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Abstract: A question that faces data-driven autonomous systems is verification that they will
perform in a safe manner despite changes in the environment on which they act over time or
incomplete knowledge of the system model. This work analyzes closed-loop stability of nonlinear
systems under Lyapunov-based economic model predictive control (LEMPC) with data-driven
models in the case where it is desirable to have the ability to detect when the data-driven model
is or becomes insufficiently accurate for maintaining the closed-loop state in an expected region
of state-space. Implications of the results for false sensor measurement cyberattacks seeking to
impact the fidelity of models derived from model identification are discussed and illustrated
through a chemical process example.

Keywords: model predictive control, anomaly response, chemical process control, nonlinear
systems, empirical modeling, cybersecurity.

1. INTRODUCTION

Process safety has been an area of significant research
attention in recent years (e.g., Ahooyi et al. (2016)). A
number of works have looked at how controllers can be
enhanced to drive the closed-loop state into safe oper-
ating regions Albalawi et al. (2016) or how they can
be reconfigured via model updates to handle faults. For
example, Armaou and Demetriou (2008) develops a state
estimation-based technique for updating a system model
as component faults occur that change the process dy-
namics, and Xue and El-Farra (2018) and Mahmood and
Mhaskar (2010) develop techniques for handling actuator
faults in Lyapunov-based model predictive control.

In Durand (2020), we explored safety considerations in
the sense of anomaly responsiveness for a specific con-
trol design known as LEMPC Heidarinejad et al. (2012)
(where we define “anomalies” as changes in the dynamic
model of the process). LEMPC is an optimization-based
controller (a type of economic model predictive controller
(EMPC) Ellis et al. (2014); Rawlings et al. (2012) that
optimizes a general stage cost) that uses a dynamic pro-
cess model to aid in selecting optimal control actions.
Compared to Alanqar et al. (2017a), where data-driven
(empirical) models in EMPC were updated when the error
between predictions of the process state and state measure-
ments went above a data-derived threshold, Durand (2020)
provided theoretical conditions for closed-loop stability for
an EMPC with data-driven models that update over time
and suggested a means for triggering model updates based
on the control theory. It was suggested in Durand (2020)
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that the anomaly-handling framework could be a step
toward allowing the LEMPC with the data-driven models
to be verified to maintain closed-loop stability (safety) over
time. In this work, we clarify the method and analyze this
consideration in more detail with respect to its benefits
and limitations, suggesting potential ramifications for the
cyberattack resilience of the strategy.

2. PRELIMINARIES

2.1 Notation

| · | denotes the vector Euclidean norm. α : [0, a) → [0,∞)
is a class K function if it is continuous, strictly increasing,
and α(0) = 0. The notation Ωρ defines a level set of a
scalar-valued function V (i.e., Ωρ := {x ∈ Rn : V (x) ≤
ρ}). The notation ′/′ signifies set subtraction (i.e., A/B :=
{x ∈ Rn : x ∈ A, x /∈ B}). The transpose of a vector x is
represented by xT . We define a sampling time as tk := k∆,
k = 0, 1, . . ., where ∆ is a sampling period. The “floor”
function returns the largest integer less than the argument.

2.2 Class of Systems

This work considers nonlinear systems of the form:

ẋa,i = fi(xa,i(t), u(t), wi(t)) (1)

where the state, input, and disturbance vectors are de-
noted by xa,i ∈ X ⊂ Rn, u ∈ U ⊂ Rm (u =
[u1, . . . , um]T ), and wi ∈ Wi ⊂ Rz, respectively, where
Wi := {wi ∈ Rz : |wi| ≤ θi, θi > 0}, for i = 1, 2, . . ..
When wi ≡ 0, Eq. 1 is referred to as the nominal system.
fi is considered to be a locally Lipschitz function of its
arguments with f1(0, 0, 0) = 0, and fi(xa,i,s, ui,s, 0) = 0
for i > 1 (i.e., the steady-state of the nominal i-th model
is at xa,i = xa,i,s, u = ui,s). At a switching time ts,i
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(not necessarily an integer multiple of tk) the i-th model
begins to be used and xa,i(ts,i+1) = xa,i+1(ts,i+1). We
assume that state measurements are used by the LEMPC
at tk, but are available for model-building at t̃p = p∆̃,

p = 1, 2, . . ., where ∆/∆̃ is an integer.

We define the deviation variables x̄a,i = xa,i − xa,i,s and
ūi = u − ui,s, where f̄i is fi rewritten to have its origin
at x̄a,i = 0, ūi = 0. Ui and Xi represent U and X in
deviation variable form from ui,s and xa,i,s, respectively.
We assume that there exist explicit stabilizing (Lyapunov-
based) control laws hi(x̄a,i) = [hi,1(x̄a,i) . . . hi,m(x̄a,i)]

T

that render the origins of the nominal systems of Eq. 1
asymptotically stable such that:

α1,i(|x̄a,i|) ≤ Vi(x̄a,i) ≤ α2,i(|x̄a,i|) (2)

∂Vi(x̄a,i)

∂x̄a,i
f̄i(x̄a,i, hi(x̄a,i), 0) ≤ −α3,i(|x̄a,i|) (3)∣∣∣∣∂Vi(x̄a,i)

∂x̄a,i

∣∣∣∣ ≤ α4,i(|x̄a,i|) (4)

hi(x̄a,i) ∈ Ui (5)

for all x̄a,i ∈ Di ⊆ Rn and i = 1, 2, . . ., where Di is an
open neighborhood of the origin of f̄i, and Vi is a positive
definite, sufficiently smooth Lyapunov function. α1,i, α2,i,
α3,i, and α4,i are of class K. The level set Ωρi

⊂ Di

(considered to be within Xi) of Vi is referred to as the
stability region of the system of Eq. 1 under hi(x̄a,i).
The components of hi(·) are assumed to be Lipschitz
continuous. The following hold for Mi > 0, for all x ∈ Ωρi ,
u ∈ Ui, and wi ∈ Wi:

|f̄i(x, u, wi)| ≤ Mi (6)

We consider that the only available model for control
design may be an empirical model with the form:

ẋb,q(t) = fNL,q(xb,q(t), u(t)) (7)

where fNL,q is locally Lipschitz in xb,q ∈ Rn and u ∈
Rm with fNL,1(0, 0) = 0 and fNL,q(xb,q,s, uq,s) = 0 for
q > 1 (i.e., the steady-state of the updated models is at
xb,q = xb,q,s, u = uq,s). The steady-state of the empirical
model in Eq. 7 may not be the same as the steady-state
of the process of Eq. 1 which it seeks to approximate. The
index q is used instead of i to reflect that the process
dynamics may change at times different from the times
ts,NL,q when the empirical model is updated to the q-
th model (xb,q(ts,NL,q+1) = xb,q+1(ts,NL,q+1)). We define
x̄b,q = xb,q − xb,q,s and ūq = u− uq,s, with f̄NL,q as fNL,q

rewritten to have its origin at x̄b,q = 0, ūq = 0. Uq and
Xq represent U and X in deviation variable form from
uq,s and xb,q,s, respectively. We consider that there exist
locally Lipschitz explicit controllers hNL,q(x̄b,q) that can
render xb,q,s, uq,s asymptotically stable in the sense that:

α̂1,q(|x̄b,q|) ≤ V̂q(x̄b,q) ≤ α̂2,q(|x̄b,q|) (8a)

∂V̂q(x̄b,q)

∂x̄b,q
f̄NL,q(x̄b,q, hNL,q(x̄b,q)) ≤ −α̂3,q(|x̄b,q|) (8b)∣∣∣∣∂V̂q(x̄b,q)

∂x̄b,q

∣∣∣∣≤ α̂4,q(|x̄b,q|) (8c)

hNL,q(x̄b,q) ∈ Uq (8d)

for all x̄b,q ∈ DNL,q (DNL,q is a neighborhood of the origin

of f̄NL,q contained in X). V̂q : Rn → R+ is a sufficiently
smooth Lyapunov function. α̂i,q, i = 1, 2, 3, 4, are class K

functions. The stability region of Eq. 7 under hNL,q is
defined by Ωρ̂q ⊂ DNL,q, for which a superset contained
in DNL,q is Ωρ̂safe,q

. The origins of Ωρi and of Ωρ̂safe,q

may not be the same. There exist ML,q > 0 and LL,q > 0
∀x, x1, x2 ∈ Ωρ̂safe,q

, u ∈ Uq, and q = 1, 2, . . . such that:

|f̄NL,q(x, u)| ≤ ML,q (9a)∣∣∣∣∂V̂q(x1)

∂x
f̄NL,q(x1, u)−

∂V̂q(x2)

∂x
f̄NL,q(x2, u)

∣∣∣∣ (9b)

≤ LL,q|x1 − x2|

Furthermore, defining x̄a,i,q = xa,i − xb,q,s and f̄i,q as the
right-hand side of Eq. 1 when the model is re-written in
terms of x̄a,i,q and ūq, we consider:

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (10)

xb,q,s, uq,s is not necessarily a steady-state of this model,
but this notation allows both xa,i and xb,q to be recovered
by adding xb,q,s to x̄a,i,q and x̄b,q. We assume that for all
x, x′, u′, and w such that xt + xb,q,s − xa,i,s ∈ Ωρi

(xt = x
or x′), u′ + uq,s ∈ U , and w ∈ Wi:

|f̄i,q(x, u′, w)− f̄i,q(x
′, u′, 0)| ≤ Lx,i,q|x− x′|+ Lw,i,q|w|

(11)∣∣∣∣∣∂V̂q(x)

∂x
f̄i,q(x, u

′, w)− ∂V̂q(x
′)

∂x
f̄i,q(x

′, u′, 0)

∣∣∣∣∣
≤ L′

x,i,q|x− x′|+ L′
w,i,q|w|

(12)

with Lx,i,q, Lw,i,q, L
′
x,i,q, and L′

w,i,q > 0.

Remark 1. We consider that the process dynamics can
change over time. Therefore, despite the fact that there is
already a model error between f̄i and f̄NL,q when wi ≡ 0
due to the fact that f̄NL,q is derived from data, we include
an additional error component wi in Eq. 1 that we allow
to vary over time to represent potentially time-varying
components of the dynamics (e.g., heat exchanger fouling).
As the dynamics continue to change over time, they
could be represented without using a switched modeling
framework, but then the bound on the disturbance may
need to be large to reflect that the disturbance continues
to grow with respect to a single model over time.

2.3 LEMPC with an Empirical Model

This work considers a control law known as LEMPC Hei-
darinejad et al. (2012); Alanqar et al. (2015a,b); Giuliani
and Durand (2018) defined by:

min
ūq(t)∈S(∆)

∫ tk+N

tk

[Le(x̄b,q(τ), ūq(τ))]dτ (13a)

s.t. ˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (13b)

x̄b,q(tk) = x(tk) (13c)

x̄b,q(t) ∈ Xq, ∀ t ∈ [tk, tk+N ) (13d)

ūq(t) ∈ Uq, ∀ t ∈ [tk, tk+N ) (13e)

V̂q(x̄b,q(t)) ≤ ρ̂e,q, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρ̂e,q (13f)

∂V̂q(x(tk))

∂x
(f̄NL,q(x(tk), ūb,q(tk)))

≤ ∂V̂q(x(tk))

∂x
(f̄NL,q(x(tk), hNL,q(x(tk))))

if x(tk) /∈ Ωρ̂e,q
, or tk ≥ t′ (13g)
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where Le(·, ·) is the LEMPC stage cost (Eq. 13a), ūq ∈
S(∆) signifies that ūq is a piecewise-constant input tra-
jectory with period ∆, and the prediction horizon is de-
noted by N . State predictions from the empirical model
(Eq. 13b) are initialized from a state measurement (de-
noted by x(tk)) from the system of the form of Eq. 1 that
describes the process dynamics at tk. Eqs. 13d and 13e rep-
resent state and input constraints, respectively, whereas
Eqs. 13f-13g are Lyapunov-based stability constraints.

3. RESPONSE TO ANOMALIES UNDER LEMPC

If the underlying process dynamics change significantly
over time, the closed-loop state of the process under con-
trol actions computed by the LEMPC of Eq. 13 (with-
out an update to the empirical model) could leave the
region where closed-loop stability is guaranteed. Durand
(2020) sought to address this by causing an LEMPC to be
designed with a sufficiently conservative stability region
Ωρ̂q such that there exists a superset Ωρ̂samp,q ⊂ Ωρ̂safe,q

of the stability region which the closed-loop state will
still be within at the first detection that it has left the
expected stability region (if the anomaly is not too large).
Once x(tk) /∈ Ωρ̂q , hNL,q can be used (since the LEMPC
of Eq. 13 may then be infeasible) while data is gath-
ered to allow for re-identification of the model before the
closed-loop state leaves Ωρ̂safe,q

. This is a control theory-
based triggering method for model updates in LEMPC.
Under sufficient conditions restated below, the model re-
identification can facilitate development of a stabilizing
controller that can then drive the closed-loop state toward
a neighborhood of the origin of the new empirical model
(the model update and controller switch must occur by
a sampling time tID,q, which can be no more than th,q
sampling times after td,q).

In this section, we re-examine the stability and feasibil-
ity results from Durand (2020) from a run-time safety
verification perspective (i.e., to be used by the system
in assessing whether it believes it can operate safely in
the face of the next potential set of anomalies it may see,
and in adjusting its control law to cause it to meet the
requirements that would ensure safety as the data-driven
model changes). We assume throughout that given the cur-
rent data-driven model, a decision-making algorithm can
suggest a reasonable worst-case set of subsequent models
to allow predictions of worst-case behavior (compared to
the current condition) if an anomaly occurs to be assessed.

Theoretical results (a proposition and theorem) from Du-
rand (2020) are presented below, where it is assumed that
the q-th empirical model was designed using data from the
i-th first-principles model, and that the empirical model
needs to be updated after i is changed to i + 1 in Eq. 1,
and that both Ωρ̂safe,q

and Ωρ̂safe,q+1
are subsets of Ωρi

and Ωρi+1 . The significance of this latter assumption is
that it ensures that both before and after the empirical
model and therefore its stability region is updated, the
closed-loop state is in a region from which the origin of
the actual system could be stabilized (Eqs. 2-5).

Proposition 2. Giuliani and Durand (2018) Consider the
closed-loop system of Eq. 7 under hNL,q(x̄b,q) that satisfies
the inequalities of Eq. 8 in sample-and-hold. Let ∆ > 0,

ϵ̂W,q > 0, and ρ̂safe,q > ρ̂q > ρ̂e,q > ρ̂minq > ρ̂s,q > 0
satisfy:

−α̂3,q(α̂
−1
2,q(ρ̂s,q)) + LL,qML,q∆ ≤ −ϵ̂W,q/∆ (14)

and

ρ̂minq
:= max{V̂q(x̄b,q(t+∆)) : V̂q(x̄b,q(t)) ≤ ρ̂s,q}. (15)

If x̄b,q(0) ∈ Ωρ̂safe,q
, then:

V̂q(x̄b,q(tk+1))− V̂q(x̄b,q(tk)) ≤ −ϵ̂W,q (16)

for x̄b,q(tk) ∈ Ωρ̂safe,q
/Ωρ̂s,q

and the state trajectory x̄b,q(t)
of the closed-loop system is always bounded in Ωρ̂safe,q

for
t ≥ 0 and is ultimately bounded in Ωρ̂minq

.

Theorem 3. Durand (2020) Consider the closed-loop sys-
tem of Eq. 1 under the LEMPC of Eq. 13 with hNL,q

meeting Eq. 8 and Proposition 2. If x(t0) ∈ Ωρ̂q
and

xa,i(ts,i+1) = xa,i+1(ts,i+1) ∈ Ωρ̂q
and after ts,i+1, the

system of Eq. 1 is controlled by the LEMPC of Eq. 13
until td,q with x(td,q) ∈ Ωρ̂samp,q

⊂ Ωρ̂safe,q
, at which

point it is controlled by hNL,q in sample-and-hold until
tID,q ≤ td,q + th,q∆, where

th,q = floor

(
(ρ̂safe,q − ρ̂samp,q)

ϵW,i+1,q

)
(17)

then if the following conditions hold with ρ̂safe,q >
ρ̂samp,q > ρ̂q > ρ̂q,e, ρ̂q,e > ρ̂min,q,i > ρ̂s,q > 0, and
ρ̂q,e > ρ̂min,i+1,q > ρ̂s,q > 0:

ρ̂q,e ≤ ρ̂q − fV,q(fW,i,q(∆)) (18)

− α̂3,q(α̂
−1
2,q(ρ̂s,q)) + α̂4,q(α̂

−1
1,q(ρ̂q))Merr,i,q

+ L′
x,i,qMi∆+ L′

w,i,qθi ≤ −ϵW,i,q/∆
(19)

ρ̂min,i,q := max{V̂q(x̄a,i,q(t+∆)) | V̂q(x̄a,i,q(t)) ≤ ρ̂s,q}
(20)

with ϵW,i+1,q and ρ̂samp,q defined to satisfy:

− α̂3,q(α̂
−1
2,q(ρ̂s,q)) + α̂4,q(α̂

−1
1,q(ρ̂q))Merr,i+1,q

+ L′
x,i+1,qMi+1∆+ L′

w,i+1,qθi+1 ≤ ϵW,i+1,q/∆
(21)

ρ̂q + fV,q(fW,i,q(∆) + (Mchange,i,q)∆

+
Lw,i,qθi +Merr,i,q

Lx,i,q
(eLx,i,q∆)) ≤ ρ̂samp,q

(22)

ρ̂e,q + fV,q(fW,i+1,q(∆)) ≤ ρ̂samp,q (23)

ρ̂q + ϵW,i+1,q ≤ ρ̂samp,q (24)

where fW,i,q is defined by

fW,i,q(t) :=
Lw,i,qθi +Merr,i,q

Lx,i,q
(eLx,i,qt − 1) (25)

with Merr,i,q defined by:

|f̄i,q(x, u, 0)− f̄NL,q(x, u)| ≤ Merr,i,q (26)

for all x contained in Ωρ̂safe,q
and ūq ∈ Uq, fV,q is defined

by

fV,q(s) := α̂4,q(α̂
−1
1,q(ρ̂safe,q))s+Mv,qs

2 (27)

with Mv,q is a positive constant, and Mchange,i,q is defined
by

|f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))

− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))| ≤ Mchange,i,q

(28)

for all x̄a,i,q, x̄a,i+1,q ∈ Ωρ̂safe,q
, ūq ∈ Uq, wi ∈ Wi, and

wi+1 ∈ Wi+1, then xa,i,q(t) ∈ Ωρ̂safe,q
for t ∈ [t0, ts,i+1]

and xa,i+1,q(t) ∈ Ωρ̂safe,q
for t ∈ [ts,i+1, tID,q].

Theorem 3 above is streamlined in presentation compared
to Durand (2020) to better enable discussion of the factors
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which impact its use for safety verification. th,q is fixed in
Eq. 17 by ρ̂safe,q, ρ̂samp,q, and ϵW,i+1,q. Smaller values of
ρ̂samp,q and ϵW,i+1,q, for a fixed value of ρ̂safe,q, guarantee
a longer time until the closed-loop state leaves Ωρ̂safe,q

after the change in the process dynamics is detected.
Smaller values of ρ̂samp,q are, however, more restrictive
for ρ̂q due to the assumption that ρ̂samp,q > ρ̂q, and may
cause ∆ to need to be smaller for Eq. 20 to be satisfied
with ρ̂q > ρ̂q,e needing to be larger than both ρ̂min,q,i

and ρ̂min,i+1,q to meet the assumptions of the theorem.
Regardless of how small ∆ becomes, however, the plant-
model mismatch (which based on the modeling strategy
in this paper, comes from both Merr,i+1,q and θi+1 in
Eq. 21) sets the size of ϵW,i+1,q, so that if the plant-model
mismatch after ts,i+1 may be significant, ρ̂samp,q may need
to be small to allow there to be a sufficient amount of time
after td,q according to Eq. 17 to obtain data for model re-
identification. From the perspective of assuring safety over
time, when the model of Eq. 7 changes, parameters such
as ρ̂q need to be selected, and obtaining acceptable values
of these parameters may require an on-line adjustment to
∆ or to the origin of Ωρ̂safe,q

and Ωρ̂q
to enable handling

of future potential anomalies.

A number of parameters and functions in the conditions of
Proposition 2 and Theorem 3 rely on characteristics of the
underlying process dynamic model of Eq. 1 (e.g., Lw,i,q,
θi, Lx,i,q, Merr,i,q, and Mchange,i,q), which we assume is
not available. These would have to be estimated to utilize
the results of Theorem 3 for performing safety verification.
Some ideas for attempting to do this would be to make
estimates of the potential values of these properties based
on the current data-driven model, the potential next set
of anomalies from the decision-making algorithm, and
safety factors added on to attempt to make those values
conservative. In contrast, some of the functions (e.g.,
α̂j,q, j = 1, 2, 3, 4) rely only on the knowledge of the
data-driven model, and therefore may be estimated from
manipulations of or simulations with that model.

Remark 4. Different concepts for handling model changes
may vary in ease of verification. For example, consider
an alternative method for determining when an empirical
model used in EMPC should be updated from Alanqar
et al. (2017a), in which the model re-identification is
triggered when the error between state predictions from
the data-driven model and state measurements exceeds a
threshold. One could imagine gaining confidence in safety
for this system by simulating various possible models
which could give a prediction error within the threshold
from many different initial conditions and checking that
the closed-loop state does not leave a characterizable re-
gion in state-space under any of these conditions for a
defined amount of time. However, attempting to devise all
tests required to verify that there is no worst-case condi-
tion which was not tested has potential to be challenging.

3.1 Handling Anomalies Over Time

The theory developed in Durand (2020) assumes that
Ωρ̂safe,q

⊂ Ωρ̂safe,q+1
when proving that closed-loop sta-

bility is maintained after tID,q. It is determined that if
Eqs. 18 and 19 are met with q and i replaced by q + 1
and i + 1, and hNL,q+1 used after tID,q until the closed-
loop state enters Ωρ̂q+1

(at which point the LEMPC of

Eq. 13 with the q + 1-th data-driven model is used), the
closed-loop state is always in Ωρ̂safe,q+1

. Though this may
be reasonable for handling a single anomaly, if there are
repeated anomalies over time, this condition effectively re-
quires Ωρ̂safe,q

to grow each time the model is re-identified,
which may not be a reasonable assumption based on the
requirements of Eq. 8, the assumption that each Ωρ̂safe,q

is a subset of Ωρi
and Ωρi+1

, and the assumption that the
closed-loop state can be maintained within Ωρ̂safe,q

for a
characterizable time period after another anomaly occurs.
It may be desirable, for closed-loop stability purposes after
tID,q, to instead identify a region Ωρ̂new,q+1 which is a
superset of Ωρ̂safe,q

and in which Eqs. 18 and 19 are met
for the i + 1 and q + 1 models (i.e., hNL,q+1 can drive

the closed-loop state to level sets of V̂q+1 with a smaller
upper bound within this region), but where Ωρ̂new,q+1 is not
necessarily equal to Ωρ̂safe,q+1

(selection of Ωρ̂safe,q
should

be made in such a way that Ωρ̂new,q+1 is expected to exist
that contains Ωρ̂safe,q

). To define Ωρ̂safe,q+1
, the conditions

of Theorem 3 must be met with respect to an additional
anomaly leading to a model update to the q + 2 and i+ 2
models. To achieve this, it is possible that the origin of
Ωρ̂safe,q+1

may need to be moved compared to the origin
of Ωρ̂new,q+1

, or that ∆ may need to be adjusted.

The translation of the origin can be performed via a
procedure similar to that used in Alanqar et al. (2017b),
but here with empirical models. Specifically, a target origin
x̄b,o, ūb,o is identified for Ωρ̂safe,q+1

(f̄NL,q+1(x̄b,o, ūb,o) =
0). If Ωρ̂q+1

for this Ωρ̂safe,q+1
includes the neighborhood

of the origin x̄b,new, ūb,new of Ωρ̂new,q+1
that meets Eq. 20

(with i replaced by i + 1) for fNL rewritten to have its
origin at x̄b,new, ūb,new, then under the assumption that
Eqs. 18-20 hold in Ωρ̂safe,q+1

(e.g., despite that data may
not have been available around this origin when fNL,q+1

was originally identified, it remains a sufficiently accurate
representation of the process dynamics in Ωρ̂safe,q+1

and a
Lyapunov-based controller meeting Eq. 8 can stabilize x̄b,o,
ūb,o), the LEMPC of Eq. 13 formulated around x̄b,new,
ūb,new can be utilized with the constraint of Eq. 13g
always activated until the closed-loop state enters Ωρ̂q+1 ;
then, the LEMPC of Eq. 13 formulated with respect to
x̄b,o, ūb,o can be used to maintain the closed-loop state in
Ωρ̂q+1 . If Ωρ̂q+1 does not contain a neighborhood of x̄b,new,
ūb,new, then a series of additional origins with stability
regions that contain neighborhoods of the origins of the
previous stability region, with Ωρ̂q+1 eventually containing
a neighborhood of the origin of one of those regions, can be
traversed, if Eqs. 18-20 continue to hold in those regions.
With regard to changing ∆ to ensure that all conditions
in Eq. 3 are met before the next anomaly, this could be
done by, at some tk, changing the LEMPC sampling period
(or changing it at tID,q if it impacts the ability of hNL,q to

drive the closed-loop state to lower level sets of V̂q+1). This
updated implementation strategy again relies on an ability
to characterize worst-case conditions, and assumes validity
of a data-driven model in state-space regions potentially
containing new information about the process dynamics.

3.2 Resilience for LEMPC with Data-Driven Models

An important observation regarding the stability condi-
tions in Theorem 3 is that they depend on Merr,i,q and
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Merr,i+1,q. This raises a question with regard to the cy-
berattack resilience of the anomaly-handling algorithm to
false state measurements that could result in inaccurate
models being identified for the LEMPC. Furthermore, the
model update strategy seems to offer a pathway by which
an attacker can, effectively, reprogram an LEMPC through
state measurements. In this section, we seek to clarify the
concerns, possibilities, and also future work related to this
topic through a chemical process example.

The chemical process example consists of a nonisothermal
reactor in which an A → B reaction takes place, and the
inputs (reactant inlet concentration CA0 and heat rate Q)
are adjusted by an LEMPC. The process model is:

ĊA =
F

V
(CA0 − CA)− k0e

− E
RgT C2

A (29)

Ṫ =
F

V
(T0 − T )− ∆Hk0

ρLCp
e
− E

RgT C2
A +

Q

ρLCpV
(30)

where the parameters are listed in Alanqar et al. (2015b)
and include the reactor volume V , reactant inlet tem-
perature T0, pre-exponential constant k0, solution heat
capacity Cp and density ρL, volumetric flow rate F , gas
constant Rg, activation energy E, and heat of reaction
∆H. The states are the reactant concentration CA and
temperature T in the reactor, which can be written in
deviation form from the operating steady-state vector
CAs = 1.22 kmol/m3, Ts = 438.2 K, CA0s = 4 kmol/m3,
and Qs = 0 kJ/h as x = [x1 x2]

T = [CA − CAs T − Ts]
T

and u = [u1 u2]
T = [CA0 − CA0s Q − Qs]

T . To highlight
concepts related to resilience without focusing on details
of model identification, we consider that the model form
in Eqs. 29-30 has been identified without any mismatch
and therefore is able to be used for LEMPC design.

The LEMPC is to be designed to maximize the production
rate of the desired product with input bounds as follows:

Le = −k0e
−E/(RgT (τ))CA(τ)

2 (31)

0.5 ≤ CA0 ≤ 7.5 kmol/m3 (32)

−5× 105 ≤ Q ≤ 5× 105 kJ/h (33)

Lyapunov-based stability constraints are also enforced (a
constraint of the form of Eq. 13f is enforced at the end of
every sampling time if x(tk) ∈ Ωρe , and a constraint of the
form of Eq. 13g is enforced at tk when x(tk) ∈ Ωρ̂/Ωρ̂e with
a constraint of the form of Eq. 13f enforced at the end of
sampling periods after the first). The Lyapunov function

selected was V̂q = xTPx, with P given as follows:

P =

[
2000 −10
−10 3

]
(34)

The Lyapunov-based controller hNL,1(x) was designed
such that hNL,1,1(x) = 0 kmol/m3 and hNL,1,2(x) is
computed via Sontag’s formula Lin and Sontag (1991) but
saturated at the input bounds of Eq. 33 if they are met.
ρ̂ and ρ̂e were taken to be 200 and 150, respectively, and
ρ̂safe was set to 400. The process state was initialized at

xinit = [0 kmol/m
3
0 K]T , with controller parameters N =

10 and ∆ = 0.01 h. The process model of Eqs. 29-30 was
integrated with the Explicit Euler numerical integration
method using an integration step size of 10−4 h.

To begin to explore resilience of the anomaly-handling
method to attacks which modify Merr,i,q by changing
the data-driven model, we first note that correct state

measurements, but a falsified data-driven model (i.e., one
that is purposefully identified to be sufficiently inaccurate
with respect to the underlying process dynamics) may
cause the closed-loop state to leave a bounded region of
state-space. For example, if the underlying dynamic model
has k0 = 8.46 × 106 m3/ h kmol, but if the LEMPC is
initialized at the steady-state and uses a dynamic model
with k0 = 107 m3/ h kmol as a constraint, the closed-loop
state exits Ωρ̂q

over time. This indicates that the question
of whether safety of a process could be compromised if an
attacker was able to replace a data-driven model used in
an LEMPC with a different one, instead of providing false
state measurements to the process or false signals to the
actuators, is a valid concern to analyze.

We now conceptually explore how the anomaly-handling
algorithm discussed above would work with an attacker
seeking to modify the process model to impact safety.
In this strategy, if the state measurements to be used
for the model identification are the same as those being
used by the controller, then there is a barrier to the
attacker being able to manipulate the process dynamic
model without first manipulating the sensor measurements
that here we assume are received by both the controller
and the logic system that detects when the model update
must be performed. To force a specific model to be
identified, the attacker would need to know the model
identification algorithm and then to provide false state
measurements before the re-identification takes place that
would cause this model to be identified. However, the
process of doing so may cause the closed-loop state to
leave Ωρ̂safe,q

due to the false state measurements causing
inputs to be computed that drive the closed-loop state out
of Ωρ̂safe,q

quickly (i.e., before the time that would have
been expected if there were correct measurements and the
plant/model mismatch was within the bounds).

As an illustration, we consider the case that it is postulated
that k0 might change over time. If it changes to, for
example, k0 = 8.48 × 106 m3/ h kmol at t = 0.05 h and
the process is simulated for 0.2 h, initialized at the steady-
state, the closed-loop state does not exit Ωρ̂safe,q

for over
two sampling periods after the first sampling time that
the closed-loop state has left Ωρ̂q

(0.08 h), giving time to
detect the model inaccuracy and take action before the
closed-loop state leaves Ωρ̂safe,q

. The value of V̂q does not
monotonically increase after td,q here.

If an attacker would like to cause the model used in the
LEMPC to have significant mismatch from the actual
model to attempt to cause safety issues, under the strategy
developed in this work, the attacker would need to first
cause the closed-loop state to leave Ωρ̂q

so that a model
re-identification is triggered. An attacker could attempt
to wait until a re-identification is triggered by an actual
change in the process dynamics and then to provide false
sensor measurements during the stage in which the gath-
ered data may be considered for model re-identification.
Here, we explore a case in which sensor measurements
are provided by an attacker in an attempt to indicate
that the underlying dynamic model has changed to a new
model which the attacker would like to impose in the
LEMPC. If there is no change in the underlying process
dynamics at t = 0.05 h, but after that time false sensor
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Fig. 1. State-space trajectory when an attack is performed
to provide false state measurements that impact the
model identification from 0.05 to 0.09 h. The total
simulation time is 0.3 h.

readings begin to be presented that follow the trajectory
that the closed-loop state would take if the underlying
dynamic model had changed at t = 0.05 h to one where
k0 = 8.48×106 m3/ h kmol, then td,q would be 0.08 h and
over two sampling periods would pass before the closed-
loop state leaves Ωρ̂safe,q

. For the purpose of illustration,
let us assume that the value of k0 is identified to be
8.48 × 106 m3/ h kmol as would be suggested by the
(falsified) data between td,q and tID,q (which will here
be set to 0.10 h to ensure that the closed-loop state in
the simulations is still within Ωρ̂safe,q

at tID,q) for this
process. According to the implementation strategy for the
anomaly-handling technique, if there is sufficiently small
plant-model mismatch after the re-identification, hNL,q+1

will be able to drive the closed-loop state to lower level sets
of V̂q. Here, however, the model re-identification did not
remove plant-model mismatch from the empirical model,
but enhanced it. Still, however, in this example, hNL,q+1

was able to drive the closed-loop state back into Ωρ̂q
, as

shown in Fig. 1, when correct state measurements began to
be again provided to the LEMPC starting at tID,q (i.e., the
attacker was able to remove their presence from the system
to potentially aid in avoiding detection). This indicates
that the plant-model mismatch induced by the attacker
did not cause safety issues for this specific simulation (i.e.,
not all model updates from false data are problematic for
closed-loop stability under the proposed technique).

The above discussion suggests that an attacker with knowl-
edge of how the anomaly-handling strategy works could
provide a false sensor measurement at tk that is outside
of Ωρ̂q

but still inside Ωρ̂safe,q
to force the model re-

identification to begin (i.e., it is not necessary to provide
false state measurements before tk, reducing the amount
of time that the attacker must be engaged). This raises the
question of whether attack detection mechanisms could de-
tect targeted attacks intended to impact the controller pro-
gramming not necessarily through consistent false sensor
measurements, but through those at specific times which
would be relevant to model identification, and suggests
that future research might explore resilient control designs
with run-time safety verification properties.
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