
Encrypted MPC based on ADMM real-time iterations?

Moritz Schulze Darup

Encrypted Control Group, Universität Paderborn, Germany.
(e-mail: moritz.schulzedarup@rub.de)

Abstract: Encrypted control enables confidential controller evaluations in cloud-based or
networked control systems. Technically, an encrypted controller is a modified control algorithm
that is capable of computing encrypted control actions based on encrypted system states without
intermediate decryption. The realization of such controllers, e.g., using homomorphic encryption,
is non-trivial. Nevertheless, even optimization-based model predictive control (MPC) has already
been implemented in an encrypted fashion. However, the existing schemes either require an
explicit solution of the parametric optimal control problem (OCP) or they can only consider
input constraints. In this paper, we present a novel encrypted MPC that allows to include state
and input constraints without the requirement of an explicit solution of the OCP. The approach
builds on the encrypted implementation of a single iteration of the alternating direction method
of multipliers (ADMM) per time step, i.e., ADMM real-time iterations.

Keywords: Encrypted control, model predictive control (MPC), alternating direction method
of multipliers (ADMM), real-time iterations, homomorphic encryption

1. INTRODUCTION

Cloud-computing and distributed computing are becoming
omnipresent in modern control systems such as smart
grids, robot swarms, building automation, or intelligent
transportation systems. While cloud-based and distributed
control schemes usually increase the systems’ scalability
and performance, these schemes also raise the risk of cy-
berattacks. In fact, the required communication and pro-
cessing of sensitive data via public networks and on third-
party platforms promote interception and manipulation
of data. Future control schemes should counteract those
threats and ensure confidentiality, integrity, and availabil-
ity of the involved data.

A promising setup for cloud-based control that effectively
prevents the risk of eavesdropping is illustrated in Figure 1.
In this setup, that has first been proposed in Kogiso and
Fujita (2015), state measurements are encrypted at the
sensor and sent to the cloud. In the cloud, an encrypted
version of the controller computes an encrypted control ac-
tion (without intermediate decryption) and sends it to the
actuator. At the actuator, the control action is decrypted
and applied to the system. Confidentiality is guaranteed
throughout the control loop since system states and inputs
are encrypted not only during transmission but also during
computations in the cloud. While the concept is straight-
forward, its technical realization is challenging. In prin-
ciple, homomorphic encryption (see, e.g., Paillier (1999);
Gentry (2009)) allows to rewrite any algorithm such that
it computes encrypted outputs based on encrypted inputs.
However, in practice, encrypting algorithms is currently
realizable only for simple procedures since solely encrypted
sums and/or multiplications can be carried out with a
reasonable numerical effort. Yet, these operations already
? Support by the German Research Foundation (DFG) under the
grant SCHU 2940/4-1 is gratefully acknowledged.

Actuator
u

System
x

Sensor

Encrypted controller

Fig. 1. Cloud-based control scheme with encrypted com-
munications and encrypted controller evaluation.

allow for the encrypted evaluation of simple control laws
such as linear state feedback (see Kogiso and Fujita (2015);
Kim et al. (2016); Farokhi et al. (2017)).

In this paper, we focus on encrypted model predictive
control (MPC). Clearly, due to optimization-based control
actions and the presence of state and/or input constraints,
encrypting MPC schemes is considerably harder than
encrypting linear state feedback. Nevertheless, encrypted
MPC has recently been realized in Alexandru et al. (2018),
Schulze Darup et al. (2018a), and Schulze Darup et al.
(2018b). However, the two first mentioned schemes only
consider input constraints and the third approach requires
an explicit solution of the multi-parametric optimal control
problem (OCP). Here, we present an encrypted MPC that
can handle state and input constraints and that does not
require an offline solution of the OCP. The novel controller
builds on an encrypted implementation of the alternating
direction method of multipliers (ADMM). More precisely,
encrypted real-time ADMM iterations are considered, i.e.,
only one solver iteration per time-step.

Real-time iterations for feedback control have been intro-
duced in Li and Biegler (1989) and Diehl et al. (2002). At

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 3570

first sight, considering a single solver iteration per time-
step seems doomed to fail. However, in the framework of
control, a single iteration per sampling instant can be
sufficient since further iterations follow at future time-
steps. For the special case of linear-quadratic MPC, one
can even certify asymptotic stability as recently shown in
van Parys and Pipeleers (2018) and Schulze Darup and
Book (2019b) for projected gradient and ADMM real-
time iterations, respectively. Such real-time iterations are
suitable for homomorphically encrypted implementations
since only one projection step is involved in the controller
evaluation. Encrypting these projections (in an efficient
manner) is difficult. However, the single projection can
be outsourced from the cloud to the actuator. This ap-
proach has been successfully applied in Schulze Darup
et al. (2018a) to encrypt the projected gradient scheme
from van Parys and Pipeleers (2018). In this paper, we
use a similar approach to encrypt the ADMM real-time
iterations considered in Schulze Darup and Book (2019b).
Apart from the inclusion of state constraints, the novel
scheme differs from Schulze Darup et al. (2018a) in that
some encrypted data is buffered in the cloud (see Fig. 2).
As detailed below, this results in a more sophisticated
encrypted controller.

The paper is organized as follows. We state notation in the
remainder of this section and provide background on MPC,
homomorphic encryption, and (required) quantization in
Section 2. The main contribution of the paper, i.e., the
encrypted implementation of the predictive control scheme
based on ADMM real-time iterations, is presented in
Section 3. The approach is illustrated with an example
in Section 4. Finally, conclusions and an outlook are given
in Section 5.

Notation. We denote the sets of real, integer, and natural
numbers by R, Z, and N, respectively. Positive natural
numbers are denoted by N+. The sets ZP and Z∗P refer to
the additive and multiplicative group of integers modulo
P ∈ N+, respectively, where standard representatives of
ZP are collected in the set NP := {0, 1, . . . , P − 1}.
Regarding modulo operations, we use the convention

z mod P := z − P
⌊ z
P

⌋
,

where b·c and d·e refer to the floor respectively the ceiling
function. Furthermore, we write bold-face letters whenever
we refer to matrices or vectors. In particular, we denote
the identity matrix in Rn×n by In. In addition, with 1m,
0m, and 0m×n, we refer to the vector in Rm full of ones,
the zero vector in Rm, and the zero matrix in Rm×n,
respectively. Moreover, for a positive definite matrix P ,
we define ‖x‖2P := x>Px. Finally, the indicator function
of some set Z ∈ Rp is defined as

IZ(z) :=

{
0 if z ∈ Z,
∞ otherwise.

2. BACKGROUND ON MPC, HOMOMORPHIC
ENCRYPTION, AND QUANTIZATION

2.1 Model predictive control for linear constrained systems

We consider linear discrete-time systems

x(k + 1) = Ax(k) +Bu(k), x(0) := x0, (1)

with state and input constraints of the form

x(k) ∈ X ⊂ Rn and u(k) ∈ U ⊂ Rm.

For this system class, MPC builds on solving the OCP

V (x) := min
x̃(0),...,x̃(N)

ũ(0),...,ũ(N−1)

‖x̃(N)‖2P +

N−1∑
κ=0

‖x̃(κ)‖2Q + ‖ũ(κ)‖2R

s.t. x̃(0) = x, (2)

x̃(κ+ 1) = Ax̃(κ) +Bũ(κ), ∀κ ∈ NN
x̃(κ) ∈ X , ∀κ ∈ NN
ũ(κ) ∈ U , ∀κ ∈ NN
x̃(N) ∈ T

in every time step for the current state x = x(k). In
this context, N ∈ N+ refers to the prediction horizon,
P , Q, and R are weighting matrices, and T ⊆ X is a
terminal set. Throughout the paper, we make the following
assumptions:

Assumption 1. The pair (A,B) is stabilizable, the matri-
ces P , Q, and R are positive definite, and X , U , and T are
convex and closed sets with the origin as an interior point.

Assumption 2. Projections onto the sets X , U , and T can
be efficiently computed.

While Assumption 1 is common, Assumption 2 is non-
standard (and slightly imprecise). It is, e.g., satisfied for
box-shaped or ellipsoidal constraints. It remains to specify
the control action of an MPC, which corresponds to the
first element of the optimal control sequence, i.e.,

u(k) = ũ∗(0), (3)

where ũ∗(0), . . . , ũ∗(N − 1), x̃∗(0), . . . , x̃∗(N) refer to the
optimizers for (2).

2.2 Homomorphic encryption and the Paillier cryptosystem

In general, homomorphic encryption (HE) refers to a spe-
cial family of cryptosystems that enables certain mathe-
matical operations to be carried out on encrypted data.
More precisely, we call a cryptosystem additively homo-
morphic if there exists an operation “⊕” such that

z1 + z2 = Dec (Enc(z1)⊕ Enc(z2)) (4)

holds, where z1 and z2 are two arbitrary numbers in the
message space of the cryptosystem and where the functions
Enc and Dec refer to the encryption and decryption pro-
cedure, respectively. Multiplicatively HE is defined analo-
gously. A popular additively HE scheme, that is detailed
in the following, is Paillier (1999). Multiplicatively HE
is often implemented using ElGamal (1985). Encryption
schemes that are both additively and multiplicatively ho-
momorphic are called fully homomorphic. In principle,
fully HE can be used to encrypt arbitrary functions (Gen-
try, 2010). However, it is computationally highly demand-
ing and currently not a competitive option for encrypted
control. Nevertheless, so-called somewhat or leveled fully
HE schemes (see, e.g., Brakerski et al. (2014)), that sup-
port a limited number of encrypted multiplications and
additions, may be useful for future encrypted controllers.

Most existing encrypted controllers (such as Kim et al.
(2016); Farokhi et al. (2017); Alexandru et al. (2018);
Schulze Darup et al. (2018b,a); Alexandru and Pappas
(2019)) make use of the Paillier cryptosystem. In this
asymmetric encryption scheme, the encryption is carried
out based on a public key P and the decryption requires
the secret key S. The key generation for the simplified
scheme (Katz and Lindell, 2014, Sect. 13.2) builds on two

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3571

primes p1, p2 ∈ [2`−1, 2` − 1] of the same “length” ` ∈ N+,
where l should currently be at least 1024 for security
reasons (National Institute of Standards and Technology,
2016). The public key then is P = p1p2 and the private
key evaluates to S = (p1− 1)(p2− 1). The encryption of a
number z from the message space ZP is realized by

Enc(z, r) := (P + 1)zrP mod P 2, (5)

where r is randomly chosen from Z∗P for every single
encryption. The resulting ciphertext c lies in the set Z∗P 2 .
The decryption is carried out by computing

Dec(c) :=
(cS mod P 2)− 1

P
S−1 mod P, (6)

where S−1 mod P refers to the multiplicative inverse
of S modulo P . In the following, we will restrict our
attention to messages from the set NP . We then obtain
Dec(Enc(z, r)) = z for every z ∈ NP and every r ∈ Z∗P , i.e.,
reversibility of the encryption. The Paillier cryptosystem
is additively homomorphic. In fact, we have

z1 + z2 = Dec
(
Enc(z1, r1) Enc(z2, r2) mod P 2

)
. (7)

for all z1, z2 ∈ NP such that z1 + z2 ∈ NP and all
r1, r2 ∈ Z∗P . In addition, the Paillier cryptosystems sup-
ports multiplications with one encrypted factor as appar-
ent from the relation

z1z2 = Dec
(
Enc(z1, r)

z2 mod P 2
)

(8)

that holds for all z1, z2 ∈ NP such that z1z2 ∈ NP and
all r ∈ Z∗P . The relations (7) and (8) form the basis of
many existing encrypted controllers and they will also be
essential for the novel controller proposed in Section 3.

2.3 Quantization via fixed-point numbers

The previously presented Paillier cryptosystem is designed
for integer messages. Hence, applying Paillier encryption
to realize encrypted control requires to map the system
states and the controller parameters onto a subset of Z.
This mapping usually starts with a quantization. Here, we
approximate the states xj ∈ R (and controller parameters)
with fixed-point numbers from the set

Qβ,γ,δ :=
{
−βγ ,−βγ + β−δ, . . . , βγ − 2β−δ, βγ − β−δ

}
,

where the parameters β ∈ N+ and γ, δ ∈ N can be
understood as the basis, the magnitude, and the resolu-
tion of the fixed-point numbers, respectively. For exam-
ple, for β = 10 and γ = δ = 1, we obtain Qβ,γ,δ =
{−10,−9.9, . . . , 9.8, 9.9}. Now, different user-defined map-
pings h : R → Qβ,γ,δ can be used to compute fixed-point
approximations of the form x̂j := h(xj). Rounding down
can, for example, be realized by

h(x) := max ({−βγ} ∪ {q ∈ Qβ,γ,δ | q ≤ x}) .
Other rounding schemes can be implemented analogously.
It remains to address the mapping from Qβ,γ,δ to the
message space NP of the Paillier cryptosystem. In this
context, we first note that

βδ Qβ,γ,δ = {−βγ+δ,−βγ+δ + 1, . . . , βγ+δ − 1} ⊂ Z. (9)

Hence, scaling with βδ maps Qβ,γ,δ onto a subset of Z. In
order to obtain a mapping onto a subset of NP , we choose
a number Q ∈ NP that is large enough to avoid overflow
(as detailed below) and define the function f : Z → NQ
as f(z) := z mod Q. The combination of the quantization
via h, the scaling with bδ, and the mapping f leads to

f(βδh(xj)) ∈ NQ ⊆ NP . The resulting numbers can then
be processed in the Paillier cryptosystem. In this context,
it turns out to be useful that the relations

f(z1 + z2) = f(z1) + f(z2) mod Q and (10a)

f(z1z2) = f(z1)f(z2) mod Q. (10b)

hold for every z1, z2 ∈ Z. Moreover, ϕ : Z→ Z with

ϕ(z) :=

{
z −Q if z ≥ Q

2 ,
z otherwise

(11)

is a partial inverse of f . In fact, we have z = ϕ(f(z)) for all

z ∈
{
−
⌊
Q

2

⌋
,−
⌊
Q

2

⌋
+ 1, . . . ,

⌈
Q

2

⌉
− 1

}
. (12)

Invertibility of f is required to undo the mapping onto NP .

3. NOVEL ENCRYPTED MPC

In this section, we introduce a novel encrypted MPC
implementation that builds on an approximate solution
of the OCP (2) using ADMM real-time iterations. In
order to prepare the novel scheme, we first summarize the
ADMM-based solution of (2) in Section 3.1 and recall the
corresponding real-time iterations in Section 3.2.

3.1 ADMM-based solution of the OCP

Different strategies have been proposed to solve OCPs of
the form (2) using ADMM. Here, we follow the approach
from Jerez et al. (2014) that is based on reformulating (2)
in terms of the optimization problem

z∗(x) = arg min
z

1

2
z>Hz (13a)

s.t. z ∈ Z, (13b)

Gz = Ex (13c)

with the decision variables

z :=

ũ(0)
...

ũ(N − 1)
x̃(1)

...
x̃(N)

∈ Rp (14)

and the constraint set

Z :=
{
z ∈ Rp

∣∣ z ∈ UN ×XN−1 × T
}
, (15)

where p := N(m+n) and where we refer to (Schulze Darup
and Book, 2019a, Eq. (2.1)) for details on the matrices
H, G, and E. To prepare the application of ADMM, we
first rewrite (13) in terms of an unconstrained optimization
problem. With the help of indicator functions, we find

z∗(x) = arg min
z

1

2
z>Hz + IZ(z) + IE(x)(z),

where E(x) := {z ∈ RNm+Nn |Gz = Ex}. Following
the approach in Jerez et al. (2014), we next introduce
the “copy” y of z in order to derive the decomposed
optimization problem

min
y,z

1

2
y>Hy + IZ(z) + IE(x)(y) (16a)

s.t. y = z. (16b)

From (16), one can derive the three ADMM steps

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3572

y(j+1) := arg min
y

1

2
y>(H + ρIp)y + (µ(j) − ρz(j))>y

s.t. Gy = Ex, (17a)

z(j+1) := projZ

(
y(j+1) +

1

ρ
µ(j)

)
, (17b)

µ(j+1) := µ(j) + ρ
(
y(j+1) − z(j+1)

)
, (17c)

where ρ > 0 weights the regulariztion term and where
µ ∈ Rp represents the Lagrange multipliers (see Jerez
et al. (2014) for details). The step (17a) corresponds to
an equality-constrained quadratic program. Hence, the
optimizer y(j+1) can be inferred from the equation(

H + ρIp G
>

G 0

)(
y(j+1)

∗

)
=

(
ρz(j) − µ(j)

Ex

)
,

where “∗” is irrelevant here. Due to H being positive def-
inite, ρ being positive, and G having full rank, the inverse

Γ :=

(
Γ11 Γ12

Γ>12 Γ22

)
=

(
H + ρIp G

>

G 0

)−1

is well-defined and we obtain

y(j+1) = Γ11

(
ρz(j) − µ(j)

)
+ Γ12Ex. (18)

Since the resulting steps do not depend on y(j), we can
eliminate the copy y by substituting y(j+1) from (18) in
(17b) and (17c). The two remaining steps then are

z(j+1) = projZ

(
Γ11

(
ρz(j) − µ(j)

)
+ Γ12Ex+

1

ρ
µ(j)

)
,

µ(j+1) = µ(j) + ρ
(
Γ11

(
ρz(j) − µ(j)

)
+ Γ12Ex− z(j+1)

)
.

These iterations are known to converge to the optimum of
(13) for any ρ > 0. However, an efficient implementation
of the iterations requires an efficient computation the pro-
jections onto Z. As apparent from (15), a projection onto
Z can be decomposed into a finite number of projections
onto U , X , and T and an efficient computation of these
projections is guaranteed by Assumption 2.

3.2 Dynamics for real-time iterations

We usually require multiple ADMM iterations to approx-
imate z∗(x) with a certain accuracy. However, as shown
in Schulze Darup and Book (2019b), a single iteration per
time-step can be sufficient in the framework of MPC. In
order to describe the resulting closed-loop behavior, it is
convenient to introduce the augmented state

ξ :=

 x
z(0)

µ(0)

 ∈ Rn+2p

and the matrix

K :=
(
Γ12E ρΓ11

1
ρIp − Γ11

)
∈ Rp×(n+2p).

In fact, based on ξ and K, the previously discussed ADMM
iterations can be rewritten in a compact fashion leading
to the real-time iterations

z(1)(k) = projZ (K ξ(k)) , (19a)

µ(1)(k) = ρ
(
Kξ(k)− z(1)(k)

)
. (19b)

Now, since only one iteration is evaluated per time step,
z(1)(k) is our best guess of z∗(x(k)). Hence, we apply the
control action

u(k) = Cz(1)(k) with C :=
(
Im 0m×(p−m)

)
. (20)

in analogy to (3) and by definition of z in (14). At time
step k + 1, we will later measure the state x(k + 1). The
remaining entries of ξ(k), i.e., z(0)(k + 1) and µ(0)(k + 1)

can, in principle, be freely chosen. It turns out, however,
that warmstarts of the form

z(0)(k + 1) = Dzz
(1)(k) and (21a)

µ(0)(k + 1) = Dµµ
(1)(k), (21b)

that reuse z(1)(k) and µ(1)(k) from the previous step, are
useful. We note that linear updates similar to (21) have
also been considered in other real-time iteration schemes
such as (Diehl et al., 2005, Sect. 2.2). Moreover, we refer to
(Schulze Darup and Book, 2019b, Sect. IV.A) for suitable
choices of the matrices Dz,Dµ ∈ Rp×p that, e.g., imple-
ment shifts by one time step. In summary, the dynamics of
the controlled system can be described by the augmented
system

ξ(k + 1) = Aξ(k) + B projZ(Kξ(k)) (22)

with the matrices

A :=

(A 0n×2p)
0p×(n+2p)

ρDµK

 and B :=

(
BC
Dz

−ρDµ

)
.

Around the augmented origin, the nonlinear dynamics (22)
become linear. It can be shown that the corresponding
dynamics, i.e., ξ(k+1) = (A+BK)ξ(k), are asymtotically
stable for a suitable choice of ρ (Schulze Darup and Book,
2019a, Prop. 6). However, attraction does not only hold
under the linear regime. In fact, as apparent from the
numerical benchmark in (Schulze Darup and Book, 2019b,
Sect. IV), the domain of attraction usually also includes
regions with nonlinear dynamics.

3.3 Encrypted implementation in the cloud

We are now ready to derive the encrypted implementation
of the proposed controller. To this end, we first note that
the control scheme consists of the real-time iterations (19),
the control actions (20), and the warmstarts (21). Appar-
ently, all involved operations are linear in the augmented
states except of the projection in (19a) that is reused
in (19b). As already mentioned in the introduction, an
encrypted evaluation of projections is difficult. Hence, we
follow the approach in Schulze Darup et al. (2018a) and
outsource projections from the cloud to the actuator. In
the cloud, we will thus compute

ζ(k) := Kξ(k) (23)

in an encrypted fashion (that is detailed below) and send
the result to the actuator, where we decrypt it, evaluate
z(1)(k) = projZ(ζ(k)), and apply (20). According to (21a),
z(1)(k) is also required to warmstart z(0)(k + 1) and,
consequently, to define ξ(k + 1). In other words, the
cloud needs access to z(1)(k) to compute ζ(k + 1) at the
next time step. Additionally, x(k + 1) and µ(0)(k + 1)
are required. However, as apparent from the following
proposition, µ(0)(k + 1) can be inferred from z(1)(k) and
ζ(k). Hence, there is no need to explicitly evaluate or
communicate µ(1)(k).

Proposition 3. The augmented state at time step k+1 can
be inferred from the relation

ξ(k + 1) = L

x(k + 1)
z(1)(k)
ζ(k)

 , (24)

where

L :=

(
In 0n×p 0n×p

0p×n Dz 0p×p
0p×n −ρDµ ρDµ

)
.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3573

ζ

Proj. Actuator
u

System

Buffer

x
Sensor

Encrypted (25)

Buffer

ζ

z(1)

Fig. 2. Encrpyted MPC via ADMM real-time iterations.
Buffers are used to provide z(1)(k − 1) and ζ(k − 1).

Proof. We have

ξ(k + 1) =

 x(k + 1)
z(0)(k + 1)
µ(0)(k + 1)

 =

 x(k + 1)
Dzz

(1)(k)
Dµµ

(1)(k)

=

 x(k + 1)
Dzz

(1)(k)
ρDµ

(
Kξ(k)− z(1)(k)

)

by definition of ξ, due to the warmstart (21), and according
to (19b), respectively. Taking (23) and the definition
of L into account, it becomes apparent that the latter
expression is equivalent to the right-hand side in (24). �

Aiming for the actual controller implementation, it is
slightly more intuitive to consider the current step k and
its precursor k − 1 instead of k + 1 and k as in (24). The
central computation of ζ(k) then results from

ζ(k) = M

 x(k)
z(1)(k − 1)
ζ(k − 1)

 , (25)

where M := KL. Relation (25) is applied for every time
step k > 0. More precisely, it is assumed that the sensor
provides the current state x(k) and the previous iterate
z(1)(k−1) and that the cloud stored ζ(k−1) in the previous
step. The cloud then computes ζ(k) and submits it to the
actuator. As previously discussed, the actuator computes
z(1)(k) via projection, applies (20), and forwards z(1)(k)
to the sensor. The resulting control loop is illustrated in
Figure 2. At the initial step k = 0, the original relation (23)
is utilized with µ(0)(0) = 0p. Moreover, it is assumed that

the sensor provides x(0) and z(0)(0) instead of z(1)(−1).
The cloud then computes

ζ(0) = Kξ(0) = Γ12Ex(0) + ρΓ11z
(0)(0).

It remains to comment on the encrypted implementation of
the proposed controller. For brevity, we focus on the steps
k > 0, i.e., the encrypted evaluation of (25). As discussed
in Section 2.3, the application of the Paillier cryptosystem
requires quantiziations of the involved controller param-
eters and (augmented) states. To this end, we introduce

the quantizations M̂ij := h(Mij), x̂j(k) := h
(
xj(k)

)
,

and ẑ
(1)
j (k − 1) := h

(
z

(1)
j (k − 1)

)
and define

ζ̌i(k) :=

n∑
j=1

M̂ijx̂j(k) +

n+p∑
j=n+1

M̂ij ẑ
(1)
j−n(k − 1)

+

n+2p∑
j=n+p+1̂

Mij ζ̌j−n−p(k − 1) (26)

for every i ∈ {1, . . . , p}. In this context, it is important

to note that M̂ij , x̂j(k), ẑ
(1)
j (k − 1) ∈ Qβ,γ,δ holds by

construction whereas ζ̌i(k) and ζ̌i(k − 1) may or may
not be contained in Qβ,γ,δ. We study products of the

form M̂ijx̂j(k) to clarify this observation. Apparently,
multiplying two numbers from a quantization grid with a
resolution of β−δ, e.g., from Qβ,γ,δ, yields a product that
may refer to a quantization with a resolution of β−2δ. For
numerical example, consider 0.1 and 0.5 from Q10,1,1 and
note that 0.1× 0.5 = 0.05 = 5× 10−2. Now, let us assume
ζ̌i(k) requires a resolution of β−2δ, then the reutilization of
ζ̌i(k) in the subsequent time step may result in a resolution
of β−3δ for ζ̌i(k + 1). Hence, for k → ∞, the required
resolution will be infinitely small. This is impractical since
the resolution influences the mapping of the quantized
data onto the integer message space of Paillier (cf. (9)). In
order to avoid this drawback, we refresh the quantization
of ζ̌i(k) every ∆k ∈ N+ time steps. The role of ∆k will be
specified in the following.

As illustrated in Figure 2, the encrypted evaluation of (26)
starts at the sensor with the encryption of x̂(k) and

ẑ(1)(k − 1). More precisely, at time steps k > 0 with
k mod ∆k 6= 0, we compute the ciphertexts

cj(k) := Enc
(
f
(
β(1+(k mod ∆k))δx̂j(k)

)
, rj(k)

)
(27a)

for j ∈ {1, . . . , n} and

cj(k) := Enc
(
f
(
β(1+(k mod ∆k))δẑ

(1)
j−n(k−1)

)
, rj(k)

)
(27b)

for j ∈ {n+1, . . . , n+p} according to (5), where the num-
bers rj(k) are randomly chosen from Z∗P . The encrypted
vector c(k) is then send to the cloud, where the ciphertexts

vi(k) :=

n+p∏
j=1

cj(k)Zij

 n+2p∏
j=n+p+1

vj−n−p(k − 1)Zij

modP 2

are evaluated and stored for every i ∈ {1, . . . , p} with

Zij := f
(
βδM̂ij

)
. Next, the encrypted vector vi(k) is

transmitted to the actuator, where ζ̌(k) is recovered from

ζ̌i(k) = β−(2+(k mod ∆k))δϕ
(
Dec
(
vi(k)

)
mod Q

)
(28)

using (6) and (11), where we note that a correct inversion
via ϕ requires that the argument of the function is con-
tained in (12). Under the assumption that correctness held
for step k − 1, it is straightforward to verify correctness
of the encrypted scheme for k = 1, i.e., equivalence of
ζ̌i(k) in (26) and (28). In fact, a formal proof can be
derived analogously to (Schulze Darup et al., 2018a, Proof
of Thm. 1) using the relations (7), (8), and (10). However,
further investigating the role of ∆k is more elucidating.

The special treatment of steps k > 0 with k mod ∆k = 0
starts at the actuator already during the preceding step.
In fact, if k + 1 mod ∆k = 0 is recognized at the actu-
ator, then ζ̌(k) is forwarded to the sensor alongside with

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3574

z(1)(k) = projZ(ζ̌(k)). Now, at the following time step, the
sensor measures x(k) and collects the buffered z(1)(k− 1)
and ζ̌(k − 1). It quantizes all three vectors and handles

x̂(k) and ẑ(1)(k − 1) as usual. In addition, it encrypts

ζ̂j(k − 1) := h
(
ζ̌j(k − 1)

)
∈ Qβ,γ,δ by evaluating

vj−n−p(k − 1) := Enc
(
f
(
βδζ̂j(k − 1)

)
, rj(k)

)
for every j ∈ {n+p+1, . . . , n+2p} using random numbers
rj(k) ∈ Z∗P . Next, the sensor sends v(k − 1) to the
cloud alongside with c(k). Finally, the cloud overwrites its
internal buffer with the ciphertexts v(k− 1) and proceeds
as usual.

Apparently, ∆k affects the encryption in (27) and the
decryption in (28). The leading idea is to “count” the
number of steps since the last refreshment and to adapt
the mapping onto and the recovery from the integer
message space accordingly. The adaption is necessary since
the required resolution for the representation of ζ̌(k) is
changing with k due to the recursive nature of (26).

It remains to comment on the numerical complexity of
the proposed scheme. In this context, the numbers of
elementary operations per component are itemized in
Table 1. In the cloud, modular exponentiations (Exp)
and modular multiplications (Mul) are fundamental for
the evaluation of vi(k) (as specified above). During the
refreshment of ζ̌(k − 1) or, more precisely vi(k − 1),
p additional encryptions are required at the sensor.

Table 1. Number of operations performed at
the sensor, in the cloud, and at the actuator.

Mode Sensor Cloud Actuator

Enc Exp Mul Dec

normal n+ p p(n+ 2p) p(n+ 2p− 1) p
refresh n+ 2p p(n+ 2p) p(n+ 2p− 1) p

4. NUMERICAL EXAMPLE

We apply the proposed scheme to the double-integrator
system with the matrices

A =

(
1 1
0 1

)
and B :=

(
0.5
1

)
and the constraints X := {x ∈ R2 | |x1| ≤ 25, |x2| ≤ 5}
and U := [−1, 1]. We consider the weighting matrices
Q = I2 and R = 0.1. The prediction horizon is set to
N = 12 and the terminal weighting P is chosen as the
solution of the (discrete-time) algebraic Riccati equation

A>(P −P B (R+B>P B)−1B>P)A−P +Q = 0n×n.

We set T = X for simplicity. We note, however, that an
ellipsoidal terminal set of the form

T :=
{
x ∈ R2 | ‖x‖2P ≤ c

}
could be used to enforce stability. In fact, ellipsoidal sets
allow for efficient projections as required by Assumption 2.
In contrast, polytopic sets T that are frequently used in
MPC do, in general, not support efficient projections.

The ADMM real-time iterations are parametrized as fol-
lows. We select the weighting factor ρ = 10. The initial
guess for z(0) is chosen as

Fig. 3. Illustration of state trajectories resulting for the
quantized and encrypted ADMM real-time iterations
scheme (solid), for the precise scheme (dashed), and
for the original MPC (dash-dotted).

z(0)(0) :=

K∗(A+BK∗)0

...
K∗(A+BK∗)N−1

(A+BK∗)1

...
(A+BK∗)N

x0,

where K∗ := (R +B>PB)−1B>PA reflects the linear-
quadratic regulator (LQR). The updates matrices Dz and
Dµ are chosen as in Schulze Darup and Book (2019b)
for the case “shift-LQR”. Hence, the warmstarts (21)
implement a shift of the current sequences by one time
step followed by an LQR step to complete z(0)(k + 1).

It remains to specify the quantization and encryption. In
this context, we select β = 2, γ = 5, and δ = 10. Hence, we
consider signed 16-bit quantizations with 5 integer bits and
10 fractional bits. Moreover, we choose Q = 2128 (to ensure
correct inversions via ϕ) and prime numbers p1 and p2 of
length l = 1024 (as suggested by the National Institute of
Standards and Technology (2016)). Finally, we refresh the
quantization of ζ̌ every ∆k = 5 time steps.

The closed-loop dynamics for the initial state x0 :=

(22 2.2)
>

are illustrated in Figure 3. More precisely,
the state trajectory for the proposed scheme including
quantization and encryption is shown in comparison to the
results for ADMM real-time iterations without quantiza-
tion and the original MPC. As apparent from the figure,
all variants steer the system towards the origin. Moreover,
the quantized ADMM scheme shows only small deviations
from the precise one. Compared to the original MPC, we
observe an identical behavior for the first five time steps.
Afterwards, significant differences between the real-time
iterations and the optimal solution are visible.

For completeness, we briefly comment on the numerical
effort to run the example. As apparent from Table 1, the
number of required operations is determined by n = 2 and
p = N(m + n) = 36. Hence, 38 encryptions, 2664 mod-
ular exponentations, 2628 modular multiplications, and
36 decryptions are required during “normal” time steps.
During the refreshment step, the number of encryptions

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3575

increases to 74. Taking into account that these operations
are numerically demanding, it is not surprising that a
simple Python implementation (without parallelization)
running on a 2.7 GHz Intel Core i7-7500U requires 5.7 s
at the sensor (11.2 s for refreshment step), 12.5 s in the
cloud, and 5.2 s at the actuator.

5. CONCLUSION AND OUTLOOK

We presented a novel encrypted MPC that is based on
an encrypted implementation of ADMM real-time itera-
tions. Compared to the existing schemes Alexandru et al.
(2018) and Schulze Darup et al. (2018a), the novel en-
crypted controller stands out for the ability to consider
state and input constraints. Furthermore, in contrast to
Schulze Darup et al. (2018b), an explicit solution of the
underlying optimal control problem (OCP) is not required.

From a technical point of view, the novel scheme is inter-
esting since the controller can be formulated in a recursive
manner (see Prop. 3), which reduces the communication
and decryption load. However, recursively handling en-
crypted data in the cloud requires, in general, to refresh
the quantization from time to time. A suitable strategy
has been derived and successfully implemented. We note,
at his point, that the computations (25) carried out in the
cloud can be interpreted as a linear dynamical controller.
Hence, instead of regular refreshments of the quantized
controller state ζ, tailored approaches as, e.g., proposed
in Cheon et al. (2018) could be an interesting alternative.
Moreover, realizing encrypted projections would further
promote the role of the cloud and relieve the actuator.

Finally, from a control perspective, the numerical example
illustrates the functionality of the scheme. However, the
differences between the three trajectories in Figure 3 sug-
gest some directions for further research. In fact, the effect
of quantization errors has not yet been addressed formally.
Further, apart from encrypted control, a closer investi-
gation of the performance of ADMM real-time iterations
compared to the optimal solutions is desirable. Lastly, we
aim for a more efficient implementation of the proposed
scheme in order to reduce the required sampling time.

REFERENCES

Alexandru, A.B., Morari, M., and Pappas, G.J. (2018).
Cloud-based MPC with encrypted data. In Proc. of the
57th Conference on Decision and Control, 5014–5019.

Alexandru, A.B. and Pappas, G.J. (2019). Encrypted LQG
using labeled homomorphic encryption. In Proceedings
of the 10th ACM/IEEE International Conference on
Cyber-Physical Systems, 129–140.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014).
(Leveled) Fully homomorphic encryption without boot-
strapping. ACM Transactions on Computation Theory,
6(3), 13:1–13:36.

Cheon, J.H., Han, K., Kim, H., Kim, J., and Shim, H.
(2018). Need for controllers having integer coefficients in
homomorphically encrypted dynamic system. In Proc.
of 57th Conference on Decision and Control, 5020–5025.

Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy,
Z., and Allgöwer, F. (2002). Real-time optimization and
nonlinear model predictive control of processes governed
by differential-algebraic equations. Journal of Process
Control, 12, 577–585.

Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., and
Schlöder, J.P. (2005). Nominal stability of real-time
iteration scheme for nonlinear model predictive control.
IEE Proceedings - Control Theory and Applications,
152(3), 296–308.

ElGamal, T. (1985). A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4), 469–472.

Farokhi, F., Shames, I., and Batterham, N. (2017). Secure
and private control using semi-homomorphic encryp-
tion. Control Engineering Practice, 67, 13–20.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proc. of the Annual International Con-
ference on the Theory and Applications of Cryptographic
Techniques, 169–178.

Gentry, C. (2010). Computing arbitrary functions of
encrypted data. Communications of the ACM, 22(11),
612–613.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides,
G.A., Kerrigan, E.C., and Morari, M. (2014). Em-
bedded online optimization for model predictive control
at megahertz rates. IEEE Transactions on Automatic
Control, 59(12), 3238–3251.

Katz, J. and Lindell, Y. (2014). Introduction to Modern
Cryptography, Second Edition. CRC Press.

Kim, J., Lee, C., Shim, H., Cheon, J.H., Kim, A., Kim,
M., and Song, Y. (2016). Encrypting controller using
fully homomorphic encryption for security of cyber-
physical systems. In Proc. of the 6th IFAC Workshop
on Distributed Estimation and Control in Networked
Systems, 175–180.

Kogiso, K. and Fujita, T. (2015). Cyber-security enhance-
ment of networked control systems using homomorphic
encryption. In Proc. of the 54th Conference on Decision
and Control, 6836–6843.

Li, W.C. and Biegler, L.T. (1989). A multistep, newton-
type control strategy for constrained, nonlinear pro-
cesses. In Proc. of the 1989 American Control Con-
ference, 1526–1527.

National Institute of Standards and Technology (2016).
Recommendation for key management. In E. Barker
(ed.), NIST Special Publication 800-57 Part 1.

Paillier, P. (1999). Public-key cryptosystems based on
composite degree residuosity classes. In Advances in
Cryptology - Eurocrypt ’99, volume 1592 of Lecture
Notes in Computer Science, 223–238. Springer.

Schulze Darup, M. and Book, G. (2019a). On closed-
loop dynamics of ADMM-based MPC. arXiv:1911.02641
[math.OC].

Schulze Darup, M. and Book, G. (2019b). Towards real-
time ADMM for linear MPC. In Proc. of the 2019
European Control Conference, 4276–4282.

Schulze Darup, M., Redder, A., and Quevedo, D.E.
(2018a). Encrypted cloud-based MPC for linear systems
with input constraints. In Proc. of 6th IFAC Nonlinear
Model Predictive Control Conference, 635–642.

Schulze Darup, M., Redder, A., Shames, I., Farokhi, F.,
and Quevedo, D. (2018b). Towards encrypted MPC
for linear constrained systems. IEEE Control Systems
Letters, 2(2), 195–200.

van Parys, R. and Pipeleers, G. (2018). Real-time proximal
gradient method for linear MPC. In Proc. of the 2018
European Control Conference, 1142–1147.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3576

