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Abstract: This paper presents an algorithm to calculate tightened invariant tubes for output
feedback model predictive controllers (MPC). We consider discrete-time linear time-invariant
(DLTI) systems with bounded state and input constraints and subject to bounded disturbances.
In contrast to existing approaches which either use pre-defined control and observer gains or
compute the control and observer gains that optimize the volume of the invariant sets for the
estimation and control errors separately, we consider the problem of optimizing the volume of
these sets simultaneously. The nonlinearities associated with computing the control and observer
gains are circumvented by the application of Farkas’ Theorem and an extended Elimination
Lemma, to convert the nonconvex optimization problem into a convex semidefinite program.
An update algorithm is then used to reduce the volume of the invariant tube through a finite
number of iterations. Numerical examples are provided to illustrate the effectiveness of the
proposed algorithm.

Keywords: Robust control invariant sets, linear matrix inequality, robust model predictive
control, uncertain linear systems, optimization

1. INTRODUCTION

Robust control invariant (RCI) sets are fundamental tools
in robust control synthesis for uncertain systems subject
to disturbances. RCI sets play an integral part in es-
tablishing stability of Robust Model Predictive Control
(RMPC) schemes (Tahir and Jaimoukha (2013)) and are
also suitable for robust time-optimal control (Blanchini
(1992); Mayne and Schroeder (1997)). Invariant set com-
putation has been discussed widely in the past several
decades (Blanchini and Miani (2008)), and important re-
sults are included in Kolmanovsky and Gilbert (1998);
Dorea and Hennet (1999). In Kolmanovsky and Gilbert
(1998), the authors show that the exact computation of
polytopic RCI sets for systems subject to uncertainty is
an intractable problem in general since it includes infinite
Minkowski’s sum terms. Therefore, most of the literature
has been concerned with the efficient computation of in-
ner/outer approximations to the maximal/minimal RCI
sets, see (Raković et al. (2005a,b); Raković and Baric
(2010); Trodden (2016)). More recently, an appealing ap-
proach is to consider both RCI set and feedback gain as
decision variables. Tahir and Jaimoukha (2014) presents
an algorithm to compute low complexity RCI sets for linear
discrete-time systems involving additive disturbances and
norm bounded uncertainty. Nevertheless, low-complexity
polytopic RCI sets restrict the number of faces of the
polytope. In the work of Liu and Jaimoukha (2015), the
authors advocate a method to compute full-complexity
polytopic RCI sets for linear systems subject to additive

disturbances, which allows us to compute less conservative
invariant approximations of RCI sets. This work has been
extended to linear systems subject to additive disturbances
and structured norm-bounded or polytopic uncertainties
in Liu et al. (2019).

Due to the large computational burden of conventional
on-line optimizations for RMPC, Langson et al. (2004)
proposes the concept of Tube MPC, which uses a piecewise
affine control law to maintain the controlled trajectories in
the tube even in the presence of uncertainty. In addition,
in many practical control problems, not all states are
measurable and an observer is required to estimate the
states. Mayne et al. (2006) proposes output MPC design
by using a Luenberger observer, the difference between
the actual and nominal states is the sum of the estimation
and control errors bounded by two separate invariant sets,
which are pre-computed along with pre-defined observer
and feedback gains. Kögel and Findeisen (2017) proposes
an idea to compute less conservative results on tighter
constraints with respect to Mayne et al. (2006), they adopt
a single tube to describe the sum of the estimation and
control errors, but their observer and feedback gains still
need to be pre-defined. In the work of Liu (2017), the
author provides an algorithm to optimize the volume of
the invariant set of the estimation error by treating the
observer gain as a variable firstly, and then use this given
set as an artificial disturbance and the associated observer
gain L to optimize the volume of the invariant set of the
control error along with the feedback gain K. However,
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this method is still somewhat conservative due to the fact
that it takes L and K as variables separately.

In this paper, we focus on an extension of the approach
in Liu (2017) for tube based robust output MPC of DLTI
systems. The main contribution of this paper is to compute
less conservative tightened constraints on the nominal sys-
tem state and input. Two initial invariant sets for the es-
timation and control errors, together with the correspond-
ing observer and feedback gains are computed separately.
Then, the volume of these two sets is iteratively optimized
by considering both the observer and feedback gains as
variables simultaneously. This allows us to consider the
interaction between the estimation and control errors. It
will be shown, through numerical examples, that the total
volume of two sets obtained by our algorithm is smaller
than the approach in Liu (2017), and this results in less
tightened constraints imposed on the nominal system.

Notation For integer m ≥ 1, we define Nm :={1, · · · ,m}.
The set of positive semidefinite diagonal, positive def-
inite symmetric, and symmetric matrices of dimension
m × m are denoted as Dm+ , Sm+ , Sm, respectively. The
notation A � 0 or A ≺ 0 denotes that matrix A is
positive or negative definite. Given two sets U and V, the
Minkowski set addition and difference are defined as U ⊕
V = {u+ v | u ∈ U , v ∈ V} and U 	 V = {x | x⊕ V ⊆ U},
respectively. For P ∈ Rm×n and b ∈ Rm, the notation
P(P, b) describes a polytope {x ∈ Rn : −b ≤ Px ≤ b} and
for Q = QT � 0 the notation Q(Q) denotes the ellip-
soid

{
x ∈ Rn : xTQx ≤ 1

}
. A congruence transformation

means effecting a congruence T that has full column rank,
on a matrix inequality A � 0 which corresponds to pre-
and post-multiplication by TT and T , respectively, to
deduce that TTAT � 0. A Schur complement argument
refers to the result that if A = AT and C = CT then[
A B
? C

]
� 0 ⇔ A � 0, C − BTA−1B � 0 ⇔ C � 0, A −

BC−1BT � 0, where ? refers to a term easily inferred from
symmetry.

2. PROBLEM DESCRIPTION

We consider the following linear discrete-time system with
additive disturbance:

x+ = Ax+Bu+Bdd,

y = Cx+Du+Dvv,

where x, x+ ∈ Rn, u ∈ Rnu , d ∈ Rnd , v ∈ Rnv , y ∈ Rny are
the current state, successor state, control input, process
noise, measurement noise and current output, respectively;
all other symbols denote the appropriate distribution
matrices. We combine the input and output noises as one
augmented variable w, yielding the following dynamics
with some redefinitions:

x+ = Ax+Bu+Bww,

y = Cx+Du+Dww,

Bw := [Bd 0] , Dw := [0 Dv] , w :=

[
d
v

]
.

(1)

We assume that (A,B) is controllable and (A,C) is ob-
servable. The state and input constraint sets are assumed
to have the form:

X={x ∈ Rn | x ≤ Vxx ≤ x} , Vx ∈ Rm×n, x, x ∈ Rm,
U={u ∈ Rnu | u ≤ Vuu ≤ u} , Vu ∈ Rmu×nu , u, u ∈ Rmu .

The augmented disturbance w belongs to the bounded and
symmetric polytope:

W={w ∈ Rnw |−w ≤ Vww ≤ w} , Vw∈ Rmw×nw ,w∈ Rmw .
Furthermore, a simple Luenberger observer is employed to
estimate the state:[

x̂+

ŷ

]
=

[
A B L
C D 0

] [ x̂
u

y − ŷ

]
, (2)

where x̂ ∈ Rn is the current observer state, x̂+ ∈ Rn
is the successor state of the estimated system, ŷ ∈ Rny
is the current observer output, and L ∈ Rn×ny is the
Luenberger observer gain. We define the state estimation
error x̃ := x − x̂, whose dynamics from (1) and (2) are
given by:

x̃+ = (A− LC)x̃+ (Bw − LDw)w,

where L satisfies ρ(A−LC) < 1 and ρ(·) denotes the spec-
tral radius. The tube based MPC controller is implemented
on the associated nominal system (Mayne et al. (2006)),
which is obtained from (1) by neglecting the disturbance
w:

x+ = Ax+Bu,

where x, x+ ∈ Rn, u ∈ Rnu are the current state,
successor state, and the control input of the nominal
system, respectively. The control input is given by:

u = u+K(x̂− x),

where K ∈ Rnu×n is the feedback gain, which satisfies
ρ(A + BK) < 1. The error between the observer and
nominal states, called the control error, is defined as
ξ := x̂− x; its dynamics are given by:

ξ+ = (A+BK)ξ + LCx̃+ LDww. (3)

We follow the standard definitions (Blanchini (1999);Kol-
manovsky and Gilbert (1998)) for robust positively invari-
ant set.

Definition 1. A set Ω ⊂ Rn is robust positively invariant
for the system x+ = f(x,w) and the constraint set (X ,W)
if Ω ⊆ X and x+ = f(x,w) ∈ Ω, ∀w ∈ W,∀x ∈ Ω.

Then the polytopic invariant sets for the estimation error
P(Px̃, bx̃) and the control error P(Pξ, bξ) can be defined
by:

x̃ ∈ P(Px̃, bx̃)
w ∈ W

}
⇒ x̃+ ∈ P(Px̃, bx̃), (4)

ξ ∈ P(Pξ, bξ)
w ∈ W

x̃ ∈ P(Px̃, bx̃)

}
⇒ ξ+ ∈ P(Pξ, bξ), (5)

where

P(Px̃, bx̃) = {x̃ ∈ Rn : −bx̃ ≤ Px̃x̃ ≤ bx̃} , (6)

P(Pξ, bξ) = {ξ ∈ Rn : −bξ ≤ Pξξ ≤ bξ} , (7)

and Px̃, Pξ ∈ Rm×n and bx̃, bξ ∈ Rm are decision variables
for the structure of the invariant set. By definition, the ac-
tual state differs from the nominal state by the estimation
error x̃ and control error ξ, so that:

x = x+ ξ + x̃.

Similarly, the difference between the actual control input
and nominal input is given by Kξ:

u = u+Kξ.
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We assume that the initial values of estimation and control
errors belong to their respective RCI sets, ξ(0) ∈ P(Pξ, bξ)
and x̃(0) ∈ P(Px̃, bx̃). The original state and control input
constraints are satisfied for all w ∈ W if

x ∈ X := X 	 P(Px̃, bx̃)	 P(Pξ, bξ),

u ∈ U := U 	KP(Pξ, bξ).

Therefore, we can choose the initial nominal state x(0)
and the nominal control input u to ensure that the actual
(unknown) state and control input always satisfy the
original constraints. In this way, the original constraints X
and U are tightened by P(Px̃, bx̃) and P(Pξ, bξ). We next
establish the conditions such that the sets P(Px̃, bx̃) and
P(Pξ, bξ) are circumscribed by outer bounding ellipsoids
Q(Qx̃) and Q(Qξ), respectively,

∃Qx̃ ∈ Sn+ : P(Px̃, bx̃) ⊆ Q(Qx̃), (8)

∃Qξ ∈ Sn+ : P(Pξ, bξ) ⊆ Q(Qξ). (9)
Since the volume of Q(Qx̃) is proportional to the de-

terminant of the matrix Q
− 1

2

x̃ , the term log detQ−1x̃ is
adopted as the objective function to minimize the volume
of the set P(Px̃, bx̃); similarly, we use log detQ−1ξ as the

objective function for P(Pξ, bξ). Combining the invariance
and outer bounding conditions for the invariant sets of the
estimation and control errors, respectively, we can present
the following problems to optimize the volume of P(Px̃, bx̃)
and P(Pξ, bξ), respectively:

min
Px̃,bx̃,L,Qx̃

log detQ−1x̃

s.t. (4), (8).
(10)

min
Pξ,bξ,K,Qξ

log detQ−1ξ

s.t. (5), (9).
(11)

3. INITIAL COMPUTATION FOR THE INVARIANT
SET OF THE ESTIMATION ERROR

In this section, we first derive necessary and sufficient
conditions, in the form of nonlinear matrix inequali-
ties (NLMIs), for the existence of an admissible triple
(Px̃, bx̃, L) for problem (10) by using Farkas’ Theorem
(Pólik and Terlaky (2007)). Subsequently, the correspond-
ing sufficient conditions in the form of LMIs are given by
the use of the following result, which is deduced from the
Elimination Lemma.

Lemma 2. Liu and Jaimoukha (2015): Let R ∈ Sn, E ∈
Rn×p, F ∈ Rp×m, and Z ∈ Sm. Consider the following
two statements:

(i)

[
R EF
? Z

]
� 0, (12)

(ii) ∃Y ∈ Y :

R EY 0
? Y + Y T F
? ? Z

 � 0. (13)

Then (ii)⇒ (i) if Y ⊆ Rp×p and (ii)⇔ (i) if Y = Rp×p.
Theorem 3. The invariance and outer bounding conditions
for the invariant set of the estimation error are satisfied if
and only if, ∀i ∈ Nm, there exist Di ∈ Dm+ , Wi ∈ Dmw+ ,

Dx̃ ∈ Dm+ and Qx̃ ∈ Sn+ such that

Lx̃ :=

∆i
11 eTi Px̃B

L
w eTi Px̃A

L

? V TwWiVw 0
? ? PTx̃ DiPx̃

�0, (14)

PTx̃ Dx̃Px̃ −Qx̃ � 0, 1− bTx̃Dx̃bx̃ > 0, (15)

where ∆i
11 = 2eTi bx̃−bTx̃Dibx̃−wTWiw, AL = A−LC, and

BLw = Bw − LDw.

Proof. The proof of (14) is an application of Farkas’
Theorem. Follow the definition of P(Px̃, bx̃) in (6), the
invariance condition (4) is equivalent to

−bx̃ ≤ Px̃x̃ ≤ bx̃
−w ≤ Vww ≤ w

}
⇒ −bx̃ ≤ Px̃(ALx̃+BLww) ≤ bx̃. (16)

Considering the symmetry of the sets W and P, the last
inequality in (16) can be written as

2eTi (Px̃(ALx̃+BLww)− bx̃) ≤ 0,∀i ∈ Nm.
For any Di ∈ Dm+ and Wi ∈ Dmw+ , ∀i ∈ Nm, it can be
verified that

2eTi (Px̃(ALx̃+BLww)−bx̃) =− (Vww+w)TWi(w−Vww)

−(bx̃−Px̃x̃)TDi(Px̃x̃+bx̃)

− gTLx̃g, (17)

where Lx̃ is defined in (14) and gT :=
[
−1 wT x̃T

]
. Since the

first and second terms on the RHS of (17) are nonpositive
for all x̃ ∈ P(Px̃, bx̃) and w ∈ W, the invariance condition
is satisfied if Lx̃ � 0, which gives (14). If the LHS of (17) is
nonpositive ∀i ∈ Nm, then it follows from Farkas’ Theorem
that Lx̃ � 0 is satisfied, which proves necessity.
Similarly, the outer bounding condition (8) is equivalent
to

−bx̃ ≤ Px̃x̃ ≤ bx̃ ⇒ x̃Qx̃x̃ ≤ 1. (18)

For any Dx̃ ∈ Dm+ and Qx̃ ∈ Sn+, we have

x̃Qx̃x̃−1 = −(bx̃ − Px̃x̃)TDi(Px̃x̃+ bx̃)

−
[
−1 x̃T

] [1−bTx̃Dx̃bx̃ 0
0 PTx̃ Dx̃Px̃−Qx̃

]
︸ ︷︷ ︸

Lx̃

[
−1
x̃

]
.

It is clear that since the first term on the RHS of the above
equality is nonpositive for all x̃ ∈ P(Px̃, bx̃), the outer
bounding condition is satisfied if Lx̃ � 0, which gives (15).
If x̃Qx̃x̃−1 ≤ 0, then it follows from Farkas’ Theorem that
Lx̃ � 0, which proves necessity. 2

As can be seen from (14) and (15), the nonlinearity
terms include Px̃B

L
w, Px̃A

L, PTx̃ DiPx̃, bTx̃Dibx̃, PTx̃ Dx̃Px̃,

bTx̃Dx̃bx̃. In order to deal with these nonlinearities, we next
propose an initial full-complexity outer approximation to
the minimal RCI set, such that

P(Px̃, bx̃)=P(PrXx̃, br) = {x ∈ Rn : −br ≤ PrXx̃x ≤ br} ,
where Pr and br are given, and Xx̃ ∈ Rn×n is a variable
to rotate and scale the polyhedral set defined by Pr (see
the work of Liu and Jaimoukha (2015) for details).

The next result uses Lemma 2 and a congruence transfor-
mation to derive sufficient conditions, in the form of LMIs,
for computing an admissible triple (Px̃, bx̃, L).

Theorem 4. With all variables as defined in Theorem 3,
let Px̃ = PrXx̃ and bx̃ = br and define L̂ = Xx̃L. The
NLMIs of (14) and (15) are satisfied if, ∀i ∈ Nm, there

exist D̂i ∈ Dm+ , Ŵi ∈ Dmw+ , Dx̃ ∈ Dm+ , Qx̃ ∈ Sn+ and
λi > 0, such that
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Γi11 e

T
i PrB̂ eTi PrÂ 0 0

? 2Inw 0 λiInw 0
? ? Xx̃ +XT

x̃ 0 λiIn
? ? ? V Tw ŴiVw 0

? ? ? ? PTr D̂iPr

�0, (19)

[
Xx̃ +XT

x̃ −Qx̃ In
? PTr Dx̃Pr

]
� 0, 1− bTr Dx̃br > 0, (20)

where Γi11 = 2λie
T
i br− bTr D̂ibr−wT Ŵiw, Â = Xx̃A− L̂C,

and B̂ = Xx̃Bw − L̂Dw.

Proof. Substituting Px̃ = PrXx̃ and bx̃ = br shows that
(14) can be rewritten as (12) with[
R E
F Z

]
= 2eTi br − bTr Dibr − wTWiw eTi PrXx̃

[
BLw ALX−1x̃

][
Inw 0
0 Xx̃

] [
V TwWiVw 0

0 XT
x̃ P

T
r DiPrXx̃

]  ·
Applying Lemma 2 with Y = λ−1i

[
Inw 0
0 Xx̃

]
, then effecting

the congruence diag(λ
1
2
i ,λ

1
2
i Inw ,λ

1
2
i In,λ

1
2
i Inw ,λ

1
2
i X
−T
x̃ ) im-

plies that (19) is a sufficient condition of (14), with the
following redefinitions:

D̂i = λiDi, Ŵi = λiWi.

For the first inequality of (15), substituting Px̃ with PrXx̃,

followed by applying the congruence X−Tx̃ and applying a
Schur complement argument gives the following equivalent
inequality [

Xx̃Q
−1
x̃ XT

x̃ In
? PTr Dx̃Pr

]
� 0. (21)

Using the identity

Xx̃Q
−1
x̃ XT

x̃ = Xx̃+XT
x̃ −Qx̃+ (Xx̃−Qx̃)TQ−1x̃ (Xx̃−Qx̃),

the (1,1) block of (21) can be replaced with the first three
terms on the right of the above identity since its last term
is nonnegative. This gives the first inequality of (20). For
the second inequality in (15), replacing bx̃ by br gives (20)
directly. 2

Remark 5. While the feasibility of the LMI problem is
not guaranteed by using arbitrary Pr and br, in practice,
we found that using the vector of ones for br and the
regular polytope with 2m faces for Pr can usually result
in a feasible solution, although this may introduce some
conservatism to Theorem 4. Note also that the degree
of freedom in the choice of m provides flexibility in the
shape of the RCI set, which provides additional accuracy
of expressing the set. In general, guaranteeing the existence
of an initial feasible RCI set is difficult (Blanchini (1999)).
However, Theorem 4 in Liu et al. (2019) provides a choice
of the initial RCI set that is guaranteed to be feasible under
certain conditions.

In conclusion, the initial computation for the invariant
set of the estimation error can be posed as the convex
semidefinite program

min
Xx̃,L̂,D̂i,Ŵi,Dx̃,Qx̃,λi

log detQ−1x̃

s.t. (19), (20).
(22)

4. INITIAL COMPUTATION FOR INVARIANT SET
OF THE CONTROL ERROR

In the last section, an initial admissible triple (Px̃, bx̃, L)
for the invariant set of the estimation error has been
obtained. For the given invariant set P(Px̃, bx̃), we propose
to re-parameterize the estimation error x̃ as an artificial
disturbance by augmenting the dynamics of control error
ξ in (3), such that

ξ+ = (A+BK)︸ ︷︷ ︸
AK

ξ + [LDw LC]︸ ︷︷ ︸
Bη

[
w
x̃

]
︸︷︷︸
η

. (23)

The new disturbance η belongs to be an extended poly-
tope,

η ∈ Wη :=
{
η ∈ Rnw+n | −η ≤ Vηη ≤ η

}
,

with the following redefinitions:

Vη =

[
Vw 0
0 Px̃

]
, η =

[
w
bx̃

]
.

We next propose the corresponding conditions for the
initial computation of the admissible triple (Pξ, bξ,K) by
using Farkas’ Theorem.

Theorem 6. The invariance and outer bounding conditions
for the invariant set of the control error are satisfied if and
only if, ∀i ∈ Nm, there exist Di

ξ ∈ Dm+ , W i
η ∈ D

mw+m
+ ,

Dξ ∈ Dm+ and Qξ ∈ Sn+, such that2eTi bξ−bTξ Di
ξbξ−ηTW i

ηη eTi PξBη eTi PξA
K

? V Tη W
i
ηVη 0

? ? PTξ D
i
ξPξ

�0, (24)

PTξ DξPξ −Qξ � 0, 1− bTξ Dξbξ > 0. (25)

Proof. The proof is also an application of Farkas’ Theo-
rem that is similar to the proof in Theorem 3, thus it is
omitted here for brevity. 2

We also use an initial outer approximation to the minimal
RCI set to convert the NLMIs of (24) and (25) into LMIs
using Lemma 2 and a congruence transformation.

Theorem 7. With all variables as in Theorem 6 let Pξ =

PrXξ and bξ = br and define X̃ = X−1ξ and K̂ = KX−1ξ .

The NLMIs of (24) and (25) are satisfied if, ∀i ∈ Nm, there

exist D̂i
ξ ∈ Dm+ , Ŵ i

η ∈ D
mw+m
+ , Dξ ∈ Dm+ , Q−1ξ ∈ Sn+ and

γi > 0, such that
Λi11 γie

T
i Pr 0 0

? X̃ + X̃T Bη AX̃ +BK̂

? ? V Tη Ŵ
i
ηVη 0

? ? ? PTr D̂
i
ξPr

 � 0, (26)

[
Q−1ξ X̃

? PTr DξPr

]
� 0, 1− bTr Dξbr > 0, (27)

where Λi11 = 2γie
T
i br − bTr D̂i

ξbr − ηT Ŵ i
ηη.

Proof. Substituting Pξ = PrXξ and bξ = br shows that
(24) can be rewritten as (12) with[

R E
F Z

]
=2eTi br−bTr Di

ξbr−ηTW i
ηη eTi PrXξ[

Bη A
K
] [

V Tη W
i
ηVη 0

0 XT
ξ P

T
r D

i
ξPrXξ

].
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Applying Lemma 2 with Y=γiX
−1
ξ where 0 < γi ∈ R, then

effecting the congruence diag(γ
1
2
i , γ

− 1
2

i In, γ
1
2
i Inw , γ

1
2
i X
−T
ξ )

implies that (26) is a sufficient condition for (24) with the
redefinitions:

D̂i
ξ = γiD

i
ξ, Ŵ i

η = γiW
i
η.

For the first inequality in (25), substituting Pξ with PrXξ

followed by applying the congruence X−Tξ and applying a
Schur complement argument gives the first inequality in
(27). For the second inequality in (25), replacing bξ by br
gives the second term in (27) directly. 2

To summarize, the initial computation for the invariant set
of the control error can be posed as the convex semidefinite
program

min
X̃,K̂,D̂i

ξ
,Ŵ i

η,Dξ,Q
−1
ξ
,γi

trace (Q−1ξ )

s.t. (26), (27).
(28)

Remark 8. Since the function log det(Q−1ξ ) is concave, we

minimize an upper bound on log det(Q−1ξ ) by replacing it

with trace(Q−1ξ ).

Remark 9. Theorems 4 and 7 give sufficient condition
only; the conservatism comes from restricting the structure
of Y in Lemma 2 to obtain a tractable solution. Necessary
and sufficient conditions could be obtained if the structure
of Y is free, however, this will result in an intractable
solution.

5. UPDATE COMPUTATION ALGORITHM

In the previous two sections, we proposed the initial
computations of the invariant sets of the estimation and
control errors by considering L and K as variables sep-
arately. Since the linearization algorithm resulting from
using Lemma 2 gives sufficient condition only, this conser-
vatism leads to the RCI sets being unlikely to be minimal.
Therefore, in this section, we propose an update computa-
tion algorithm based on the following Newton-like update
to obtain approximate minimal RCI sets.

Lemma 10. Liu et al. (2019): Let L, L0 ∈ Rm×n and D,
D0 ∈ Sm+ . Denote

LL0,D0

L,D := LTD−10 L0 + LT0D
−1
0 L− LT0D−10 DD−10 L0

NL,D := LTD−1L

Then NL,D � LL0,D0

L,D and NL0,D0
= LL0,D0

L0,D0
. Therefore,{

∃L0 ∈ Rm×n, D0 ∈ Sm+ : NL0,D0
� 0
}
⇒{

∃L ∈ Rm×n, D ∈ Sm+ : NL,D � LL0,D0

L,D � 0
}
.

Theorem 11. Let the initial solutions of the invariant
sets of the estimation and control errors be denoted as
(P 0
x̃ , b

0
x̃, L0, D

i0
x̃ ,W

i0
x̃ , Q

0
x̃, Dx̃0) and (P 0

ξ , b
0
ξ ,K0, D

i0
ξ , D

i0
x̃ξ,

W i0
ξ , Q

0
ξ , Dξ0), which satisfy conditions (14), (15), (25)

and (34). Then these solutions can be updated if there
exist Px̃ ∈ Rm×n, bx̃ ∈ Rm, L ∈ Rn×ny , (Di

x̃)−1 ∈ Dm+ ,

W i
x̃ ∈ D

mw
+ , Qx̃ ∈ Sn+, (Dx̃)−1 ∈ Dm+ , Pξ ∈ Rm×n,

bξ ∈ Rm, K ∈ Rnu×n, (Di
x̃ξ)
−1 ∈ Dm+ , (Di

ξ)
−1 ∈ Dm+ ,

W i
ξ ∈ D

mw
+ , Qξ ∈ Sn+ and (Dξ)

−1 ∈ Dm+ , ∀i ∈ Nm such
that

[
Mx̃ + LL

i0
x̃ ,F

i0
x̃

Li
x̃
,F i
x̃

?

Ex̃L
i
x̃ In

]
� 0, (29)

LP
0
x̃ ,D

−1

x̃0

Px̃,D
−1

x̃

−Qx̃ � 0,

[
D
−1
x̃ bx̃
? 1

]
� 0, (30)[

Mξ + LL
i0
ξ ,F

i0
ξ

Li
ξ
,F i
ξ

?

EξL
i
ξ In

]
� 0, (31)

LP
0
ξ ,D

−1

ξ0

Pξ,D
−1

ξ

−Qξ � 0,

[
D
−1
ξ bξ
? 1

]
� 0, (32)

where,

Ex̃ = [−In In 0] , F iξ =diag(In, In, (D
i
x̃ξ)
−1, (Di

ξ)
−1),

Eξ = [−In In 0 0] , F ix̃=diag(In, In, (D
i
x̃)−1),

Mx̃ =


(Di

x̃)−1 bx̃ 0 0
? 2eTi bx̃ − wTW i

x̃w 0 0
? ? V TwW

i
x̃Vw 0

? ? ? 0

 ,

Mξ=


(Di

x̃ξ)
−1 0 bx̃ 0 0 0

? (Di
ξ)
−1 bξ 0 0 0

? ? 2eTi bξ−wTW i
ξw 0 0 0

? ? ? V TwW
i
ξVw 0 0

? ? ? ? 0 0
? ? ? ? ? 0

,

Lix̃=

0 PTx̃ ei 0 0
0 0 BLw AL

0 0 0 Px̃

,Liξ=


0 0 PTξ ei 0 0 0

0 0 0 LDw LC AK

0 0 0 0 Px̃ 0
0 0 0 0 0 Pξ

.
Proof. Applying an upper Schur complement on bTx̃D

i
x̃bx̃

in (14), the following identity can be verified

(14)⇔Mx̃ +NLi
x̃
,F i
x̃
− (Ex̃L

i
x̃)T (Ex̃L

i
x̃) � 0. (33)

A subsequent application of Lemma 10 on NLi
x̃
,F i
x̃

in (33),

followed by a Schur complement on the third term gives
(29). For the first inequality in (15), it can be noted that
N
Px̃,D

−1

x̃
=PTx̃ Dx̃Px̃. Then using Lemma 10 on this equality

gives the first inequality in (30). The second inequality in
(15) and (30) are equivalent by effecting Schur complement
directly.

The invariant set of the estimation error is unknown if
we want to update these two sets simultaneously. Hence,
the invariance condition (24) for the invariant set of the
control error in Theorem 6 needs to be modified by Farkas’
Theorem. The invariance condition in (5) is equivalent to

−bx̃ ≤ Px̃x̃ ≤ bx̃
−bξ ≤ Pξξ ≤ bξ
−w ≤ Vww ≤ w

}
⇒−bξ ≤ Pξ(AKξ+LCx̃+LDww) ≤ bξ.

For any Di
x̃ξ ∈ Dm+ , Di

ξ ∈ Dm+ , W i
ξ ∈ D

mw
+ , ∀i ∈ Nm,

2eTi (Pξ(A
Kξ + LCx̃+ LDww)− bξ)

=−(Vww+w)TW i
ξ(w−Vww)−(bx̃−Px̃x̃)TDi

x̃ξ(Px̃x̃+bx̃)

− (bξ − Pξξ)TDi
ξ(Pξξ + bξ)

−
[
−1 wT x̃T ξT

]
Lξ
[
−1 wT x̃T ξT

]T ≤ 0

if and only if
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Lξ :=


Φi11 e

T
i PξLDw eTi PξLC eTi PξA

K

? V TwW
i
ξVw 0 0

? ? PTx̃ D
i
x̃ξPx̃ 0

? ? ? PTξ D
i
ξPξ

 � 0, (34)

where Φi11 = 2eTi bξ− bTξ Di
ξbξ− bTx̃Di

x̃ξbx̃ − wTW i
ξw. Note

that (34) is equivalent to (24) with the definition W i
η =

diag(W i
ξ , D

i
x̃ξ). Subsequently, applying a Schur comple-

ment on bTx̃D
i
x̃ξbx̃ and bTξ D

i
ξbξ of (34) successively shows

that it is equivalent to the following inequality

Mξ +NLi
ξ
,F i
ξ
− (EξL

i
ξ)
T (EξL

i
ξ) � 0. (35)

Using similar procedures to the previous proof for (29)/(30)
on (35)/(25), giving (31) and (32), respectively. 2

To summarize, the problem of updating the RCI sets of
the estimation and control errors simultaneously can be
posed as the convex semidefinite program

min
Px̃,bx̃,L,(Dix̃)

−1,W i
x̃
,Qx̃,D

−1

x̃ ,Pξ,bξ,K,(Dix̃ξ)
−1,(Di

ξ
)−1,W i

ξ
,Qξ,D

−1

ξ

log detQ−1x̃

s.t. (29), (30), (31), (32), Qx̃ = Qξ.
(36)

Remark 12. Since the identityNL0,D0
= LL0,D0

L0,D0
in Lemma

10 ensures that the constraints (29)-(32) are also feasible
by setting the corresponding optimized variables equal
to their initial value, then problem (36) results in a no
more conservative solution than the initial one, namely
the volume of the RCI set defined by Qx̃ would be smaller
or at least equal to the initial set defined by Q0

x̃.

Remark 13. Note that the constraints in the optimization
problem (36) includes the equality constraint Qx̃ = Qξ.
This means that only one ellipse is used to circumscribe
the two polytopes simultaneously. This leads to some
conservatism in the updating algorithm, the best approach
is to consider two ellipses circumscribing two polytopes
separately, and then to optimize the total volume of two
ellipses; however, this will be a direction for future work.

Finally, the complete computation algorithm for the RCI
sets of the estimation and control errors based on succes-
sive iterations is summarized as follows.
Algorithm 1
1) Initial data: Given system (1) and disturbance set W,
choose an initial polytope P(Pr, br) and tolerance level tol.
2) Initial solution: Compute the initial RCI sets of the
estimation and control errors by the optimizations in (22)
and (28) separately.
3) Update: Update the two sets simultaneously by the
optimization in (36).
4) Stopping condition: Stop if the absolute value of
the difference between the current and previous values of
log detQ−1x̃ is less than tol.

6. NUMERICAL EXAMPLE

6.1 Example 1

We consider a scalar system:

x+ = 1.1x+ u+ d,

y = x+ v,

with additive disturbance d ∈ Wd := {d ∈ R | |d| ∞ ≤ 0.5}
and v ∈ V := {v ∈ R | |v| ∞ ≤ 1}. The invariant sets of the

estimation and control errors obtained with the proposed
Algorithm 1 and Liu (2017) are shown in Table 1 below.

Table 1. The comparison of calculated invari-
ant set boundaries for Example 1

Methods P(Px̃, bx̃) P(Pξ, bξ) X − X U − U
Liu (2017) 1.6000 2.8600 4.4600 3.1460

Algorithm 1 2.0490 2.0490 4.0980 2.2539

Note that P(Px̃, bx̃) and P(Pξ, bξ) denote the invariant sets

of the estimation and control errors, respectively. X −X =
P(Px̃, bx̃)⊕P(Pξ, bξ) and U−U = KP(Pξ, bξ) represent the
tightened invariant tube on state and tightened constraint
on input, respectively. As shown in Table 1, Liu (2017)
obtains a smaller invariant set of P(Px̃, bx̃) with the
computed K = −1.1 and L = 1.1 while the proposed
Algorithm 1 achieves less conservative results for total
volumes of P(Px̃, bx̃) ⊕ P(Pξ, bξ) with K = −1.1 and
L= 0.6720, this leads to less tightened constraints on the
nominal system state by using our Algorithm 1. Note also
that the tightened constraint on input obtained by Liu
(2017) is U − U = [−3.1460, 3.1460] while we achieve a
smaller interval of [−2.2539, 2.2539].

The above results confirm our expectation, because Liu
(2017) optimizes the two sets separately and can make sure
that the invariant set of the estimation error is minimal
only, but it might lead to a larger disturbance set for the
control error P(Pξ, bξ). Our algorithm uses a common set
to optimize these two sets simultaneously, it is possible to
achieve better trade-off between P(Px̃, bx̃) and P(Pξ, bξ)
and therefore a smaller total volume.

6.2 Example 2

A double integrator system from Goulart and Kerrigan
(2007) is considered in this example

x+ =

[
1 1
0 1

]
x+

[
0.2
1

]
u+

[
1 0
0 1

]
d,

y = [1 1]x+ v,

with additive disturbances d ∈ Wd :=
{
d ∈ R2||d|∞ ≤ 0.1

}
and v ∈ V := {v ∈ R | |v| ∞ ≤ 0.1}. State and control in-
put constraints are given by X :=

{
x ∈ R2 |−25 ≤ xi ≤ 3

}
and U := {u ∈ R | |u| ≤ 5}, respectively, where xi denotes
the ith element of x.

We set m = 3 and produce the same (randomly generated)
initial polytope P(Pr, br) for P(Px̃, bx̃) and P(Pξ, bξ),
where

Pr =

[−0.5817 0.9493
−1.8301 0.7174
−0.4491 2.2878

]
, br =

[
1
1
1

]
.

Figure 1 shows the invariant tube X − X obtained by
Algorithm 1 (yellow) and Liu (2017) (pink). We observe
that our invariant tube is smaller, which could provide
a larger admissible domain on the nominal system state.
The state feedback and observer gains computed by the

method in Liu (2017) are L = [1 1]
T

and K = [−1 −1.8],

the constraint on nominal input is U = [−1.5230, 1.5230].
In contrast, the corresponding results obtained by our
algorithm are L = [1 0.3279]T and K = [−1 −1.8],
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Fig. 1. Tube calculated using our Algorithm 1 (yellow) and
Liu (2017) (pink)

and U = [−2.6149, 2.6149]. Note that our obtained U is
significantly larger compared to the method in Liu (2017).

The relation between the objective value and the number
of iterations for the update of Algorithm 1 is shown as
the following Figure 2. We note that the objective value
are non-increasing with the number of iterations and it
converge to its final value with an observed quadratic
speed of convergence.
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Fig. 2. The objective value (-log detQ) vs. iterations

7. CONCLUSION

We have presented a numerically efficient algorithm based
on LMIs to compute invariant tubes for robust output
MPC of DLTI systems with additive state and output
disturbances. Instead of using pre–defined observer and
control gains methods, or optimizing the invariant sets
of the estimation and control errors separately as in Liu
(2017), our algorithm optimizes the volumes of these two
sets simultaneously. This enables us to take account of the
effect of estimation error on the dynamics of the control
error rather than treat them as decoupled problems. Two
numerical examples are provided to illustrate that our
algorithm can obtain less conservative tightened system
state and input constraints for the nominal system.
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