
and 72 reference lines), and Fig. 4 (using 144 reference lines).
Matlab R2018b is used as the optimisation platform and is run
on a 64-bit Windows 10 system with an Intel Core i5-8500 CPU
@ 3.00 GHz processor and 16 GB of RAM installed.

(a) 18 reference lines (b) 36 reference lines

(c) 72 reference lines

Fig. 3. Pareto fronts of the CONSTR-case study generated by
the GASTON-algorithm.

Several observations can be drafted based on a visual analysis
of the generated Pareto fronts: (i) Increasing the number of
reference lines increases the diversity of the generated solu-
tions, (ii) Not all generated solutions are Pareto-optimal. The
first observation is most likely correlated to the dynamic nature
of the scoring mechanism and the shape of the Pareto front.
While the anchor points of the population can change with each
iteration, so will the position of the Utopia point. Solutions that
are located closer to the Utopia inevitably will get a higher
score to some extent, leading to an increased selections of these
solutions. In order to circumvent this huddling phenomenon,
the highest scoring solutions of the first and last reference lines
were always selected. Still, however, during the optimisation
process, fluctuating huddling and scattering phenomena were

Fig. 4. Pareto front of the CONSTR-case study generated by
the GASTON-algorithm (144 reference lines).

observed. To bypass this, a first future improvement of the
GASTON-algorithm could be to store during the optimisation
process the best anchor points that are generated thus far and
use these during the normalisation and clustering process. This
would only allow the actual non-normalised scope of reference
lines to increase, forcing the solutions to discover the entire
Pareto front and not to huddle together. The fluctuating hud-
dling phenomenon was less pronounced when the number of
reference lines used increased. This is presumably related to
the fact that with a decreasing number of reference lines, but
a fixed population size, all angular sections become equally
crowded, and thus decreasing the effect of crowdedness during
the selection procedure.

Fig. 5. Pareto front of the CONSTR-case study generated by
the NSGA-II, MOEA/D, and GASTON-algorithm.

When comparing the Pareto front of the CONSTR-case study
generated by the GASTON-algorithm (see Fig. 4) and the
NSGA-II and MOEA/D algorithms (see Fig. 5), it is notable
that not all solutions generated by the GASTON-algorithm
are non-dominated, whereas all 250 solutions generated by
the NSGA-II and MOEA/D algorithms have converged to the
Pareto front after 500 iterations. Nonetheless, the overall shape
of the Pareto front can be distinguished based on the solutions
generated by the GASTON-algorithm. If desired, the algorithm
can still easily be equipped with a non-dominated sorting step
during the last iteration in order to select and display only the
non-dominated solutions. Regardless, the GASTON-algorithm
is perfectly suitable to provide the DM with a accurate approx-
imation of the Pareto front in an extremely limited amount of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6842

time. The NSGA-II algorithm required 1379.6 s to generate the
Pareto front, the MOEA/D algorithm required 934.0 s, whereas
the GASTON-algorithm only required 24.7 s.

The Pareto front of the DO2DK-problem generated by all three
algorithms, is represented in Fig. 6.

Fig. 6. Pareto front of the DO2DK-case study generated by the
NSGA-II, MOEA/D, and GASTON-algorithm.

Contrarily to the CONSTR-case study, the solutions gener-
ated by the GASTON-algorithm have fully converged to the
DO2DK Pareto front, just like the solutions generated by the
NSGA-II and MOEA/D-algorithms. The GASTON-algorithm
does not fully explore the flat region of the Pareto front. Note,
however, that this flat region of the Pareto front represents a
so-called low trade-off area. Solutions that are located in a low
trade-off are less likely to be eventually picked by the decision
maker. The GASTON-algorithm required 35.6 s to generate its
solutions, whereas the NSGA-II algorithm required 1400.9 s
and the MOEA/D algorithm required 940.0 s.

6. CONCLUSION

The existence of multiple conflicting objectives is a common
feature in optimal control problems. The theoretical solution
of such problems is a set of solutions in which no objective
can be improved with out worsening at least another objective,
called the Pareto front. Genetic algorithms aim to capitalise
on Darwinian selection in order to reach a solution set that
approximates the Pareto front. A natural design concept for
such algorithms is to check for dominance; stochastically pro-
duce points in the solution space, assign highest fitness to the
solutions that are least dominated by other points in the solution
space. However, such strategy requires piece-wise comparison
between all points in the population and thus is computationally
expensive. In this paper, a novel algorithm is introduced which
depends on designing a fitness function such that points are
rewarded the closer they get to the Pareto front and punished
for being close to each other in the solution space. This way,
the candidate points population naturally evolves to provide a
representation of the Pareto front with out the need for expen-
sive dominance check operations. The algorithm is successfully
applied to benchmark case studies and showed a significant
reduction in computational time compared to established al-
gorithms in literature. Two noted drawbacks are that the final
representation produced by GASTON will still contain non-
dominated points and that the algorithm is not always capable
of fully exploring the Pareto front. However, this can be easily

circumvented by coupling the algorithm with a dominance fil-
ter and by updating the dynamic normalisation step using the
MOOP’s anchor points. In future work, the aim is to generalise
GASTON procedure for solving high dimensional problems,
as well as tuning the selection procedure to produce a more
smooth final result.

ACKNOWLEDGEMENTS

This work was supported by KU Leuven [PFV/10/002] Center-
of-Excellence Optimization in Engineering (OPTEC). V. De
Buck is supported by FWO-SB Grant 1SC0920N. I. Hashem
is supported by FWO Grant 1S54217N.

REFERENCES
Bhonsale, S., Telen, D., Vercammen, D., Vallerio, M., Hufkens,

J., Nimmegeers, P., Logist, F., and Van Impe, J. (2018).
Pomodoro: A novel toolkit for dynamic (multiobjective)
optimization, and model based control and estimation. IFAC-
PapersOnLine, 51(2), 719–724.

Branke, J., Deb, K., Dierolf, H., and Osswald, M. (2004).
Finding knees in multi-objective optimization. In Parallel
Problem Solving from Nature - PPSN-VIII, 722–731.

Coello, C.A.C., Brambila, S.G., Gamboa, J.F., Tapia, M.G.C.,
and Gómez, R.H. (2019). Evolutionary multiobjective op-
timization: open research areas and some challenges lying
ahead. Complex & Intelligent Systems, 1–16.

Das, I. and Dennis, J. (1997). A closer look at drawbacks of
minimizing weighted sums of objectives for pareto set gen-
eration in multi-criteria optimization problems. Structural
Optimization, 14.

De Buck, V., Nimmegeers, P., Hashem, I., Muñoz López, C.,
and Van Impe, J. (2019). Improving evolutionary algorithms
for multi-objective optimisation. Unpublished.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm: NSGA-
II. Evolutionary Computation, IEEE Transactions on, 6(2),
182–197.

Hashem, I., Telen, D., Nimmegeers, P., Logist, F., and
Van Impe, J. (2017). A novel algorithm for fast represen-
tation of a pareto front with adaptive resolution: Application
to multi-objective optimization of a chemical reactor. Com-
puters & Chemical Engineering, 106, 544–558.

Logist, F., Houska, B., Diehl, M., and Van Impe, J. (2010). Fast
pareto set generation for nonlinear optimal control problems
with multiple objectives. Structural and Multidisciplinary
Optimization, 42, 591–603.

Marler, R.T. and Arora, J.S. (2004). Survey of multi-objective
optimization methods for engineering. Structural and multi-
disciplinary optimization, 26(6), 369–395.

Mattson, C.A., Mullur, A.A., and Messac, A. (2004). Smart
pareto filter: Obtaining a minimal representation of multiob-
jective design space. Engineering Optimization, 36(6), 721–
740.

Mishra, S., Saha, S., Mondal, S., and Coello, C.A.C. (2019).
A divide-and-conquer based efficient non-dominated sorting
approach. Swarm and Evolutionary Computation, 44, 748 –
773.

Ozcan-Deniz, G. and Zhu, Y. (2017). Multi-objective optimiza-
tion of greenhouse gas emissions in highway construction
projects. Sustainable cities and society, 28, 162–171.

Zhang, Q. and Li, H. (2007). Moea/d: A multiobjective evolu-
tionary algorithm based on decomposition. IEEE Transac-
tions on Evolutionary Computation, 11(6), 712–731.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6843

