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Abstract: The control problems concerning the manipulation of system trajectories ensembles
have received increased attention in recent years. This paper considers a class of nonlinear
discrete-time systems with additive control and develops a systematic method to design optimal
controls that steer an ensemble from an initial state to a terminal one minimizing the cost
functional that estimates ensemble dynamics in average. Necessary optimality condition as well
as functional variation are constructed. These allow building different iterative or gradient-based
methods to minimize the desired control cost criterion. The motivation for this study originates
from the optimization problem of advanced fuel cycle in accelerator driven system. The grand
challenge here remains to address the coupled problem over the multiple cycles in the planning
horizon taking into account manufacturing and nuclear data uncertainties. A brief description
of physical problem and corresponding mathematical model for optimization of advanced fuel
cycle in terms of the proposed approach are presented.
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1. INTRODUCTION

The control problems concerning the manipulation of sys-
tem trajectories ensembles have received increased atten-
tion in recent years. This tendency is caused by the emerg-
ing problems arisen from various engineering applications.
A special class of such problems are the ones associated
with the charged particles beam dynamics optimization in
accelerating and focusing structures Ovsyannikov (1980,
1990); Ovsyannikov et al. (2006). The effectiveness of
optimization methodology applied for the dynamics of tra-
jectories ensemble is confirmed when solving various prob-
lems of electrophysics Golovkina et al. (2018b); Ovsyan-
nikov and Zavadskiy (2018); Ovsyannikov (2000), nuclear
medicine Bazhanov et al. (2018), manipulation of spin
ensembles in nuclear magnetic resonance Li and Khaneja
(2006); Glaser et al. (1998), coordination of the flocks
movement in biology Brockett (2010) and so on.

For all described applications the problem statement in
terms of trajectories ensemble control originates naturally
from the physical aspects of the modeled systems. But
additionally to these cases, the problems of dynamical sys-
tems control under uncertainties and incompleteness of in-
formation generally are reduced to the problems of trajec-
tories ensembles control too. Lots of papers exist devoted
to this issue, but we mention several of them Kurzhanski
(1977); Kurzhanski and Varaiya (2014); Kurzhanskiy and
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Varaiya (2011); Panteleev and Pis’mennaya (2018); Bor-
takovskii and Nemychenkov (2017); Wang and Li (2017).

It is worth to be noted that if system dynamics depends
on some parameters which values are uncertain, it can be
brought to the problem with uncertainty in the initial data
as well. Indeed, the parameter can be replaced by a state
coordinate that is constant in time. Adding to the state-
space equations a zero derivative of this parameter with
respect to time as well as the corresponding indefinite ini-
tial condition, we obtain the model without a parameter,
but with uncertainty in the initial data.

In practice, smooth and non-smooth functionals are mostly
used in solving control problems for trajectories ensem-
bles. Smooth functional can be associated with optimal
control in average. This means one should minimize the
average value of quality factor for trajectories ensemble.
Non-smooth fuctionals in their turn are related to min-
imizing the quality factor maximum value computed for
the whole trajectories ensemble. The paper Mizintseva
and Ovsyannikov (2017) develops a method to simultane-
ously optimize smooth and non-smooth functionals. The
mentioned approaches are mainly focused on the mostly
studied continuous-time ensemble systems Ovsyannikov
(1980, 1990).

In the same time nowadays discrete control processes
are gaining more attention both in theory and practice
of optimal control. The reason for it in the first turn
is the fact that continuous-time systems are controlled
by a digital computer. Furthermore, the discrete systems
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are encountered in solving continuous optimal control
problems by numerical methods. As a result, in this paper,
we consider a class of nonlinear discrete-time systems
with additive control and develop a systematic method
to design optimal controls that steer an ensemble from
an initial state to a terminal one minimizing the cost
functional that estimates ensemble dynamics in average.

The examined class of controlled discrete systems corre-
sponds to the mathematical model of control for trans-
mutation process in advanced fuel cycle implemented in
accelerator driven system (ADS). ADS consists of three
major blocks: charged particles accelerator, neutron pro-
ducing target and subcritical reactor core Nifenecker et al.
(2003). Advanced fuel cycle is an important aspect of sus-
tainable nuclear energy, because its implementation leads
to resources preservation, significant waste minimization
and improved economy Mai (2002); Herczeg (2003). The
major challenge for nuclear fuel management optimization
remains to address the coupled problem over the multiple
cycles in the planning horizon taking into account the man-
ufacturing and nuclear data uncertainties. For advanced
fuel cycles, one should make decisions associated with
what elements to recycle, in what quantity, and how to
physically introduce them into the core Cacuci (2010).

The optimal control problem for advanced fuel cycle is de-
signed to achieve the following goal. This is minimizing the
total radioactivity of spent fuel in the long-term storage by
successive minimization of waste radioactivity by the end
of each cycle. To address it, we build mathematical model
of trajectories ensemble control in discrete-time system,
where isotope distributions in the reloading fuel at the be-
ginning of each cycle are considered as control parameters.
The choice of ensemble model is explained by the necessity
to provide a robustness due to the presence of different
types of uncertainties encompassing the initial and control
data. The solution of discrete-time optimization problem
is examined in details, necessary optimality condition as
well as functional variation are constructed. These allow
building different iterative or gradient-based methods to
minimize the desired control cost criterion.

The authors have already successfully utilized the optimal
control apparatus for the optimization issue of a single
transmutation cycle Golovkina et al. (2018a,b, 2019). The
problem there was considered for continuous-time system
describing the isotopes concentration dynamics in time.
This paper for in the first time formulates the problem of
advanced fuel cycle optimization as a discrete-time optimal
control problem for trajectories ensemble.

The rest of the paper is organized as follows. In section
2 the optimal control problem for trajectory ensemble of
a class of nonlinear discrete system with additive control
term is considered. The necessary assumptions are given
as well as some notations are introduced. Section 3 is
dedicated to the optimal control framework formulation
and divided into 2 subsections. The first one among them
contains some auxiliary relations and lemmas that are used
further in the second subsection, devoted to the derivation
of necessary optimality condition and cost functional vari-
ation. Section 4 describes a physical example of advanced
fuel cycle optimal control served as a motivation for this
study.

2. PROBLEM STATEMENT

This paper considers a dynamic system described by the
discrete equations of the following type

x(k + 1) = f(k, x(k)) + u(k), k = 0..N − 1, (1)

where x(k) is a n-vector, characterizing the state of the
system, u(k) is a n-vector of control actions, f(k, x(k))
is a n-dimensional vector function, defining the process
dynamics at each step. We suppose that f(k, x(k)) is
defined and continuous in Ω for each k along with its

first and second derivatives ∂fl
∂xj

, ∂2fl
∂xi∂xj

, l, i, j = 1..n,

u(k) ∈ U(k). Here Ω is a region in Rn, U(k) is a compact
set in Rn. It is assumed also that Jacobian determinant

Jk = J(k, x(k)) = |∂f(k, x(k))/∂x(k)|
is not equal to zero for all possible changes of k and
x(k) ∈ Ω. Thus, it means that vector x(k) with the fixed
vector u(k) uniquely defines the state x(k+ 1) on the step
k and the other way round. Additionally, we suppose that
initial values for the system (1) are taken from a compact
set M0 ⊂ Rn of non-zero measure.

The sequence of vectors {u(0), u(1), ..., u(N − 1)} we will
call control and denote u. In the same time the correspond-
ing to this control sequence of vectors {x(0), x(1), ..., x(N)}
is a trajectory of the system that we denote x(x0, u). Under
the introduced notations, x(k, x0, u) designates the state
of the system at the step k.

Set of trajectories x(x0, u) corresponding to the control
u and different initial conditions x0 ∈ M0 we will call
trajectories ensemble.

State of the ensemble at the k-th step is the cross-
section of trajectories ensemble denoted as Mk,u =
{x(k) : x(k) = x(k, x0, u), x0 ∈M0}.
Let us introduce a functional

I(u) =

N−1∑
k=1

∫
Mk,u

ϕ(k, xk, u(k))dxk +

∫
MN,u

g(xN )dxN , (2)

characterizing the state of the trajectories ensemble and
control quality. Here xk = x(k) ∈ Mk,u, function
ϕ(k, x, u) is defined and continuous in Ω × U(k) with
respect to its arguments for each k along with its partial
derivatives with respect to x and u, g(x) is continuously
differentiable function defined in Ω.

Let us consider the problem of functional (2) minimization
for all admissible controls u(k) ∈ U(k), k = 0..N − 1.

3. OPTIMAL CONTROL FRAMEWORK

3.1 Auxiliary Relations and Lemmas

Let us consider admissible controls u and ũ. The corre-
sponding trajectories are denoted as

x(x0, u) and x̃(x0, ũ). (3)

The difference ∆u(k) = ũ(k)− u(k) is variation of control
u at the step k, the difference ∆x(k) = ∆x(k, xk) =
x̃(k, x0, ũ)− x(k, x0, u) is trajectory x(x0, u) increment at
the step k. Thus, ∆u and ∆x are variations of control u
and trajectory x increments correspondingly. Apparently,
due to continuity, ‖∆x‖ → 0 when ‖∆u‖ → 0 uniformly
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for x0 ∈ M0, ‖∆x‖ = max
k=0..N

‖∆x(k)‖, the norm of vector

∆u is defined in the similar way.

The increment ∆x can be substituted with variation δx
satisfying the following equation

δx(k + 1) =
∂f(k, x(k))

∂x(k)
δx(k) + ∆u(k), (4)

with δx(0) = 0, k = 0, .., N − 1.

Let us consider the mapping of set Mk,u to the set Mk,ũ

defined by the trajectories (3) starting at the same points
of the set M0:

x̃k = x̃(xk). (5)

Due to assumptions that the right side of the equation
(1) is differentiable and Jacobian matrix of mapping (1) is
non-singular, we can conclude that mapping (5) is locally
bijective and continuously differentiate. Moreover, in view
of x̃k = xk + ∆x(k, xk), Jacobian determinant of (5) can
be written in the form Ovsyannikov (1980)

det(∂x̃k/∂xk) = 1 + div ∆x(k, xk) + o (‖∆x(k, xk)‖) , (6)

where

div ∆x(k, xk) =
n∑
i=1

∂∆xi(k, x(k))

∂xi(k)
.

Lemma 1. Let A(α) be a non-singular square matrix with
dimension n. Suppose that its elements aij depend on the
parameter α. Then, the following relation takes place

tr

(
A−1(α)

∂A(α)

∂α

)
=

1

|A|
∂ |A(α)|
∂α

.

Proof. By Aij we denote an algebraic complement for the

element aij . Then, as is known, A−1 =
(

(Aij)
n
i,j=1

)T
/|A|.

Taking this relation into account, we will get

tr

(
A−1

∂A

∂α

)
=

1

|A|

n∑
i=1

n∑
j=1

Aij
∂aij
∂α

=
1

|A|
∂|A|
∂α

.�

Corollary 2. Due to the fact that the trace of square
matrices product does not depend on the order of mul-
tiplication and the trace of sum of matrices equals to the
sum of these matrices trace, then based on the lemma 1,
we can write:

tr

(
n∑
i=1

A−1i
∂Ai
∂α

)
= tr

(
n∑
i=1

∂Ai
∂α

A−1i

)
=

n∑
i=1

1

|Ai|
∂|Ai|
∂α

.

(7)

The following lemma is used further during transforming
of the considered functional.

Lemma 3. The following equality takes place

div δx(k + 1, x(k + 1)) = div δx(k, x(k))+

+
∂Jk
∂x(k)

δx(k, x(k))J−1k . (8)

Proof. Taking into account the definition of divergence

div δx(k + 1, x(k + 1)) =

n∑
i=1

∂δxi(k + 1, x(k + 1))

∂xi(k + 1)

and equation in variations (4), we can conclude that

div δx(k + 1, x(k + 1)) = tr

[
∂

∂x(k)(
∂f(k, x(k))

∂x(k)
δx(k, x(k)) + ∆u(k)

)
∂x(k)

∂x(k + 1)

]
. (9)

From equation (1) follows that

∂x(k)

∂x(k + 1)
=

[
∂f(k, x(k))

∂x(k)

]−1
.

Besides

∂

∂x(k)

(
∂f(k, x(k))

∂x(k)
δx(k, x(k)) + ∆u(k)

)
=

=

n∑
i=1

∂

∂xi(k)

f(k, x(k))

∂x(k)
δxi(k, x(k))+

+
∂f(k, x(k))

∂x(k)

∂δx(k, x(k))

∂x(k)
. (10)

Using lemma 1 along with the obtained relations (9) and
(10), we can get the desired expression

div δx(k + 1, x(k + 1)) = J−1k
∂Jk
∂x(k)

δx(k, x(k))+

+ div δx(k, x(k)).�

Corollary 4. The iterative formula for divergence calcula-
tion can be derived from the expression (8) and the fact
that div(δx(0, x(0))) = 0

div δx(k + 1, x(k + 1)) =

k∑
s=0

J−1s
∂Js
∂x(s)

δx(s, x(s)).

3.2 The Necessary Optimality Conditions

Let us find the functional (2) increment between admissi-
ble controls u and ũ:

∆I =I(ũ)− I(u) =

N−1∑
k=1

 ∫
Mk,ũ

ϕ(k, x̃k, ũ(k))dx̃k−

−
∫
Mk,u

ϕ(k, xk, u(k))dxk

+ (11)

+

∫
MN,ũ

g(x̃N )dx̃N −
∫

MN,u

g(xN )dxN .

Using the mapping (5) from Mk,u set to the Mk,ũ, we
carry out the change of variables under the integrals with
respect to the trajectories cross-section Mk,ũ. After then
we get

∆I =

N−1∑
k=1

∫
Mk,u

[ϕ(k, xk + ∆x(k, xk), u(k) + ∆u(k))·

·
∣∣∣∣∂x̃(xk)

∂xk

∣∣∣∣− ϕ(k, xk, u(k))

]
dxk+ (12)∫

MN,u

[
g(xN + ∆x(N, xN )) ·

∣∣∣∣∂x̃(xk)

∂xk

∣∣∣∣− g(xN )

]
dxN .

Dividing out the linear terms in (12) with respect
to ∆x(k, x(k)), div ∆x(k, x(k)) and ∆u(k) and tak-
ing into account that ‖∆x(k, x(k))− δx(k, x(k))‖ and
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‖div ∆x(k, x(k))− div δx(k, x(k))‖ are infinitesimals of
higher order than ‖∆u‖ uniformly in x ∈ M0 and k =
1, 2, .., N , we can represent (12) in the following way

∆I = δI + o(‖∆u‖), (13)

where

δI =

N−1∑
k=1

∫
Mk,u

[div (ϕ(k, xk, u(k))) δx(k, xk)+

+
∂ϕ(k, xk, u(k))

∂u(k)
∆u(k)

]
dxk + (14)

+

∫
MN,u

div (g(xN )δx(N, xN )) dxN .

Let us transform the functional variation (14) in the con-
venient form. It is necessary for the further calculation and
construction of optimization algorithm. For this reason, we
introduce the auxiliary variables satisfying the following
difference system:

q(k − 1) = ϕ(k − 1, x(k − 1), u(k − 1)) + Jk−1q(k), (15)

p(k − 1) = Jk−1

(
∂f(k − 1, x(k − 1))

∂x(k − 1)

)T
p(k)+ (16)

q(k)

(
∂Jk−1

∂x(k − 1)

)T
+

(
∂ϕ(k − 1, x(k − 1), u(k − 1))

∂x(k − 1)

)T
,

where k = N − 1, N − 2, .., 1 and conditions at the end of
the interval are given:

q(N) = g(x(N)), p(N) =

(
∂g(x(N))

∂x(N)

)T
. (17)

Here p(k) is a n-vector, q(k) is a scalar.

After that, let us rewrite the last integral in variation
(14) using the newly introduced variables (15) and (16).
To accomplish this, we do the change of variables due to
the system (1) and by this switching to integrating with
respect to xN−1. In this case we get∫
MN,u

div (g(xN )δx(N, xN )) dxN = (18)

∫
MN−1,u

(p(N)δx(N, xN ) + q(N) div δx(N, xN )) JN−1dxN−1.

Substituting here δx(N, xN ) using formula (4) and taking
into account the relation (8) for div δx(N, xN ) obtained in
lemma 3, we get∫
MN,u

div (g(xNδx(N, xN ))) dxN =

∫
MN−1,u

[((
p(N),

∂f(N − 1, xN−1)

∂x(N − 1)
δx(N − 1, xN−1)

)
+

(p(N),∆u(N − 1)) + q(N) div δx(N − 1, xN−1)) JN−1+

q(N)
∂JN−1

∂x(N − 1)
δx(N − 1, xN−1)

]
dxN−1. (19)

Let us sum the expression (19) with the integral with
respect to the cross section MN−1,u in variation (14).
Gathering terms next to δx(N − 1) and div δx(N − 1),

taking into account formulas (15) and (16), we write this
sum in the following way∫
MN−1,u

[(p(N),∆u(N − 1)) JN−1+

+
∂ϕ(N − 1, xN−1, u(N − 1))

∂u(N − 1)
∆u(N − 1)

]
dxN−1+

+

∫
MN−1,u

(p(N − 1), δx(N − 1, xN−1)+ (20)

+ q(N − 1) div δx(N − 1, xN−1)) dxN−1.

If in the second integral in (20) we change integration with
respect to xN−1 into xN−2, taking into account (1), we
get the expression similar to (19) distinguishing only in
the step number. Thus, the expression (20) allows one to
switch to the integration with respect to the previous cross
sections in the integrals of type (18). Repeat this procedure
until the integration over the trajectories ensemble cross
sections is brought to the integration over the initial values
set M0, where δx(0, x0) = 0 and div δx(0, x0) = 0. This
let us get the following expression for the functional (2)
variation:

δI =

N−1∑
k=0

 ∫
Mk,u

[
Jkp(k + 1) +

(
∂ϕ(k, xk, u(k))

∂u(k)

)T
]
dxk,∆u(k)


(21)

Let us introduce a special control variation, namely
∆u(k) = 0, k = 1, 2, .., N − 1, k 6= j, ∆u(j) 6= 0. Variation
is called admissible for admissible control u if ε̄ > 0 exists,
such that when 0 ≤ ε ≤ ε̄

u(j) + ε∆u(j) ∈ U(j).

Theorem 5. So that control u0 = (u0(0), u0(1), .., u0(N −
1)) becomes optimal, it is necessary that the following
inequality holds for all admissible variations of control u0∫
Mk,u0

[
J(k, xk, u

0(k))pT (k + 1, xk) +
∂ϕ(k, xk, u(k))

∂u(k)

]
dxk∆u(k) ≥ 0, k = 0, 1, .., N − 1. (22)

Here p(k+1) satisfies relations (16) in the optimal process,
i.e. for the optimal control u0 and optimal trajectories
x(x0, u

0) corresponding to it.

Proof. The proof follows from the representation of func-
tional variation (21), expression (13) and the definition of
a special variation. �

Taking into account the representation of functional vari-
ation (21) as well as necessary optimality condition (22),
one can build different iterative and gradient-based opti-
mization methods.

Let us consider method of possible directions applied for
the introduced problem using the results of Theorem 5.
Inequality (22) can be simply written as

ωk∆uk ≥ 0, k = 0, 1, .., N − 1, (23)

Suppose, there is m, where the optimality condition (23)
does not hold. This means um and ∆um exist such that

ωm∆um < 0, the minimizing sequence of controls {u(j)m },
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j = 0, 1... should be built u
(j+1)
m = u

(j)
m − µjωm(u(j)).

Here µj = argmin
µ≥0

I(u
(j)
m − µjωm(u(j))). If there are

several m violating (23), step-wise descent method is
applied subsequently for each of them using the procedure
described above.

4. MATHEMATICAL MODEL OF ADVANCED FUEL
CYCLE

The “transmutation” concept in advanced fuel cycle is
related to the physical process that transforms a fresh
fuel into an irradiated fuel. Mathematical description of
such phenomena in one cycle is obtained by the solution
of Bateman equations (24) from which the vector of the
nuclei densities Nend at the end of the cycle t = tend,
starting from the initial value (25), is obtained Salvatores
and Palmiotti (2011):

dNi
dt

= −

(∑
d

λdi −
∑
x

〈σxi, ϕ〉

)
Ni+

+
∑
j¬i

(
γi←jd λdj + γi←jx 〈σxj , ϕ〉

)
Nj , (24)

Ni(t0) = N i
0 (25)

where i = 1..l — total number of nuclei considered in
the system, N = [N1, N2, . . . , Nl]

T
. Some coefficients of

equation (24) depend on N(we use here bold font to show
vector notation), some are constants characterizing the
transitions between nuclei.

Let us rewrite equations (24) in the matrix form, carry-
ing out decomposition of the right part according to its
coefficient properties Wieselquist (2015):

dN

dt
= (Aϕ(N) +Aλ) N, (26)

where

Aλ =



−
∑
d

λd1 γ1←2
d λd2 . . . γ1←nd λdl

γ2←1
d λd1 −

∑
d

λd2 . . . γ
2←n
d λdl

...
...

. . .
...

γn←1
d λd1 γn←2

d λd2 . . . −
∑
d

λdl


,

Aϕ =



−
∑
x

〈σx1, ϕ〉 γ1←2
x 〈σx2, ϕ〉 . . . γ1←nx 〈σxl, ϕ〉

γ2←1
x 〈σx1, ϕ〉 −

∑
x

〈σx2, ϕ〉 . . . γ2←nx 〈σxl, ϕ〉

...
...

. . .
...

γn←1
x 〈σx1, ϕ〉 γl←2

x 〈σx2, ϕ〉 . . . −
∑
x

〈σxl, ϕ〉


.

• Here Aλ is a decay part with d indicating a decay
mode, the off-diagonal elements representing gains of
nuclide i due to the decay mode d and the diagonal
elements representing the loss of nuclide i due to all
decay modes, λdi is the decay (d) constant for nuclide

i, γi←jd is a coefficient characterizing “yield” of nuclide
i from j in decay d. Decay part is independent of N.

• Aϕ is a reaction part with x indicating a nuclear reac-
tion type, off-diagonal elements representing gains of
nuclide i due to the reaction type x and the diagonal
elements representing the loss of nuclide i due to all
reaction mechanisms. γi←jx is a coefficient character-
izing “yield” of nuclide i from j in nuclear reaction
x, σxi is a reaction x cross section for nuclide i, ϕ
represents a neutron spectrum in the reactor core.

Isotopic depletion modeling capability is well developed.
Its major limitation originates not so much from the
mathematical limitations of solving the Bateman equation
(24)–(26), but from the quality of the input data provided
Cacuci (2010). Nuclear data for certain isotopes and re-
action types are not sufficiently accurate to support the
needs of nuclear fuel management, particularly for some
advanced nuclear systems under consideration, e.g., ADS.

Nuclear fuel management practices are very well estab-
lished for nuclear power plant types that have wide deploy-
ment. For the promising nuclear power plant types not yet
widely deployed, like ADS, there is considerable opportu-
nity to consider more creative nuclear fuel management
practices. The big challenge for nuclear fuel management
optimization remains to address the coupled problem over
the multiple cycles in the planning horizon. For advanced
fuel cycles, one can add additional decisions associated
with what elements to recycle, in what quantity, and how
to physically introduce them into the core.

However, the uncertainties associated with advanced fuel
cycle are of great importance. This involves not only the
methods introduced uncertainties, but also all the other
sources, e.g., manufacturing and nuclear data. Thus, the
further development of adaptive simulation capability may
play an important role complementary to refinement of
optimization and models as well as numerical methods.

Let us consider the discrete formulation of the depletion
model (26) which we extend to the multi-cycle level. It is
well known, that by integrating ODEs are in fact reduced
to a discrete-time system. Taking into account that the
integration step in (26) is relatively large due to slow
dynamics change and the fact that control action are
discrete in time, we can conclude that building control
models for discrete-time system is more reasonable.

Discrete system can be built in different ways, not only
by choosing the integrating method, but also by choice
of the model, describing the fuel depletion. According
to the assumption for neutron flux during one cycle to
change slightly, we can neglect the dependence of Aϕ on
N and come to an autonomous system in (26). Then, we
can choose the discretization step corresponding to the
intervals of fuel reloading:

N(k + 1) = A(k,N(k))N(k) + Nu(k), (27)

where Nu is a control action at each step k representing the
nuclear densities of additive fuel, A(k,N(k)) is a matrix
of coefficients, obtained by combining and discretizing Aϕ
and Aλ.

For out problem statement, functions ϕ and g in the cost
functional (2) are defined in the following way:

ϕ(k,N(k),Nu(k)) = (DF,N(k) + Nu(k)),

g(N(N)) = (DF,N(N)). (28)
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Here DF is a vector of size l representing the doze factors
for the considered isotopic vector N.

The introduced in section 3 approach can be used for
solving of optimal control problem for advanced fuel cycle
(27)–(28).

5. CONCLUSION

Optimal control problem of trajectories ensemble for a
class of discrete dynamic systems with additive control
term is considered in this paper. Such system arises nat-
urally in optimization problem of advanced fuel cycle.
The necessary optimality condition as well as variation of
the cost functional estimating the ensemble dynamics in
average are constructed. Based on it one can build differ-
ent iterative or gradient-based methods for cost criterion
minimization. The corresponding discrete-time model for
advanced fuel cycle control is shown.
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