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∗ Laboratoire de Mathématiques Pures et Appliquées, University
Mouloud Mammeri, Tizi-Ouzou, BP N◦ 17 RP 15000, Algeria.

(e-mail: ania.adil@ummto.dz, ghani.hamaz@ummto.dz,
fazia.bedouhene@ummto.dz).

∗∗University of Lorraine, 186, rue de Lorraine, CRAN UMR CNRS
7039, 54401 Longwy, France.(e-mail:ali.zemouche@univ-lorraine.fr).
∗∗∗ Computer, Electrical and Mathematical Science & Engineering

Division (CEMSE), KAUST, Saudi Arabia, (e-mail:
taousmeriem.laleg@kaust.edu.sa)

Abstract: This paper deals with high-gain nonlinear observer design for a class of triangular
systems with delayed output measurements. Based on a recent high-gain like observer design
method, called HG/LMI observer, a larger bound of the time-delay is allowed compared to
that obtained by using the standard high-gain methodology. Such a HG/LMI observer leads
to a significantly lower tuning parameter, which reduces the values of the observer gains and
increases the maximum bound of the delay allowed to ensure exponential convergence. Indeed,
an explicit relation between the maximum bound of the delay and the observer tuning parameter
is inferred by using a Lyapunov-Krasovskii functional jointly with the Halanay inequality. Such
a relation shows clearly the superiority of the use of the HG/LMI observer design methodology.

Keywords: Nonlinear systems, high-gain observer, delayed output measurements, linear matrix
inequalities (LMIs), Lyapunov-Krasovskii functionals.

1. INTRODUCTION

For many decades, the interest of automatic control com-
munity to nonlinear observers continues to grow because
of their crucial role in the design of control schemes,
namely trajectory tracking, fault diagnosis, and health
monitoring (Parisini, 1997), (Alcorta-Garcia and Frank,
1997), (Gao and Ho, 2006). Recently, due to the intro-
duction of new technologies and the complexity of novel
industrial infrastructures, the use of nonlinear observers
has been emerged in modern applications such as synchro-
nization of multi-agent systems, cyber-attacks detection
and control of cyber-physical systems (Zhu and Basar,
2011), (Teixeira et al., 2010), (An and Liu, 2014). More
interesting also, nonlinear observers continue to evolve to-
wards the artificial intelligence by introducing data-driven
or learning-based neuro-adaptive observers (Chakrabarty
et al., 2019), (Koga et al., 2019), (Liu et al., 2018).

Due to such success of nonlinear observers, several method-
ologies have been developed in the literature, namely
the extended Kalman observer (Kalman et al., 1960),
Luenberger observer (Luenberger, 1971), (Huong et al.,
2019), high-gain observer (Gauthier and Kupka, 1994),
sliding mode observer (Alessandri, 1999), and LMI-based
observers (Zemouche and Boutayeb, 2013). Although all
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these techniques provide solutions to observer design for
large classes of nonlinear systems, there is no general solu-
tion and this challenge still remains open until now. Hence
there are many possibilities for improvements, however,
in this paper we will focus only on high-gain observers.
The high-gain observer is particularly interesting due to its
easy implementation because it depends on only one single
tuning parameter, which requires a specific condition, to
ensure exponential convergence. Despite this simplicity of
implementation, the high-gain observer is far from being
a perfect solution to nonlinear estimation, and it has
three limitations that should be highlighted: 1) numerical
problems because for high dimensional systems due to
the high values of the observer gain; 2) the presence of
peaking phenomenon; and 3) the high sensitivity to output
disturbances (measurement noise, delayed outputs, sam-
pled data,. . . ). Many research activities have been paid to
this research area aiming to propose solutions overcoming
such drawbacks of the high-gain observer (Zemouche et al.,
2019), (Alessandri and Rossi, 2015), (Astolfi and Marconi,
2015), (Khalil, 2017), (Boizot et al., 2010). In this paper,
we focus only on the use of high-gain methodologies for
systems with delayed output measurements. Indeed, such
a problem is complex when the goal is to provide an ob-
server with a maximum allowable value of the time-delay,
which is the main motivation of this paper. Many efficient
solutions, based on high-gain methodology, have been pro-
posed in the literature to cope with this issue (Ahmed-
Ali et al., 2009), (Assche et al., 2011). Since systems
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with sampled output measurements can be rewritten in an
equivalent form as systems with delayed outputs, similar
results have been proposed in the literature (Ahmed-Ali
et al., 2012), (Ahmed-Ali et al., 2013), (Bouraoui et al.,
2015), (Zhang and Shen, 2017).

In Ahmed-Ali et al. (2009), the authors proposed a cascade
high-gain observer for a triangular system, where they pro-
vided conditions ensuring the exponential convergence of
the observer. Then the results have been extended in Ass-
che et al. (2011) to systems with time-varying delayed
measurements. Conditions on the delay and the tuning
parameter of the proposed observer have been explicitly
introduced. Although the maximum value of the allowable
delay is improved, however, it still remains small due to the
high value of the tuning parameter required by the stan-
dard high-gain observer. The proposed work in this paper
has been motivated by this issue, namely establishing a
high-gain like design method with a low tuning parameter,
which leads to higher maximum value of the delay. To
this end, a recent high-gain like observer design method,
called HG/LMI observer, is exploited. Indeed, compared
to the standard high-gain observer, the HG/LMI observer
leads to a lower tuning parameter and then provides a
higher bound of the allowable time-delay, while ensuring
exponential convergence of the observer. The convergence
analysis is performed by using a Lyapunov-Krasovskii
functional jointly with a Halanay inequality. The obtained
results show explicitly, thanks to a mathematical relation
between the tuning parameter of the observer and the
maximum bound of the delay, the superiority of the pro-
posed HG/LMI observer-based technique.

The rest of the paper is organized as follows. In section 2,
the problem is formulated and the class of systems under
consideration is presented. The high gain observer is then
recalled and its convergence is analyzed in section 3. Sec-
tion 4 presents and discusses the proposed observer design
strategy using the HG/LMI observer with a lower tuning
parameter. Finally, we end the paper by a conclusion
summarizing the main contributions.

2. PROBLEM FORMULATION

We consider the class of nonlinear systems described by
ẋ(t) =


ẋ1(t)
ẋ2(t)

...
ẋn−1(t)
ẋn(t)

 =


x2(t)
x3(t)

...
xn(t)
f(x(t))


y(t) = x1(t− τ),

(1)

where x(t) ∈ Rn is the state vector of the system and
y(t) ∈ R is the measured output . We assume that the
delay τ is known and there is τM such that τ ∈ [0, τM ].
The function f : Rn → R satisfies the Lipschitz property
formulated under the following form:

|f(x1 + ∆1, . . . , xn + ∆n)−f(x1, . . . , xn)| ≤ γf
n∑
j=1

|∆j |

(2)
where γf is the Lipschitz constant and ∆j ∈ R,∀j =
1, . . . , n.

For simplicity of the presentation, system (1) can be
rewritten under the form{

ẋ(t) = Ax(t) +Bf(x(t))
y(t) = Cx(t− τ),

(3)

where
B = [ 0 . . . 0 1 ]

T
, C = [ 1 0 . . . 0 ] , (4)

and the state matrix A is defined by

(A)i,j =

{
1 if j = i+ 1
0 if j 6= i+ 1.

(5)

Let us introduce the following candidate Luenberger ob-
server

˙̂x(t) = Ax̂(t) +Bf(x̂(t))+L[y(t)− Cx̂(t− τ)], (6)

where x̂ represents the state estimation and L is the
observer gain.

The dynamics of the estimation error x̃(t) = x(t)− x̂(t) is
given by

˙̃x(t) = Ax̃(t) +B[f(x(t))− f(x̂(t))]− LCx̃(t− τ). (7)

The objective consists in designing a high-gain observer for
system (1) that provides stability of the estimation error.
We also provide an expression of the maximum bound of
the allowable delay and the design parameter under which
the proposed observer converges exponentially.

To establish the exponential convergence of the estimation
error, the following lemma is useful to demonstrate the
main results.

Lemma 1. (Halanay (1966)). If there exists a positive
Lyapunov-Krasovskii functional V (t) such that

d

dt
V (t) ≤ −αV (t) + β sup

s∈[t−τ,t]
V (s), (8)

where α > β > 0, then there exits η > 0 and δ > 0 such
that

V (t) ≤ ηe−δ(t−t0) for t ≥ t0. (9)

We also recall some useful inequalities needed in the proof
of some results.

Lemma 2. (Jensen’s Inequality). [Gu (2000)] For any con-
stant symmetric positive matrix M ∈ Rn×n, scalars t1, t2
and vector function v : [t1, t2] → Rn, then the following
inequality holds:(∫ t2

t1

v(β)dβ

)
TM

(∫ t2

t1

v(β)dβ

)
≤ (t2 − t1)

(∫ t2

t1

vT (β)Mv(β)dβ

)
. (10)

Lemma 3. (Young’s Inequality). [Kheloufi et al. (2015)]
Let X and Y be two matrices of appropriate dimensions.
Then, for every invertible matrix S and scalar µ > 0, we
have

XTY + Y TX ≤ µXTSX +
1

µ
Y TS−1Y. (11)

3. STANDARD HIGH-GAIN OBSERVER BASED
DESIGN

This section is devoted to the design of high-gain observer
for a class of nonlinear systems with the presence of a delay
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in the output measurements. We recall the standard high
gain design, where usually the observer gain L is written
as follows [Zemouche et al. (2019)]:

L := T (θ)K; θ ≥ 1 (12)

where

T (θ) := diag(θ, . . . , θn) and K ∈ Rn. (13)

Moreover, the estimation error is transformed into

x̄ := T−1(θ)x̃, (14)

where T−1(θ) is the inverse of T (θ) given by

T−1(θ) := diag(
1

θ
, . . . ,

1

θn
). (15)

The dynamics of the transformed error is given by

˙̄x(t) = θ(A−KC)x̄(t) + T−1(θ)B∆f

−θKC(x̄(t− τ)− x̄(t)), (16)

with
∆f := f(x)− f(x− T (θ)x̄). (17)

From the fact that θ ≥ 1 and by using the Lipschitz
condition (2), it was shown in Alessandri and Rossi (2013)
that there exists a positive constant kf , independently of
θ, such that

‖T−1(θ)B∆f)‖ ≤ kf‖x̄‖. (18)

Now we can state the preliminary result summarized in the
following theorem providing synthesis conditions to ensure
exponential convergence of the observer.

Theorem 4. If there exists a positive definite matrix P and
a matrix Y of appropriate dimension and a real constants
µ1, λ, τM > 0 so that the following conditions hold:He

{
PA− Y>C

}
+ τMRTR+ λI YT

Y −µ1

 ≤ 0, (19)

θ <

√
λmin(P )

2τMµ1(λmin(P ) +K2
1τ

2
M )

, (20)

θ > max

(
1,

2kfλ
2
max(P )

λ

)
, (21)

τM ∈

[
0,

√
λλmin(P )

2µ1K2
1λmax(P )θ2

− kfλmin(P )λmax(P )

µ1K2
1θ

3

]
,(22)

where He
{
S
}

:= S + S> and{
R = [0 1 01×n−2],

K = P−1YT = [K1 . . .Kn]T .
(23)

Then the observer (6) is exponentially convergent.

Proof. Define the following Lyapunov-Krasovskii candi-
date functional

V (t) = V (x̄(t)) = V1(t) + θV2(t), (24)

where
V1(t) = x̄T (t)Px̄(t), (25)

and

V2(t) =

∫ t

t−τ

∫ t

s

(x̄2(s))2dsdξ. (26)

First, let us compute the derivative of V1 along the
trajectories of (16). We obtain

d

dt
V1(t) = θx̄T (t)

[
(A−KC)TP + P (A−KC)

]
x̄(t)

+

(
1

θn
B∆f

)T
Px̄(t) + x̄T (t)P

(
1

θn
B∆f

)
+ Γ1,

where

Γ1:=

x̄T (t)Y
√
θ︸ ︷︷ ︸

Y T

√
θC(x̄(t)− x̄(t− τ))︸ ︷︷ ︸

X


T

+

x̄T (t)Y
√
θ︸ ︷︷ ︸

Y T

√
θC(x̄(t)− x̄(t− τ))︸ ︷︷ ︸

X

 ,

and
Y = KTP. (27)

By applying Young’s inequality on Γ1, we obtain

Γ1 ≤ µ1θ (x̄(t)− x̄(t− τ))
T
CTC (x̄(t)− x̄(t− τ))

+
1

µ1
θx̄T (t)YTYx̄(t), (28)

where µ1 is a given positive scalar.
Using the Leibniz integration formula

x̄(t)− x̄(t− τ) =

∫ t

t−τ
˙̄x(s)ds (29)

then we can rewrite (28) as follows

Γ1 ≤ µ1θ

(∫ t

t−τ
˙̄x(s)ds

)T
CTC

(∫ t

t−τ
˙̄x(s)ds

)
︸ ︷︷ ︸

Γ2

+
1

µ1
θx̄T (t)YTYx̄(t). (30)

If we apply Jensen’s inequality on the term Γ2, we get

Γ2 ≤ τM
∫ t

t−τ
˙̄x(s)TCTC ˙̄x(s)ds ≤ τM

∫ t

t−τ
‖ ˙̄x1(s)‖2ds

≤ τM
∫ t

t−τ
‖θx̄2(s)− θK1x̄1(s− τ)‖2ds

≤ 2τM

(∫ t

t−τ
(θx̄2(s))2ds+

∫ t

t−τ
(θK1x̄1(s− τ))

2
ds

)
.

From (30), we will have

Γ1 ≤
1

µ1
θx̄T (t)YTYx̄(t) + 2µ1θ

3τM

∫ t

t−τ
(x̄2(s))2ds

+ 2µ1θ
3τM

∫ t

t−τ
(K1x̄1(s− τ))

2
ds.

The derivative of V1 becomes
d

dt
V1 ≤ θx̄T (t)[ATP + PA− CTY − YTC

+
1

µ1
YTY]x̄(t) +

(
1

θn
B∆f

)T
Px̄(t)

+ x̄T (t)P

(
1

θn
B∆f

)
+ 2µ1θ

3τM

∫ t

t−τ
(x̄2(s))2ds

+ 2µ1θ
3τM

∫ t

t−τ
(K1x̄1(s− τ))2ds.
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Now, let us compute the derivative of V2 along the trajec-
tories of (16):

d

dt
V2(t) ≤ τM (x̄2(t))2 −

∫ t

t−τ
(x̄2(s))2ds.

Thus we have
d

dt
V (t) ≤ θx̄T (t)[ATP + PA− CTY − YTC

+
1

µ1
YTY + τMRTR]x̄(t) +

(
1

θn
B∆f

)T
Px̄(t)

+ x̄T (t)P

(
1

θn
B∆f

)
− θτM

(
1

τM
− 2µ1θ

2

)∫ t

t−τ
(x̄2(s))2ds

+ 2µ1θ
3τM

∫ t

t−τ
(K1x̄1(s− τ))2ds,

where the matrix R is defined as R = [0 1 01×n−2].

By choosing θ <
√

1
2µ1τM

and from the fact that

V2(t) ≤ τM
∫ t

t−τ
(x̄2(s))2ds. (31)

We obtain

−θτM
(

1

τM
− 2µ1θ

2

)∫ t

t−τ
(x̄2(s))2ds

≤ −θ
(

1

τM
− 2µ1θ

2

)
V2(t).

Then the derivative of V becomes
d

dt
V (t) ≤ θx̄T (t)[ATP + PA− CTY − YTC

+
1

µ1
YTY + τMRTR]x̄(t) +

(
1

θn
B∆f

)T
Px̄(t)

+ x̄T (t)P

(
1

θn
B∆f

)
− θ

(
1

τM
− 2µ1θ

2

)
V2(t)

+ 2µ1θ
3τM

∫ t−τ

t−2τ

(K1x̄1(s))2ds.

Now, let

ATP + PA− CTY − YTC +
1

µ1
YTY + τMRTR < −λI

(32)

Thus

d

dt
V (t) ≤ −λθx̄T (t)x̄(t) +

(
1

θn
B∆f

)T
Px̄(t)

+ x̄T (t)P

(
1

θn
B∆f

)
− θ

(
1

τM
− 2µ1θ

2

)
V2(t)

+
2µ1θ

3K2
1τ

2
M

λmin(P )
sup

[t−2τ,t]

V (s) (33)

which can be rewritten as

d

dt
V (t) ≤ −α1V1(t)− α2θV2(t) + β sup

[t−2τ,t]

V (s), (34)

where

α1 =
θλ

λmax(P )
− 2kfλmax(P ) > 0, (35)

α2 =
1

τM
− 2µ1θ

2 > 0 and β =
2µ1θ

3K2
1τ

2
M

λmin(P )
> 0, (36)

where λmax(P ) (resp. λmin(P ) is the largest (resp. small-
est) eigenvalue of P .
According to Lemma1, we have

V (t) ≤ ηe−δ(t−t0) for t ≥ t0, (37)

where β < α and α = min{α1, α2} which is fulfilled under
the following conditions:
β < α1 implies that

τM <

√
λλmin(P )

2µ1K2
1λmax(P )θ2

− kfλmin(P )λmax(P )

µ1K2
1θ

3
,

and

β < α2 =⇒ θ <

√
λmin(P )

2τMµ1(λmin(P ) +K2
1τ

2
M )

.

This ends the proof.

As shown previously, we can see that the upper bound
of the delay can be very small for high values of θ. This
means that for relatively important delays, the considered
observer cannot guarantee the exponential convergence. In
the next section, to overcome this problem, we use a novel
high gain observer with lower tuning parameter introduced
in Zemouche et al. (2019).

4. HG/LMI OBSERVER BASED DESIGN

In this section, we recall the HG/LMI observer method-
ology developed in Zemouche et al. (2019) for nonlinear
systems. We apply this method for the system (1) which
allows to improve the high gain results supposing the
asymptotic stability given.

4.1 Transformations based on HG/LMI technique

By the use of the LPV/LMI method in Zemouche and
Boutayeb (2013), ∆f in (16) can be reformulated under
the following form:

∆f =

for HG︷ ︸︸ ︷
n−j0∑
j=1

θjψj x̄j︸ ︷︷ ︸
∆f1

+

for LPV/LMI︷ ︸︸ ︷
j0∑
j=1

θk(j)ψk(j)x̄k(j), (38)

where

k(j) = n− (j0 − j), 0 ≤ j0 ≤ n. (39)

Consequently, the error dynamics (16) is rewritten as
follows:

˙̄x(t) = θ(A(Ψθ)−KC)x̄(t) +
1

θn
B∆f1

−θKC(x̄(t− τ)− x̄(t)), (40)

where

A(Ψθ) = A+B

j0∑
j=1

ψθj e
T
n (k(j)), (41)
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Ψθ =

 ψθ1
...
ψθj0

 ∈ Rj0 , (42)

ψθj =
ψk(j)

θ1+(j0−j)
. (43)

Define the convex bounded set

Hσj0 =

{
Φ ∈ Rj0 :

γ
γk(j)

σ1+(j0−j)
≤ Φj ≤

γ̄γk(j)
σ1+(j0−j)

}
(44)

for which the set of vertices is defined by

VHσ
j0

=

{
Φ ∈ Rj0 : Φj ∈

{ γ
γk(j)

σ1+(j0−j)
,

γ̄γk(j)
σ1+(j0−j)

}}
(45)

Since γ̄γk(j) and γ
γk(j)

≤ 0, then it is evident that for two

positive scalars σ1,σ2, we have the implication:

σ1 ≤ σ2 =⇒ Hσ1
j0
⊃ Hσ2

j0
. (46)

It follows that

lim
σ→+∞

(Hσj0) = {0Rj0} (47)

Furthermore , we can prove the existence of a positive real
number kj0 ≤ kf so that ∆f1 satisfies

‖T−1(θ)B∆f1‖ ≤
kj0
θj0
‖x̄‖ (48)

4.2 Synthesis conditions based on HG/LMI technique

This section is devoted to the main theorem, which pro-
vides sufficient synthesis conditions guaranteeing exponen-
tial convergence of the estimation error. The design is
based on the use of the HG/LMI technique.

Theorem 5. If there exist a positive definite matrix P and
a matrix Y of appropriate dimensions and real constants
µ1, λ, τM > 0 so that the following conditions hold for all
Ψ ∈ VHσ

j0
:He

{
PA(Ψ)− Y>C

}
+ τMRTR+ λI YT

Y −µ1

 ≤ 0, (49)

θ <

√
λmin(P )

2τMµ1(λmin(P ) +K2
1τ

2
M )

, (50)

θ > max

(
σ,

1+j0

√
2kj0λ

2
max(P )

λ

)
, (51)

τM ∈

[
0,

√
λλmin(P )

2µ1K2
1λmax(P )θ2

− kj0λmin(P )λmax(P )

µ1K2
1θ

3+j0

]
,(52)

where {
R = [0 1 01×n−2]

K = P−1YT = [K1 . . .Kn]T .
(53)

Then the observer (6) is exponentially convergent.

Proof. The proof is similar to the previous result. By
analogy to the proof of Theorem (4), the derivative of V
along the trajectories of (40) satisfies

d

dt
V (t) ≤ θx̄T (t)[A(Ψθ)TP + PA(Ψθ)− CTY − YTC

+
1

µ1
YTY + τMRTR]x̄(t) +

(
1

θn
B∆f1

)T
Px̄(t)

+ x̄T (t)P

(
1

θn
B∆f1

)
− θ

(
1

τM
− 2µ1θ

2

)
V2(t)

+
2µ1θ

3K2
1τ

2
M

λmin(P )
sup

[t−2τ,t]

V (s)

(54)

Let

A(Ψθ)TP + PA(Ψθ)− CTY − YTC +
1

µ1
YTY

+ τMRTR ≤ −λI, ∀Ψθ ∈ Hθj0 (55)

The inequality (55) is not exploitable because its depen-
dence on θ. Nevertheless, using the implication (46), we
obtain Ψθ ∈ Hσj0 for all θ ≥ σ. Then from the convex-
ity principle, inequality (55) holds only if the following
inequality is fulfilled

A(Ψσ)TP + PA(Ψσ)− CTY − YTC +
1

µ1
YTY

+ τMRTR ≤ −λI,∀Ψσ ∈ VHσ
j0

(56)

This ends the proof.

Remark 6. The previous proof shows the role of the ”com-
promise index” j0. It allows reducing the tuning parameter
of the observer. Consequently, the value of the maximum
delay, τM , allowed becomes higher.

5. CONCLUSION

In this paper we addressed the problem of observer design
for a class of nonlinear systems with delayed measure-
ments. The delay is assumed to be known and bounded.
The objective was to develop a state observer allowing
a maximum bound of the delay as high as possible while
ensuring exponential convergence. To this end, we used the
HG/LMI observer (Zemouche et al., 2019), instead of the
standard high-gain methodology, which led to a consider-
ably higher allowable maximum bound on the delay. The
convergence analysis was performed by using a Lyapunov-
Krasovskii functional, depending on the tuning parameter
of the observer, jointly with the Halanay inequality. Due
to the lack of space, there are no numerical examples to
illustrate the superiority of the proposed observer design
procedure. However, on the other hand, the explicit rela-
tion between the tuning parameter of the observer and the
maximum bound of the delay provided in this note, shows
analytically the superiority of the proposed method.

As future works, we aim to improve more the result by ex-
ploring new ideas on high-gain observers, namely the intro-
duction of specific nonlinear transformations to decrease
the value of the tuning parameter. The goal consists in
applying the theoretical results to real-world applications
like wastewater treatment models and anaerobic digestion
processes.
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