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Abstract: We consider an adaptive control problem for a homogeneous population of systems
that operate in close conditions. Drawing a connection to Design of Experiments (DoE), we study
an extremum seeking controller that operates the population economically by either minimizing
a group cost or maximizing a group utility. The controller is formalized in full detail within
a dynamic setting that extends the previous treatment. The applicability and effectiveness of
the strategy is commented upon and supported through different examples. We argue that this
class of control systems should be addressed as a design pattern where possible in view of its
capacity to enable both simple and effective online optimizing control strategies.
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1. INTRODUCTION

The selection and tuning of opportune control structures
are central to the design of effective process automation. In
general, accomplishing the design task mandates a fair ap-
plication of both art and formal methods to account for the
specific requirements and performance/complexity/cost
trade-offs (Seborg et al., 2010). To complicate matters,
the control engineer is often not perceived as a principle
stakeholder throughout the plant design process. This
eventually opens to a disproportion between the effort
required to design the control system and the benefit from
attaining the performance.
Here, we propose a plant design pattern that enables an
intuitive adaptive control strategy based on running par-
allel simultaneous experiments. More formally, we study
homogeneous populations of systems that operate in close
conditions and consider how to optimize a group cost
or utility online. Homogeneous populations of this kind
emerge naturally across different application scenarios: on
one hand, scaling manufacturing processes necessitates
the modularization of the product itself; on the other
hand, meeting both capacity demands and redundancy
guarantees leads to replicating the infrastructures at the
final plant site. In solar power installations, for example,
the replicated system can be identified with the single
photovoltaic (PV) panel; moreover, nearby panels can be
assumed to operate in close conditions, thus forming a
homogeneous population (see Figure 1). Other application
scenarios characterized by similar considerations include
a range of energy intensive processes such as Heating,
Ventilation, and Air-Conditioning (HVAC) systems, heat
pump facilities servicing district heating loops, wind and
hydroelectric turbine plants. In all these settings, the eco-
nomic operation of the single unit requires tuning only a
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Figure 1. An array of PV panels is a fitting example of
a homogeneous population of systems in which an
adaptive controller optimizes the power production.
We address this example in Section 8.

small number of manipulable variables (less than three or
four). However, the optimal tuning depends strongly and
nonlinearly on multiple time-varying boundary conditions.
Moreover, the latter exogenous inputs and the overall
nonlinear model of the objective might not be available
online. With this context, here we argue that homogeneous
populations of systems should be addressed not only on
a case by case basis, when it is required to meet design
requirements, but also as a plant design pattern, whenever
the benefits of optimal operations may exceed the acqui-
sition cost of deploying replicated infrastructures.
Literature review. Attaining the performance in economic
control problems presents the challenge of tracking the op-
timal operating point online. When detailed plant knowl-
edge is available, model-based controllers can form optimal
decisions on the basis of state and output predictions (Ellis
et al., 2016). However, developing the underlying model
requires upfront effort and may result in numerically
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challenging online optimal control problems. Alternative
model-free strategies must retrieve some plant knowledge
online in order to steer the process, typically by using
variants of a perturb and observe scheme. For instance,
the information generation process in Extremum Seeking
Control (ESC) uses an additive dither that is applied to
the control signal. The dither signal then disrupts the plant
operations whenever a new optimization cycle is required
and for the length of the optimization (Tan et al., 2008).
Control strategies for replicated infrastructures have been
analysed previously. However, the existing literature lacks
to recognize the underlying plant design as a control
oriented pattern, missing to highlight the relevance and
potential of homogeneous populations in this context.
Srinivasan (2007) considers a setup similar to ours, us-
ing finite differences to estimate the profitable direction,
limiting to static convex objectives and to a population
of perfectly identical control systems. Woodward et al.
(2009) introduces plant dynamics but in the context of
single-input systems and populations of size two, moreover
neglecting any exogenous signals perturbing the group’s
operations.
Statement of contributions. We identify a plant design
pattern that naturally emerges in settings where deploying
replicas of the same infrastructure is necessary to attain
the resource capacity. Although widespread, this pattern
is neither recognized nor addressed systematically as such.
We then study an intuitive adaptive control strategy that
applies to generic populations of homogeneous systems.
We show that as long as all instances in the population
operate in close conditions, an experimental design may be
exploited to extract online information on the profitable
directions and eventually bring the operations near the
optimal group cost or group utility. We frame formally
the proposed adaptive control strategy and detail different
in silico application scenarios to demonstrate its efficacy.
Completing previous results, we consider 1) multivariable
settings in which 2) the single instances forming the
population need not be identical and 3) are allowed to
have dynamics. Moreover, 4) we suggest to treat the online
derivative reconstruction problem within a formal Design
of Experiments (DoE) framework.
Organization of this manuscript. Section 2 details our
framework. Section 3 formalizes the population based
adaptive controller. Section 4 discusses the design of the
simultaneous experiments. Section 5 highlights the conver-
gence results. Section 6, 7, and 8 demonstrate the efficacy
of the proposed controller over selected practically relevant
scenarios. Finally, Section 9 collects concluding remarks
and future directions.

2. BACKGROUND

We consider a population of N ∈ N>0 control systems in
the following parametric family

σ(θ) =̇
{
ẋ = f(x,u,w,θ)
y = h(x,u,w,θ) (1)

where x ∈ X ⊂ Rn is the state vector, y ∈ R is
the scalar output, u ∈ U ⊂ Rm is the control value,
w ∈ W ⊂ Rp captures the exogenous inputs, and θ ∈
Θ ⊂ Rq are the parameters. The mappings f, h are
assumed sufficiently regular and the sets X ,U ,W,Θ are

compact. The population is described as a collection of
noninteracting systems and denoted using

Σ =̇
(
σ1, σ2, · · · , σN

)
, (2)

where σi =̇σ(θi) for some fixed parameter θi ∈ Θ. The
state, manipulable, and exogenous variables of σi are
denoted with xi, ui, and wi, respectively: Σ thus has nN
states and (m + p)N inputs. The amount of variability
induced by differing parameters θi and exogenous inputs
wi is quantified through the following Lipschitz continuity
assumption.
Assumption 1. (Population homogeneity). Let the indexes
i, j ∈ {1, . . . , N} denote a pair of two instances in Σ, let
xi0,x

j
0 ∈ X be their initial states at time t = 0, and denote

their outputs by yi(t), yj(t). Then, there exists constants
c1, c2, c3, c4, c5 ∈ R≥0, independent of i and j, such that∥∥yi(t)− yj(t)∥∥∞ ≤ c1e

−c2t
∥∥∥xi0 − xj0∥∥∥∞

+ c3
∥∥θi − θj∥∥∞ + c4 sup

0≤τ≤t

∥∥ui(τ)− uj(τ)
∥∥
∞

+ c5 sup
0≤τ≤t

∥∥wi(τ)−wj(τ)
∥∥
∞ , t ≥ 0.

(3)

Roughly speaking, the trajectories of any two instances
σi, σj resemble each other whenever the initial states, the
inputs, and the parameters are sufficiently close.
We assume the following “driftless” behavior: applying
constant inputs steers each instance in Σ to a well defined
steady state.
Assumption 2. (Driftless dynamics). There exist a map-
ping ` : U ×W ×Θ 7→ X such that

f(`(u,w,θ),u,w,θ) = 0. (4)

Under the standing assumptions, it is implied that also `
is Lipschitz continuous and has bounded gradient. The N
outputs {yi} of Σ are understood as measurable operation
costs or utilities to be optimized online. Without loss of
generality, we define the steady state cost incurred by the
i-th system in function of the manipulable and exogenous
inputs as

J i(ui,wi) =̇h(`(ui,wi,θi),ui,wi,θi). (5)
The following group cost is introduced to account for the
operation of the entire population

J(u1, . . . ,uN ,w1, . . . ,wN ) =̇
N∑
i=1

J i(ui,wi). (6)

For the sake of a compact notation, we will abuse {ui}
(and similarly {wi}) to denote also the N ordered argu-
ments u1, . . . ,uN , and moreover write the group cost as
J({ui}, {wj}), or J(u, {wj}) when implying ui = u for
all i = 1, . . . , N .
Remark 3. We stress that not only the parameters affect-
ing the individual instances σi are unknown, also the un-
derlying dynamics are unknown. This reflects a minimum
information setting in which producing detailed a priori
plant knowledge is impractical.

3. ADAPTIVE CONTROL VIA SIMULTANEOUS
EXPERIMENTS

In the remainder, the control aim is to track the unknown
optimal control value u? minimizing the group cost for Σ,
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Figure 2. Block scheme for the adaptive control scheme
exploiting N simultaneous experiments over the ho-
mogeneous population Σ.

that is,
u? ∈ argmin

u∈U
J(u, {wi}). (7)

A precondition required to motivate the problem setup and
(7) is that each wi either varies slowly in time or varies lit-
tle in time (this is formalized later in Definitions 6 and 7).
Since the parameters {θi} and the exogenous inputs {wi}
cannot be supervised by the controller, the focus remains
set on minimizing the section u 7→ J(u, {wi}) and, thus,
on learning the steepest descent direction −∇uJ online.
We propose to address the task at hand through the adap-
tive control strategy summarized graphically in Figure 2.
The basic intuition is to run simultaneous experiments on
the N instances of Σ. In this scheme, the collection of
outputs {yi} is aggregated to produce an estimate ∇uĴ of
∇uJ , which is then mapped to the current guess û of u?.
The closed loop dynamics, including the output feedback
law, takes the state space form

ẋi = f(xi, û+ δi,wi,θi), i = 1, . . . , N
yi = h(xi, û+ δi,wi,θi), i = 1, . . . , N
˙̂u = diag (γ) g(y1, . . . , yN )

(8)

where δi ∈ Rm, i = 1, . . . , N , are constant offsets injected
into the N systems, and g : RN → Rm is a derivative
estimator mapping the measured outputs into the gradient
estimate ∇uĴ . The vector of adaptation gains γ ∈ Rm is
entry-wise negative when J represents a cost.

4. DESIGN OF THE SIMULTANEOUS
EXPERIMENTS

An Experimental Design (ED) for the adaptive control
scheme (8) is a set of offsets

∆ =̇
{
δ1, δ2, . . . , δN

}
(9)

where the generic δi is vector in Rm. The ED is applied
to the estimate û of the optimizer u? in (7) to produce
N measurable, simultaneous, experimental outcomes {yi}.
Observing the output trajectory of Σ allows then the re-
construction of a response surface, conveying information
on the local group cost gradient∇uJ and, by an opportune
design, any higher order derivatives.
Broadly speaking, an effective Derivative Estimator (DE)
g can be designed by postulating either parametric or

nonparametric models for the observations Brekelmans
et al. (2005); Rasmussen and Williams (2010). Lacking
global information, a numerically efficient local strategy
is to project the observations onto a finite-dimensional
linear functional space (for instance, a truncated Taylor
expansion). This process yields a separable form[

y1 y2 . . . yN
]> =

[
1 Φ

] [α0
α

]
(10)

where the matrix Φ ∈ RN×N
′
is a function of {δi}, the

multipliers α0 ∈ R, α ∈ RN
′
are estimands, and (10)

may be understood as a regularized Least Squares (LS)
problem. We observe moreover that lacking also a priori
local knowledge of J ’s features, α must have dimension at
least m to allow the reconstruction of ∇uJ , inducing the
following necessary condition 1

N ≥ N ′ + 1 ≥ m+ 1. (11)
Assumption 4. (Population size). The size of the popula-
tion Σ satisfies (11).

Different strategies are considered in the literature under
deterministic and noise stochastic settings. The (∆, g) pair
can be designed in terms of numerical approximations as,
for instance, finite forward, backward, and central differ-
ences, or by using optimal DoE as discussed in Pronzato
(2007); Brekelmans et al. (2005).
Example 5. When the focus is on minimizing the popula-
tion size, that is N = m+1, one may consider the following
Plackett-Burman ED[

1 Φ
]

= HND, (12)
where HN ∈ {−1, 1}N×N is Hadamard and D =
diag (1, d1, d2, . . . , dm) � 0 is a positive matrix collecting
the offsets’ amplitudes. Notice that (12) implies an affine
local surrogate model. The parameters of D must be tuned
by the designer, adapting the ED to the range of the
actuators so as to achieve a faithful reconstruction of the
response surface. With this choice, the ED in (8) and (9)
is embedded within the rows of the regressor,

δih = (HND)i,h+1 1 ≤ h ≤ m, 1 ≤ i ≤ N (13)
and, since HNH

>
N = NI, one has the following LS

estimator of the gradient

g(y1, . . . , yN ) =̇
[
0 Im

]
D−1H

>
N

N

[
y1 · · · yN

]>
. (14)

We refer to Brekelmans et al. (2005) for the details on the
optimality properties of Plackett-Burman designs.

ED-DE pairs such as (13)-(14) produce an exact guess
of ∇uJ for the special case of a population of static,
linear, and identical instances. More generally, it becomes
necessary to consider an operational envelop in order to
quantify the effects of the nonlinearities and the different
dynamical behaviors induced by {θi} and {wi}. Define the
radius of a set E as

ρ(E) =̇ sup
e1,e2∈E

‖e1 − e2‖∞ . (15)

Definition 6. (Static envelope). The static envelope Es
with radii rw, rθ is the set
1 The validity of (11) extends then to settings where estimating the
higher derivatives is of interest, and in which N ′ must be larger than
the number of partial derivatives to be inferred.
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Es(rw, rθ) =̇{
w1, . . . ,wN ,θ1, . . . ,θN ∈ WN ×ΘN

s.t. ρ({wi}) < rw, ρ({θi}) < rθ
}
.

(16)

Definition 7. (Dynamic envelope). We say that Σ oper-
ates within the dynamic envelop with positive radii
(rx, ru, rw, rθ, rẇ, ru̇) if for all positive times t ≥ 0 there
holds {wi}, {θi} ∈ Es(rw, rθ) together with
ρ({xi0 − `(ui,wi,θi)}) < rx, sup

t≥0
ρ({ui(t)}) < ru,

sup
t≥0

ρ({ẇi(t)} ∪ {0}) < rẇ, sup
t≥0

ρ({u̇i(t)} ∪ {0}) < ru̇,

(17)
The set of tuples of N initial states, 2N input signals, and
N parameters simultaneously satisfying these conditions
is denoted by Ed(rx, ru, rw, rθ, rẇ, ru̇).

The characterization in (1) guarantees that arbitrarily
accurate estimators g may be designed as long as the
N instances of Σ operate in sufficiently close conditions
and the second order derivatives of ∇uuJ are uniformly
bounded.
Definition 8. We say that the pair (∆, g) incurs a steady
state estimation error at most ε > 0 over the envelope
Es(rw, rθ) if

sup
u :u+δi∈U, 1≤i≤N
{wi},{θi}∈Es(rw,rθ)

∥∥e(u, {wi})
∥∥
∞ < ε, (18)

with
e =̇∇uJ(u, {wi})

− g
(
J1(u+ δ1,w1), . . . , JN (u+ δN ,wN )

)
.

Proposition 9. Assume ∇uuJ uniformly bounded. Then,
for any pair (∆, g) as in (13)-(14) and ε > 0 there exists a
non-empty envelop (rw, rθ) and a radius rδ > 0 such that
the new ED-DE pair (

s∆, s−1g
)

(19)
with constant s =̇ rδ/ρ(∆), incurs a static error at most ε.

The proof of this statement, here omitted in the interest
of space, follows from the fact that Assumption 1 renders
Lipschitz continuous steady state costs (5).
In practice, tuning of the ED, and in particular its radius
ρ(∆), may be performed on the basis of either a priori
experimental knowledge or using lack-of-fit indicators for
(10). We notice then that the attainable accuracy will be
naturally limited by the presence of process and measure-
ment noise which can nevertheless be formally captured by
the near-optimality guarantees established in the following
section.

5. CLOSED-LOOP NEAR OPTIMALITY

The following open-loop result formalizes the intuition
that as long as the population operates in close conditions,
and the rate of change of the common control signal
(denoted with û in (8)) is sufficiently small, then the
simultaneous experiments setup of the previous section is
able to produce an online gradient estimate suitable to
drive the ESC.
Proposition 10. If the pair (∆, g) in Proposition 9 is ε1-
accurate over the envelope Es(rw, rθ) then there exist radii
rx, ru, rẇ, ru̇ ∈ R>0 such that

∥∥∇uJ (u(t), {wi(t)}
)
− g

(
y1(t), . . . , yN (t)

)∥∥
∞ < 2ε1,

uniformly in t ≥ 0, whenever Σ operates in the dynamic
envelop Ed(rx, ru, rw, rθ, rẇ, ru̇).

Proof. A sketch of the proof is as follows. For the state-
ment to hold it is sufficient to show that for any positive
constant c ∈ R>0 there exist small radii rx, ru, rẇ, ru̇ ∈
R>0 such that the output trajectories of Σ satisfy∥∥yi(t)− J i (u(t) + δi,wi(t)

)∥∥
∞ < c ∀ 1 ≤ i ≤ N, t ≥ 0.

(20)
Notice that (20) can be interpreted as a quasi steady
state operating condition. For slowly varying systems of
this kind, bounds on the dynamic envelope radii can be
recovered explicitly as in (Khalil, 2002, Theorem 9.3)
under the provision that an opportune control Lyapunov
function V (zi,ui,wi, θi) exists for the family of shifted
dynamics

żi = f(zi + h(ui,wi, θi),ui,wi,θi), (21)

with zi =̇xi − h(ui,wi, θi), ui,wi,θi ∈ U × W × Θ.
Such V exists by the assumptions of Section 2 and the
converse Lyapunov result of Lemma 9.8 in Khalil (2002).
An estimate for the required c can then be drawn from
knowledge of ‖g‖. �

Definition 11. (Near optimality). Given ε2 > 0, we say
that the adaptive controller (8) is ε2 nearly optimal for
the dynamic operation envelope Ed(rx, ru, rw, rθ, rẇ, ru̇)
if

lim sup
t→+∞

∣∣J (û(t), {wi(t)}
)
− J(u?(t), {wi(t)})

∣∣ < ε2.

(22)

We then have the following closed-loop asymptotic practi-
cal stability result.
Theorem 1. Assume the optimizer u? in (7) to be uni-
vocally identified for each operating condition. Then, for
every given ε2 > 0, there exists i) an ED-DE pair in
Proposition 10, ii) an open-loop dynamic operating en-
velope Ed, and iii) an adaptation gain γ ∈ Rm<0 such
that the closed-loop dynamics (8) let Σ operate within
Ed and moreover the output feedback guarantees the ε2
near-optimality condition in (22).

Proof. A sketch of the proof proceeds as follows. Propo-
sition 9 suggests an ED-DE pair with tunable steady state
accuracy. Proposition 10 asserts that the gradient estima-
tion error during transients can be uniformly bounded as
long as the system is slowly varying. This latter condition
is attained by choosing a vector of adaptation gains with
‖γ‖ sufficiently small. Tuning of the ED-DE pair instead
guarantees an arbitrarily accurate reconstruction of ∇uJ
which in turn allows the system to be steered within the
ε2 nearly optimal neighborhood of u? . �

Remark 12. We stress that the controller poses no addi-
tional assumptions on generally challenging features of the
dynamics such as, for example, non-minimum phase be-
haviors. In fact, more generally, the N instances in Σ may
be characterized by drastically different state dynamics as
long as the same steady state behavior is approximately
retained.
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Figure 3. In (a), an array of Organic Rankine Cycles
(ORCs) uses a common heat source and a common
heat sink to produce the output work {Hi}. The over-
all effectiveness is affected by the rotational speeds of
the pump and expander (uipump and uiex, respectively)
in each unit. In (b), implementation of the ORC
instances in Siemens’s Amesim.
6. EXAMPLE: ORC-BASED GENERATORS

ORCs are increasingly finding application in contexts
where generating electricity from low grade waste heat
provides operational benefits. Exemplative scenarios range
from geothermal plants to large cruise ships. We refer
to Quoilin et al. (2013) for a survey of economic and
technological aspects of ORCs.
Consider the plant schematized in Figure 3 in which a
population of ORCs operates with the same hot side (heat
source) and cold side (heat sink) mass flow (ṁh, ṁc)
and temperature conditions (xh, xc). The generic i-th
ORC unit has two manipulable controls upump and uex
corresponding, respectively, to the Revolutions per Minute
(RPM) of the cycle’s pump and expander parts. The
operation objective is to maximize the utility

J(upump, uex, {ṁi
h, x

i
h, ṁ

i
c, x

i
c}) =̇

N∑
i=1

Hi(upump + δipump, uex + δiex),
(23)

where Hi is the output work produced by the i-th ORC
system in function of the controls, and we set ṁi

h =

Figure 4. A control-oriented design of the ORC plant en-
ables a simple and intuitive adaptive control strategy
that tracks the maximum output work defined in
(23) in spite of varying operating conditions, plant
nonlinearities, and lack of detailed plant knowledge.

ṁh/N, ṁ
i
c = ṁc/N, x

i
h = xh, x

i
c = xc. The ED is designed

as in Example 5 with D = diag (1, 20, 2) and considering
the adaptation gain γ =

[
2000 1

]>. The high gain γ1
is chosen to pair with the week sensitivity of (23) with
respect to the pump velocity upump. A conservative tuning
is chosen to prevent sudden changes in the liquid-vapor
mixture properties at the condensers and evaporators.
We evaluate the proposed adaptive scheme within the
following scenario. The evaporators on the hot side are
each supplied with hot water with constant volumetric
flow rate of 0.79 l/s, while the condensers on the cold side
are cooled using moist air with 40 % relative humidity and
constant rate of 0.33 kg/s. Steps in the inflow temperatures
xc, xh are introduced at times t = 500 s and t = 1000 s, see
Figure 4. We start the controller’s state with the subopti-
mal guesses upump = 2000RPM and uex = 150RPM and
let it supervise the array from time t = 100 s onward. The
controller first drives the system toward the optimal op-
erating conditions recovering from the suboptimal initial
settings, and then continues to track the maximum utility
despite changes in the exogenous inputs and the induced
transients.

7. EXAMPLE: A HEAT RECOVERY NETWORK

A heat recovery plant using an array of Heat Exchangers
(HXs) is shown in Figure 5. In the proposed scenario,
the heat removed from a production site is injected into
a consumer-side loop without allowing the mixing of the
production-side and consumer-side coolants. To attain the
heat transfer capacity an array of heat exchangers is de-
ployed, each endowed with independent flow actuators on
both the hot and cold sides of the unit. These manipulable
flow rates are denoted using ṁi

h and ṁi
c. The exogenous

inputs to each instance are the supply temperature of the
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coolant on the hot-side, xih,i and the return temperature
xic,i at the cold-side inlet ports of the HX units. We assume
that water is used as the coolant medium, and each flow
actuator is modeled as a first-order system incurring an
economic operation cost v̇ 7→ P (v̇) cubic in the volumetric
rate that is produced. The rate of heat transfer from the
production to the consumer loop at each HX is denoted
with qi.
The control objective is to track the unknown rate of
heat consumption Qc(t) while minimizing the total power
consumption at the pump actuators. Within the scope of
this manuscript we capture the control task through

J({v̇h,i, v̇c,i}, {Qc}) =̇N · P (v̇h,i) +N · P (v̇c,i)

+ λ
(
Qc −

N∑
i=1

qi
)2
,

(24)

and therefore take into account the soft-constraint induced
by the heat transfer matching condition using a barrier
term with penalty multiplier λ ∈ R>0.
The volumetric rates on each side of the HX units are
assimilated to the controls. The corresponding mass rates
{ṁi

h, ṁ
i
c} are evaluated given the density of water at the

temperature of the corresponding flow. We adopt a static
ε-Number of Transfer Units (NTU) model to capture the
heat transfer rates {qi}. In particular, given the mass flow
rates and the inflow temperature on both sides of each HX
we consider a counterflow setup for which Bergman et al.
(2011)

Cc = ṁccp(xc,i), Ch = ṁhcp(xh,i),
C = min{Cc, Ch}, C = max{Cc, Ch},
Cr = C/C, Q = C(xh,i − xc,i),

ε = 1− exp (−NTU(1− Cr))
1− Crexp (−NTU(1− Cr))

, q = εQ,

(25)

where x 7→ cp(x) denotes the specific heat of water at
temperature x. The vector θ = [τ NTU]> subsumes then
the parameters of each instance in Σ, namely the time
constant of the pump actuators and the number of transfer
units characterizing the HXs.
The heat recovery performance when the plant is super-
vised by the proposed adaptive controller is evaluated in
Figure 6 under varying heat production and consump-
tion rates Qp, Qc. We used τ = 60, NTU = 3, D =
diag (1, 0.01, 0.01) and γ = 0.001 · [1 1]>. The controller
prefers to decrease the flow rate on the consumer side
when there is a thermal energy surplus on the production
side. This results in accurately matching the consumers’
demand. However, as the consumption exceeds the pro-
duction, the flow rate v̇c increases to accommodate the
demand. Toward the end of the simulation period, the heat
resources within the production loop deplete, sinking the
water temperatures, and impairing the operation of the
controller which becomes unable to track the requested
transfer rates.

8. EXAMPLE: PV PANELS ARRAY

As a further exemplative scenario we consider a Maximum
power point tracking (MPPT) application for PV panels
(see Figure 1). To simplify the discussion, taking into

Qp

Production

xh,ixh,o

Qc

Consumers

xc,ixc,o

v̇1h
x1
h,o

v̇1c

x1
c,o

xN
h,o

xN
c,o

v̇Nh

v̇Nc

qN

q1

ṁh ṁc
HXs

Figure 5. A heat exchanger network with three exchange
elements requires supervision of the mass rates on the
production and consumer sides to optimize (24).

Figure 6. Heat recovery performance of the proposed adap-
tive controller applied to the example of Figure 5.
Varying supply and consumption rates are designed in
the top panel. The inflow and outflow water temper-
atures at the HXs units are shown in the second and
third panels. The bottom panels depicts the controls.

account space constraints, we consider a population of two
panels connected in parallel. For the numerical analysis, we
adopt the following static I-V characteristic

I = is(T, S)−i0(T )
[
exp

(
V
ns

+ IRs

NVt(T )

)
− 1
]
−

(
V
ns

+ IRs

Rp

)
where V and I = I(V, T, S) are the voltage and current
output of the panel, T is the operating temperature, S is
the power irradiated on the cells, and moreover

is(T, S) = (Is + ki(T − Tr))
S

103 , Vt(T ) = kT

q
,

i0(T ) = I0

(
T

Tr

)3
exp

[
Eg

NVt(T )

(
T

Tr
− 1
)]

,

(26)
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Figure 7. I-V and power characteristics of the PV panel
model considered in Section 8 for different values of
the operating temperature T and irradiation S. The
maximum power points are highlighted in red.

Figure 8. Example of Section 8: Performance of the adap-
tive controller compared to the optimal MPPT solu-
tion.

with q denoting the elementary charge, k the Boltzmann’s
constant, and θ = [ns Rs N Rp Is ki Tr Eg]> characteris-
tic parameters of the panel (see Luque and Hegedus (2003)
for details). The parameters are chosen as in Ghaffari et al.
(2014) and reflect the properties of a Sanyo 215N device.
The characteristic I-V and power profiles are shown in
Figure 7.
In this setup, the voltage V can be assimilated to the
control variable, while the temperature and irradiation are
exogenous inputs. The control aim is then to operate the
panels to maximize the total power production

J
(
V, {T i, Si}

)
=

2∑
i=1

V · Ii(V, T i, Si). (27)

To assess the proposed control scheme we consider the
ED (13) with D = diag (1, 0.5, 0.5) and set γ = 0.005. The
performance of the adaptive control scheme are compared
to the optimal MPPT solution under varying irradiance
and temperature conditions in Figure 8. The bottom panel,
in particular, shows how the proposed controller is able to
accurately track the theoretical MPP evaluated assuming
exact knowledge of the exogenous inputs.

9. CONCLUSIONS

We argue that homogeneous populations of systems should
be addressed as a control oriented design pattern rather
then merely a necessity when multiple modular systems
need to be deployed to meet the operation requirements.
To support this argument we detail and evaluate an ESC
strategy that exploits simultaneous experiments to infer
the local gradient of the group cost or group utility.
Several exemplative scenarios are considered in which a
homogeneous population plant design becomes relevant
in order to attain the required capacity and redundancy.
It is of interest to note that plant configurations such as
those in Figures 3 and 5 are natural in the sense that they
can realize the optimal performance by operating with the
highest temperature gap between the hot and cold side
inflows.
Upcoming work focuses the detailed treatment of the for-
mal results, including settings with process and measure-
ment noise, and output constrained control problems. Of
practical relevance is the application of these strategies to
the online optimization of HVAC systems.
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