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Abstract: Different studies have established correlation between physical inactivity and the
incidence of chronic diseases. Prior investigations have been developed around the topic of mobile
physical activity interventions relying on Multiple Input Multiple Output (MIMO) dynamical
models of Social Cognitive Theory (SCT) that have been obtained through control engineering
and system identification approaches. Identification Test Monitoring (ITM) is a technique that
yields to the estimation of an adequate model with the shortest possible duration of the
experiment. In this context, Local Polynomial Method (LPM) has been applied to estimate
the Frequency Response Function (FRF) and the power spectrum of the disturbing noise for
linear models. However, the experimental setup of physical interventions considers a decision
block that is nonlinear. This paper describes the redesign of an ITM procedure for nonlinear
behavioral interventions, through new uncertainty computations and stopping criterion analysis.

Keywords: Behavioral interventions, local polynomial method, robust performance,
identification test monitoring, uncertainty estimation, system identification

1. INTRODUCTION

Sedentarism is one of the main causes of diseases that lead
to mortality worldwide. According to the World Health
Organization (World Health Organization, 2013), around
31% of population aged 15 and over were insufficiently
active in 2008. Furthermore, 3.2 million deaths per year
are attributable to insufficient physical activity. Different
organizations are trying to motivate people to engage
more in physical activities and investigate how to do this
effectively [(González et al., 2017), (Centers for Disease
Control and Prevention, 2018), (American Council on Ex-
ercise, 2013), among others]. As part of the aforementioned
investigation a Behavioral Intervention model has been
developed based on Bandura’s Social Cognitive Theory
[(Bandura, 1989), (Martin et al., 2018)]. The theory takes
into account an individuals’ past experiences. This model
has been tested on focus groups to study its potential
effectiveness in behavioral interventions.

Control systems are used in diverse engineering fields like
aeronautics, industrial, electric, among others. Controllers
are used to obtain a desired behavior on a variable of
interest. Many of the controller design methods require a
priori knowledge of the system’s model and its parameters.
Thus, system identification is a critical process for the
subsequent controller design being the duration of the

identification experiment and data accessibility the biggest
constraints.

In health topics, control system engineering has gained
important significance due to its potential application in
different medical fields. For example, they have the po-
tential to help individuals improve their lifestyles through
behavior change by monitoring individuals physical activ-
ities. Indeed, it could be used to customize ”just in time”
behavioral interventions in sedentary individuals (Mart́ın
et al., 2015).

Intensively adaptive identification test monitoring proce-
dures for nonlinear behavioral interventions rely on real
time measurements of variables of interest, which are used
in the decision making procedure of dosages for interven-
tion related to Social Cognitive Theory (SCT) (Rivera,
2012). The main idea for identification test monitoring is
to assess the quality of the data in terms of its usefulness
for identification purposes. Thus, three different types of
actions are considered, i.e. additional periods, apply a sig-
nal with higher amplitude or different frequency content.
However, due to the nonlinear behavior of the system, a
major problem related to its identification arises. Apply-
ing a signal with higher amplitude or different frequency
content to a nonlinear system yields to a system response
that is considered valid only under certain circumstances.
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In this research, a procedure is proposed so that it avoids
the effect of the nonlinear components of the system for
identification purposes.

Fortunately, to mitigate the problem of sedentary behav-
ior, recent technologies have opened new ways for interven-
ing upon behavior in context via mobile apps, and data to
improve and test the model can be collected easily and
using a “patient-friendly” concept (Rivera et al., 2003).

The paper is organized as follows. Section 2 presents an
overview of the results obtained from previous researches
regarding the Behavioral Intervention problematic and the
challenges that arose during research. Section 3 describes
the proposed procedure to overcome the challenges pre-
sented in the previous section. Section 4 details the results
obtained from a simulation using the proposed procedure.
Section 5 gives a summary of conclusions and future work.

2. OVERVIEW

Social Cognitive Theory (SCT) has been used as the con-
ceptual basis of health behavior interventions for weight
management, smoking cessation, sedentarism problems,
and other health behaviors (Rivera et al., 2017). SCT de-
scribes a human agency model in which individuals proac-
tively self regulate, self reflect and self organize (Bandura,
1989) . In the work of (Mart́ın et al., 2014) a comprehensive
and dynamical model of SCT based on a fluid analogy was
proposed, which simplifies and allows customized models.
Here, exogenous variables are represented by inflows, out-
puts are represented by inventory levels. The relationships
between constructs are depicted as interconnection flows
between inventories. This is illustrated in Fig. 1, where the
components are generated as a consequence of variation of
external and internal stimuli. The main constructs are:

• Self-efficacy, the self-perceived capability to perform
a given behavior.

• Outcome expectancies, the perceived likelihood that
performing a target behavior will result in outcome.

• Behavioral outcomes, resulting from behavior. These
may include positive or negative results.

• Self-management skills, which involves a class of com-
plex behaviors such as self-monitoring, self reinforce-
ment, etc. Thus, the individual increases the potential
success for a target behavior.

• Behavior, the action of interest. In our case, steps
walked per day.

As mentioned in the introduction, a low physical activity
model will be obtained through an adaptive identification
test monitoring procedure for nonlinear behavioral inter-
ventions relying on real-time measurements of variables of
interest. Therefore, a simplified version of the SCT model
is utilized in this work. The intervention includes a daily
goal-setting component, and a reward mechanism where
points are given to individuals when they achieve the daily
goal, this is, 10000 steps per day on a weekly average.
Variables ξi represent inputs, ηi are outputs, γij and βij
represent interrelations among the different constructs, ζi
is an external disturbance, and θi represents delay times.
All these variables will be considered (assumed) in the

modeling through first-order differential equations, so that
a set of equations associated with the flow analogy is
obtained. According to the new exogenous components re-
ferred to above, physical behavioral interventions include:

• Expected points, announced together with the daily
goal.

• Granted points, given to individuals if they achieve
the set goal. This feature is represented by the
”If/Then” block, which incorporates a nonlinearity
to the system.

• Goal attainment, a signal representing how much
success/failure individuals had pursuing the set goal.

Identification experiments are designed to consider the
nonlinearity of the system. The goal is to utilize the
SCT model in the design of an adaptive identification
test monitoring for nonlinear behavioral interventions.
The purpose is to incorporate the possibility to perform
additional modifications to the input signal content at each
periodic evaluation beyond what was proposed in Martin
et al. (2016).

Fig. 1. Conceptual diagram relying on simplified SCT
model (Mart́ın, 2016)

The Local Polynomial Method (LPM) is a recently de-
veloped procedure for nonparametric estimation of the
Frequency Response Function (FRF) of a linear system
(Pintelon and Shoukens, 2012). A control oriented stop-
ping criterion is defined relying on the computation of
robust performance indexes. However, some considerations
must be taken into account by the nonlinearities present in
the design of the proposed intervention. Thus, a variation
of the LPM method is explored. The fast LPM method is
used to get an exact robust performance representation.

The proposed procedure is explained in detail below.

3. PROPOSED PROCEDURE

In general, LPM can be applied to obtain the frequency
response of a certain system if the transient and the noise
components of the system are assumed to be function
of the frequency. The proposed procedure consists in
using LPM to compute the frequency response matrix of
the aforementioned system and then using these results
to measure the uncertainty of the experimental data to
determine if it can be used to obtain a valid model through
the identification process, hence stopping the experiment.
The stopping criterion will be defined in terms of Robust
Performance index (RPi) which depends of the system’s
uncertainties.
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Due to the nonlinear nature of the behavioral model de-
scribed in the previous section, the monitoring procedure
described in Mart́ın et al. (2017) needs to be redesigned
in order to overcome the aforementioned problem. The
proposed methodology consists in excluding the nonlinear
part of the model as part of the plant, incorporating its
output as an input. The output of the nonlinear block is
directly related to another input of the plant. Due to this,
a zippered input design can not be developed and thus,
the transient LPM can not be applied in this scenario.
To overcome this situation, the use of fast LPM for the
monitoring procedure is proposed. A brief summary of
the fast LPM method for periodic signals is presented
below. The methodology for arbitrary signals is presented
in Mart́ın (2016).

3.1 Fast LPM

If N samples of the system’s output are obtained using
a sampling time Ts when excited with an input u(k) and
white noise v(k), its frequency response can be obtained
following equation (1); where Y (ωj) represents the Dis-
crete Fourier Transform (DFT) of the N samples obtained
from the system output, G(ωj) represents the frequency
response matrix of the system, U(ωj) represents the DFT
of the N input samples, T (ωj) represents the frequency
response of the transient component of the system and
V (ωj) is the spectral component of the system’s noise.
The transient component and the noise component affect
all the frequency range.

Y (ωj) = G(ωj)U(ωj) + T (ωj) + V (ωj) (1)

The frequency grid used for the DFT computation is
determined following equation (2), where j = 1, . . . , N .
The transient component is approximated locally with a
low degree polynomial following equation (3) where OT is
the remainder of the Taylor series expansions around j of
order R+ 1 for T.

ωj =
2πj

NTs
(2)

T (ωj+r) = T (ωj) +

R∑
s=1

ts(j)r
s +OT (3)

To estimate G(ωj), the system response at excited and
non-excited frequencies is analyzed. According to Pintelon
and Shoukens (2012), the system response at non-excited
frequencies can be used to estimate the transient compo-
nent of the system (T (ωj)). Then with the system response
at excited frequencies and the transient component estima-
tion, G(ωj) can also be estimated.

A full input signal design is recommended as presented in
Mart́ın (2016). With the proposed method, the frequency
response functions computed in the monitoring procedure
are valid even if changes in the amplitude or spectral
content of the signals are applied. Besides the type of
signal recommended for transient and fast LPM, the main
difference between them is that the fast LPM assumes

that the frequency response functions obtained for periodic
signals using the excited frequencies can be approximated
locally with a low degree polynomial as shown in equa-
tion (4) whereas the transient LPM obtains the frequency
response functions directly with the quotient between the
Fourier Transform of the outputs and inputs. The term
OG in equation (4) is the remainder of the Taylor series
expansions around j of order R+ 1 for G.

G(ωj+r) = G(ωj) +

R∑
s=1

gs(j)r
s +OG (4)

Non-excited frequencies If M periods of the input
and output of the system are considered, and since
U(ωjM+r) = 0, where ωjM+r are the non-excited frequen-
cies and r = ±1, . . . ,±(M − 1), equations (1) and (3) can
be rewritten as:

Y (ωjM+r) = T (ωjM+r) + V (ωjM+r) (5)

T (ωjM+r) = T (ωjM ) +

R∑
s=1

ts(j)r
s +OT (6)

It is desired to find the (R+1) coefficients of the equation
(6). These coefficients are estimated using 2nT frequencies
around the excited frequency ωjM . Equation (5) can be
rewritten as equation (7) where ΘT,jM , KT,jM and p(r)
are defined in equations (8), (9) and (10) respectively.

YT,jM = ΘT,jMKT,jM + VT,jM (7)

ΘT,jM = [T (ωjM ) t1(jM) t2(jM) . . . tR(jM)] (8)

KT,jM =
[
p(−nT )T . . . p(nT )T

]
(9)

p(r) =
[
1 r1 . . . rR

]
(10)

Using a Linear Least Square approximation (LLS) ΘT,jM

can be estimated following equation (11) where KH
T,jM

represents the Hermitian transpose of KT,jM . Then the

estimated transient component of the system T̂ (ωjM ) is

equal to the the first element of Θ̂T,jM .

Θ̂T,jM = YT,jMK
H
T,jM (KT,jMK

H
T,jM )−1 (11)

From these results, ˆVT,jM can be estimated from equa-
tion (7) and its covariance matrix can be computed. Fi-
nally, a transient free frequency response can be defined
as:

Ŷ (ωjM ) = Y (ωjM )− T̂ (ωjM ) (12)

Excited frequencies Equation (12) can be rewritten as

(13), where ŶG,jM represents the DFT of the system’s
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outputs minus the transient components previously esti-
mated, ΘG,jM and KG,jM are associated with the Taylor
series expansion of G(ωj)U(ωj) and defined in (14) and
(15) respectively, and VG,jM corresponds to the noise and
disturbances component at excited frequencies V (ωj).

ŶG,jM = ΘG,jMKG,jM + VG,jM (13)

ΘG,jM = [G(ωjM ) g1(jM) · · · gR(jM)] (14)

KG,jM =
[
p(−nG)T ⊗ U(ω(j−nG)M ) · · · p(nG)T ⊗ U(ω(j+nG)M )

]
(15)

To estimate ΘG,jM , 2nG + 1 frequencies around each ex-
cited frequency are used. In a similar way as described for
the non-excited frequencies, ΘG,jM can be estimated fol-
lowing an LLS approximation and hence (16) is obtained.

Then, Ĝ(ωj) can be obtained from (17), where nu is the
number of inputs.

Θ̂G,jM = ŶG,jMK
H
G,jM (KG,jMK

H
G,jM )−1 (16)

Ĝ(ωjM ) = Θ̂G,jM

(
Inu×nu

0Rnu×nu

)
(17)

From these results, ˆVG,jM can be estimated from equa-
tion (13) and its covariance matrix can be computed.

3.2 Uncertainty

This parameter is a measure of the lack of knowledge about
a certain process, variable or measurement. It is desired
that this parameter be as low as possible. To estimate the
uncertainty of the experimental data, the variance of the
system must be known. Uncertainty can be computed per
frequency and for each input-output combination.

When a change in amplitude or spectral content is applied
to any of the inputs of the system, a new sequence of the
signal l is considered and a new computation of uncertainty
is necessary; also this input is considered as an arbitrary
excitation. Then, the total uncertainty of the system is
estimated with the uncertainties of each sequence. It will
be considered that l = 1, · · · , L and that each sequence
has Ml periods.

Variance Covariance matrices for the disturbance com-
ponent for excited frequencies and for the frequency re-
sponse function can be defined in terms of VG and G
estimated previously, as described in Mart́ın (2016). Thus,
these covariance matrices can be obtained following equa-
tions (18) and (19) respectively. In these equations dfG
represents the degrees of freedom of KG,jM and is equal to

2nG+1−(R+1)(nu), and SHG SG represents the conjugate
transpose of SHG SG where SG is defined in equation (20).

ĈVG
(ωjM ) =

1

dfG
V̂G,jM V̂

H
G,jM (18)

ĈG(ωjM ) = SHG SG ⊗ ĈVG
(ωjM ) (19)

SG = KH
G,jM (KG,jMK

H
G,jM )−1

(
Inu×nu

0Rnu×nu

)
(20)

For arbitrary excitations, the covariance for the frequency
response function is defined as shown in equation (21)

where S and ĈVA
(ωj) are also defined in Mart́ın (2016).

ĈGA
(ωj) = SHS ⊗ ĈVA

(ωj) (21)

From the covariance matrices, the variance of the system
can be computed for periodic or arbitrary excitations
following equations (22) and (23) respectively.

σ̂2
Ĝ[m,n]

(ωl,i) = diag(|ĈĜ(ωl,i)|) (22)

σ̂2
ĜA[m,n]

(ωl,i) = diag(|ĈĜA
(ωl,i)|) (23)

Variance of a sequence To compute the variance of the L
sequences ofG, equation (24) is used. With this expression,
the total frequency response matrix can be estimated using
equation (25) where wl[m,n](ωl,i) represents the weight

function presented in (26) and Ĝ[m,n](ωl,i,Ml) represents

Ĝ(ωjM ) for the l sequence with M = Ml periods and
frequency j = i.

σ̂2
Ĝ[m,n]

(ωi) =

 L∑
l=1

1

σ̂2
Ĝ[m,n]

(ωl,i)

−1 (24)

Ĝ[m,n](ωi,M) =

∑L
l=1 wl[m,n](ωl,i)Ĝ[m,n](ωl,i,Ml)∑L

l=1 wl[m,n](ωl,i)
(25)

wl[m,n](ωl,i) =
1

σ̂2
Ĝ[m,n]

(ωl,i)
(26)

With all these results, circular trust regions of radius
`1−ρa[m,n](ωl,i) and (1 − ρ) × 100% probability can be de-

fined. The radius of these circular regions represent the
uncertainty bound for each frequency and for each input-
output combination of an l sequence; it is defined with
equation (27)

`1−ρa[m,n](ωl,i) = (
√
−lnρ)σ̂Ĝ[m,n]

(ωl,i) (27)

A more general MIMO uncertainty bound ε1−k(ωl,i) can
be estimated considering the maximum singular value per
frequency with a probability 1 − k. This new bound is
defined in terms of the Frobenius norm of the square of
the maximum singular value σ, which is computed using
`1−ρa[m,n] as shown in the following equation:

σ(Ĝ(ωl,i)−G(ωl,i))
2 ≤ [ε1−k(ωl,i,Ml)]

2 (28)

[ε1−k(ωl,i,Ml)]
2 =

nu∑
n=1

ny∑
n=1

[`1−ρ
a[m,n]

(ωl,i,Ml)]
2 (29)
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Considering the L sequences, the uncertainty bounds can
be redefined as equations (30) and (31) respectively.

`1−ρa[m,n](ωi,M) = (
√
−lnρ)σ̂Ĝ[m,n]

(ωi) (30)

[ε1−k(ωi,M)]2 =

nu∑
n=1

ny∑
n=1

[`1−ρa[m,n](ωi,M)]2 (31)

3.3 Robust Performance Index and Stopping criterion

The objective of robust control is to allow the system to
achieve robust performance or stability in the presence
of uncertainty sources like modeling errors, sensors noise
and disturbances. To achieve this goal, sensitivity and
complementary sensitivity estimated functions are used.
These functions are defined in (32) and (33) respectively.

Ẽ = (I + G̃C)−1 (32)

H̃ = G̃C(I + G̃C)−1 (33)

It is desired to design a controller in order that in the
worst case scenario, the normalized error be minimum
when an arbitrary disturbance d is applied to the system.
This can be achieved through the H∞ norm of Ewp;
the objective is to design wp so that it has a minimum
bandwidth and lower amplitudes on low frequencies. This
function allows the designer to limit the amplitude of the
sensitivity function E and reshape it so disturbances are
not amplified. To fulfill this requirement σ(Ewp) < 1, ∀ω
needs to be accomplished.

The sensitivity function E can be defined in terms of the
estimated sensitivity function and the additive uncertainty
LA with equation (34) where LA(s) is equal to the product
between the normalized additive disturbance ∆a(s) and a
scalar weight la.

E = Ẽ(I + LAG̃
−1H̃)−1 (34)

Then, the condition used to design wp can be rewritten as
(35). The estimated complementary sensitivity function

H̃ requires the definition of a controller C that at the
same time is defined in terms of the invertible and non
invertible components of G and a low pass filter matrix
F used to increase the robustness of the controller. Thus,
the estimated sensitivity function can be redefined with
equation (36) where G+ represents the non invertible part
of the system.

σ(Ẽwp) + σ(G̃−1H̃)`a < 1, ∀ω (35)

H̃ = G+F (36)

The filter matrix F can be expressed using v first order
transfer functions on the matrix main diagonal. These
transfer functions follow equation (37).

fi(s) =
1

(λis+ 1)n
, i = 1, . . . , v (37)

If G̃ and `a are substituted in equation (35) with Ĝ and
ε respectively; the resulting expression is named Robust
Performance index (RPi) which is shown below.

RPi(ωi,M) = σ(Ẽwp) + σ(Ĝ−1G+F )ε1−k(ωi,M) (38)

Finally, the stopping criterion is to halt the experiment
after M periods if RPi(ωi,M) ≤ 1, ∀ωi during the
last 3 consecutive iterations. To improve the results, λi
are readjusted each iteration so that they minimize the
maximum RPi value among all frequencies.

4. RESULTS

Following the procedure described in the previous section,
an identification monitoring procedure was developed us-
ing a hypothetical SCT simulation model. Initially two
periods of the inputs signals are generated and the fast
LPM is applied to determine the RPi of the system. Then,
an extra cycle of the inputs is generated, uncertainties
are recalculated and a new RPi is computed; this process
is repeated until the stopping criterion is met. The total
number of cycles used for this experiment was 10; during
this experiment, there were no changes in amplitude or
spectral content of the system’s inputs. Also, a gray box
identification is done after every cycle. Each cycle was
generated using 18 samples and exciting 8 frequencies.
The experiment starts with the generation of 2 consecutive
cycles of the input signals.

The three input signals used for this experiment were:
Desired step goal, Expected points, and Granted points.
The latter is not a designed signal but the result of the
if/then block of the system and a source of nonlinearity;
for this reason, this block is excluded from the system
and its output is considered one of the system’s inputs.
The output signals used for the RPi computation were:
Outcome Expectancy (y2), Behavior (y4) and Behavioral
Outcomes (y5).

The RPi obtained each cycle is shown in Fig. 2. On the
first two iterations RPi < 1, however this is not valid
as stopping criterion because the first three cycles of the
system are considered as start-up cycles. The stopping
criterion is met when M = 7 cycles because in this cycle,
the third consecutive iteration present RPi < 1.

2 4 6 8 10

M[cycles]

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Robust Performance Index

Fig. 2. Robust Performance index per cycle
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After each cycle, a system identification was developed
using the data obtained so far. Then, a different set of
input signals is used to simulate the original system and
the identified system. A comparison of the outputs of these
systems is developed and a percentage fit is obtained. The
percentage fit obtained after each cycle for each output is
summarized on Table 1. It can be observed that the fits for
the second cycle and partially for the third cycle are higher
than the fit obtained after 10 cycles of the experiment.
However, the first three cycles are considered part of the
start-up stage so the fits obtained are not valid. Following
the results obtained from the robust performance index,
after the seventh cycle the experiment could be stopped.
Analyzing the fits variation, it can be concluded that after
the seventh cycle there is no significant fit change in any
of the outputs. The same conclusion about the stopping
cycle can be obtained using either the fit per cycle table or
the robust performance index per cycle, being the latter
more reliable.

M y2 y4 y5
2 87.0614 47.7118 48.2205
3 88.1505 43.1683 39.9319
4 87.9939 36.9043 39.7003
5 87.8575 38.9010 43.1016
6 88.1888 40.2961 45.1786
7 88.4197 41.4282 46.4382
8 88.4789 42.2203 47.2781
9 87.2018 33.1933 43.8522
10 88.3695 43.0504 48.0345

Table 1. Percentage fit obtained after each
iteration

5. CONCLUSIONS AND FUTURE WORK

This work presents the results of an adaptive identification
test monitoring procedure applied to nonlinear interven-
tions for promoting physical activity in sedentary adults
with the shortest possible duration. The experiment ended
when a predefined criterion based on robust control was
satisfied. The use of the fast LPM was necessary to over-
come the nonlinearity of the system.

From results obtained from simulation, the potential of the
proposed procedure was tested and the described stopping
criterion can be considered valid. It could be observed that
as the robust performance index decreases after each cycle,
the percentage fit tends to increase. Also, the fit is highly
affected by the system’s noise, causing variations even after
the stopping criterion is met.

As future work, a simulation experiment that includes am-
plitude change and a simulation experiment that includes
spectral content modification are recommended. Also, a
statistical validation using a Monte Carlo simulation is
also recommended to further prove the proposed procedure
and a result comparison between this method and the one
presented in Mart́ın (2016). Finally, to fully validate the
identified model, an experiment with real data considering
experiment limitations as signal amplitudes and frequen-
cies, is highly recommended.
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