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Abstract:
Linear, discrete-time systems with state-multiplicative noise and delayed states are considered.
The problem of robust H∞ general-type filtering is solved for these systems when the uncertainty
in their deterministic parameters is of the polytopic-type. The obtained vertex-dependant
solution is based on a modified Finsler lemma which leads to a simple set of LMIs condition.
The included numerical example demonstrates the tractability and solvability of the proposed
method.

1. INTRODUCTION

In this extended abstract we address the problem of robust
H∞ filtering of uncertain discrete-time retarded systems
with stochastic state-multiplicative noise. The solution of
this problem is based on the solution of the nominal case
[i.e. with no uncertainties] and adaptation of the Finsler
lemma (Cvetkovski (2012)).

The control and estimation of retarded state-multiplicative
noisy systems have been a central topic within the stochas-
tic control theory by large (see for example Boukas and
Liu (2002), Xu et al. (2004), Yue et al. (2009) and Mazenc
and Normand-Cyrot (2013)) where many of the techniques
that were used for the solution of the deterministic coun-
terpart problems have been adopted (see Fridman (2014)
for a comprehensive review). In Gershon and Shaked
(2013), a solution of the filtering problem is brought for
nominal and for polytopic-type uncertain stochastic sys-
tems where in the latter, the solution is obtained for the
restrictive case where a single Lyapunov function is as-
signed to all the polytop vertices [the so called ”quadratic
solution” ]. Here we start with a modified solution for
the nominal case and we apply a modified version of the
Finsler lemma, resulting in a less conservative solution.
A numerical example is brought that demonstrates the
theoretical result.

Notation: Throughout the work the superscript ‘T ’
stands for matrix transposition, Rn denotes the n dimen-
sional Euclidean space, Rn×m is the set of all n ×m real
matrices, N is the set of natural numbers and the notation
P > 0, (respectively, P ≥ 0) for P ∈ Rn×n means that
P is symmetric and positive definite (respectively, semi-
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definite). We denote by L2(Ω,Rn) the space of square-
integrable Rn− valued functions on the probability space
(Ω,F ,P), where Ω is the sample space, F is a σ algebra
of a subset of Ω called events and P is the probability
measure on F . By (Fk)k∈N we denote an increasing family
of σ-algebras Fk ⊂ F . We also denote by l̃2(N ;Rn) the n-
dimensional space of nonanticipative stochastic processes
{fk}k∈N with respect to (Fk)k∈N where fk ∈ L2(Ω,Rn).
On the latter space the following l2-norm is defined:

||{fk}||2l̃2 = E{
∞∑
0

||fk||2} =
∞∑
0

E{||fk||2} < ∞,

{fk} ∈ l̃2(N ;Rn),
(1)

where || · || is the standard Euclidean norm. We denote by
Tr{·} the trace of a matrix and by δij the Kronecker delta
function.

2. PROBLEM FORMULATION

We consider the following linear retarded system:
xk+1 = (A0 + Dνk)xk + (A1 + Fµk)xk−τk

+ B1wk,
xl = 0, l ≤ 0
yk = C2xk + D21nk

zk = C1xk

(2)

We seek a filter
x̂k+1 = Af x̂k + Bfyk, x̂0 = 0
ẑk = Cf x̂k

(3)

where xk ∈ Rn is the system state vector, wk ∈ Rq is the
exogenous disturbance signal, nk ∈ Rp is the measurement
noise signal, yk ∈ Rm is the measured output and zk ∈ Rr

is the state combination (objective function signal) to be
regulated and where the time delay is denoted by the
integer τk and it is assumed that 0 ≤ τk ≤ h, ∀k. The
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variables {νk}, and {µk} are zero-mean real scalar white-
noise sequences that satisfy:

E{νkνj} = δkj , E{µkµj} = δkj , E{µkνj} = 0, ∀k, j ≥ 0.

The matrices in (2) and (3) are constant matrices of
appropriate dimensions.

Denoting: ξT
k = [xT

k x̂T
k ] and w̄T

k = [wT
k nT

k ] we write the
following augmented system:

ξk+1 = Ã0ξk + Ã1ξk−τk + B̃w̃k + D̃ξkνk + F̃ ξk−τkµk,

z̃k = C̃ξk,
(4)

where

Ã0 =
[

A0 0
BfC2 Af

]
, Ã1 =

[
A1 0
0 0

]
,

B̃ =
[

B1 0
0 BfD21

]
, D̃ =

[
D 0
0 0

]
, C̃T =

[
CT

1

−CT
f

]
,

(5)

and F̃ =
[

F 0
0 0

]
. We start by solving the H∞ filtering

problems for the nominal systems of (2) and we then
expand our solution to the robust uncertain case. We note
that similarly to the H∞ case, the H2 counterpart filter for
nominal systems can be derived by applying our approach.

3. THE ROBUST OPTIMAL H∞ FILTER

In this section we start by seeking a filter of the type (3)
for the nominal system of (2). Since the solution of the
filtering problem in Gershon and Shaked (2013) does not
lead to the solution of the robust vertex-defendant case,
we apply the Finsler lemma (Cvetkovski (2012)), in the
sequel, to nominal systems and we latter show how to
extend the nominal solution to the uncertain case. Defining
the following performance index:

JF
∆= ||zk − ẑk||2l̃2 − γ2[||wk||2l̃2 + ||nk+1||2l̃2 ]. (6)

our objective is to find a filter of the type of (3) such
that JF is negative for all nonzero wk, nk where wk ∈
l̃2Fk

([0,∞);Rq), nk ∈ l̃2Fk
([0,∞];Rp).

Applying the BRL result of Gershon and Shaked (2013) to
the nominal system of (2), we obtain that the requirement
of JF < 0 is achieved for all nonzero w ∈ l̃2Fk

([0,∞);Rq),
if there exist 2n×2n matrices Q̃ > 0, R̃1 > 0 and a 2n×2n
matrix Qm that satisfy the following:

Γ̃ ∆=



Γ̃11 Γ̃12 0 0 Γ̃15 0 C̃T

∗ −Q̃ Γ̃23 Qm 0 Q̃B̃ 0
∗ ∗ Γ̃33 0 Γ̃35 0 0
∗ ∗ ∗ −εbQ̃ −hεbQ

T
m 0 0

∗ ∗ ∗ ∗ −εbQ̃ εbhQ̃B̃ 0
∗ ∗ ∗ ∗ ∗ −γ2Iq 0
∗ ∗ ∗ ∗ ∗ ∗ −Ir


< 0 (7)

where

Γ̃11 = −Q̃ + D̃T Q̃[1 + εbh
2]D̃ + R̃1,

Γ̃12 = ÃT
0 Q̃ + QT

m,

Γ̃15 = εbh[ÃT
0 Q̃ + QT

m]− εbhQ̃,

Γ̃23 = Q̃Ã1 −Qm,

Γ̃33 = −R̃1 + (1 + εbh
2)F̃T Q̃F̃ ,

Γ̃35 = εbh[ÃT
1 Q̃−QT

m].
Applying Schur formula the above condition becomes Γ=

Γ1,1 Γ1,2 0 0 Γ1,5 0 C̃T ρD̃T Q̃

∗ −Q̃ Γ2,3 Qm 0 Q̃B̃ 0 0
∗ ∗ Γ33 0 Γ3,5 0 0 0

∗ ∗ ∗ −εbQ̃ −hεbQ
T
m 0 0 0

∗ ∗ ∗ ∗ −εbQ̃ εbhQ̃B̃ 0 0

∗ ∗ ∗ ∗ ∗ −γ2Iq 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Ir 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̃


<0 (8)

where

Γ1,1 = −Q̃+R̃1,

Γ1,2 = ÃT
0 Q̃+QT

m,

Γ1,5 = εbh((ÃT
0−I)Q̃+QT

m),
Γ2,3 = Q̃Ã1−Qm,

Γ33 = −R̃1 + (1 + εbh
2)F̃T Q̃F̃ ,

Γ3,5 = εbhÃT
1 Q̃−QT

m

(9)

and where we denote
√

1 + εbh2 by ρ.

Denoting by Γ0 the matrix that is obtained by substituting
Q̃ = 0 in Γ and defining the (12)× (14n + r + q) matrices

Ē =


I 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I


and

(10)

AQ =



−1
2
I 0 0 0 0

Ã0 −1
2
I Ã1 0 0

0 0 0 −εb

2
I 0

εbh(Ã0−I) 0 εbhÃ1 0 −εb

2
I

ρD̃ 0 0 0 0
0 0 ρF̃ 0 0

0 0 0 0
B̃ 0 0 0
0 0 0 0

εbhB̃ 0 0 0

0 0 −1
2
I 0

0 0 0 −1
2
I


, (11)

we obtain from (8) the following condition:

Γ=Γ0+ĒT diag{Q̃, Q̃, Q̃, Q̃, Q̃, Q̃}AQ+
AT

Qdiag{Q̃, Q̃, Q̃, Q̃, Q̃, Q̃}Ē <0.
(12)

Applying the Finsler lemma (Cvetkovski (2012)) to the
latter, we obtain that (12) is satisfied iff there exist
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matrices Ũ and Ṽ , where Ũ ∈ R12n×(14n+r+q) and Ṽ ∈
R12n×12n that satisfy the following:

Γ̄ =
[

Γ0 + ŨTAQ +AT
QŨ Γ̄1,2

∗ −Ṽ − Ṽ T

]
< 0, (13)

where
Γ̄1,2 = −ĒT diag{Q̃, Q̃, Q̃, Q̃, Q̃, Q̃}+ ŨT−AT

QṼ .

Next, we define the following 2n× 2n matrix

J =
[
X̄ Y
0 N

]
where X̄, Y, and N = X̄T − Y T are nxn matrices.

Choosing,

ŨT =



JT 0 0 0 0 0

0 JT 0 0 0 0
0 0 02nx2n 0 0 0

0 0 JT 0 0 0

0 0 0 JT 0 0
0 0 0 0 0(q+r)x2n 0

0 0 0 0 JT 0

0 0 0 0 0 JT


and

Ṽ = εdiag{J, J, J, J, J, J},
the condition of (13) is written as:[

Γ̂11 Γ̂12

∗ Γ̂22

]
< 0, (14)

where:

Γ̂11 =



R̃1−
1

2
(JT+J) ÃT

0 J + QT
m 0 0

∗ −
1

2
(JT+J) −Qm+JTÃ1 Qm

∗ ∗ −R̃1 0

∗ ∗ ∗ −
εb

2
(JT+J)

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

εbh((ÃT
0 −I)J+QT

m) 0 C̃T ρD̃T J 0

0 JT B̃ 0 0 0

εbhÃT
1 J−QT

m 0 0 0 ρF̃ T J

−εbhQT
m 0 0 0 0

−
εb

2
(JT+J) εbhJT B̃ 0 0 0

∗ −γ2Iq 0 0 0
∗ ∗ −Ir 0 0

∗ ∗ ∗ −
1

2
(JT+J) 0

∗ ∗ ∗ ∗ −
1

2
(JT+J)


,

Γ̂12 =



JT +
ε

2
J−Q̃ −εÃT

0 J 0

0
ε

2
J+JT−Q̃ 0

0 −εÃT
1 J 0

0 0
εbε

2
J+JT−Q̃

0 0 0

0 −εB̃T J
0 0 0
0 0 0
0 0 0

−εεbh(ÃT
0 −I)J −ερD̃T J 0

0 0 0

−εεbhÃT
1 J 0 −ερF̃ T J

0 0 0
εεb

2
J+JT −Q̃ 0 0

−εεbhB̃T J 0 0
0 0 0

0
ε

2
J + JT−Q̃ 0

0 0
ε

2
J+JT−Q̃


and where
Γ̂22 = −εdiag{J+JT , J+JT , J+JT , J+JT , J+JT , J+JT }.
In the latter, denoting FA = AT

f N and FB = BT
f N , the

following products appear:

ÃT
0 J =

[
AT

0 CT
2 BT

f

0 AT
f

] [
X̄ Y
0 N

]
=

[
AT

0 X̄ AT
0 Y + CT

2 FB

0 FA

]
,

ÃT
1 J =

[
AT

1 0
0 0

] [
X̄ Y
0 N

]
=

[
AT

1 X̄ AT
1 Y

0 0

]
,

B̃T J =
[
BT

1 0
0 DT

21B
T
f

] [
X̄ Y
0 N

]
=

[
BT

1 X̄ BT
1 Y

0 DT
21FB

]
,

D̃T J =
[
DT 0
0 0

] [
X̄ Y
0 N

]
=

[
DT X̄ DT Y

0 0

]
,

and J + JT =
[
X̄+X̄T Y +Y T

Y T +Y X̄+X̄T−Y −Y T

]
.

(15)

The decision variables in the resulting LMI are: X̄, Y,
FA, FB , Cf , R̃1, Qm, Q̃ and γ2. Two scalar parameters ε
and εb have to be tuned. Now, application of the Finsler
lemma (Cvetkovski (2012)) has no bearing on the nominal
system (i.e with no uncertainty). The merit of the latter
application is that now we can assign a unique Lyapunov
function Q̃, in the polytopic case, to each vertex of the
polytope (noting that Q̃ does not multiply any of the
system matrices). We thus turn to the uncertain case
and we assume that the system parameters lie within the
following polytope:

Ω̄ ∆=[ A0A1B1C1C2D21 D F ] , (16)

which is described by the vertices:

Ω̄ = Co{Ω̄1, Ω̄2, ..., Ω̄N}, (17)

where Ω̄i
∆=[
A

(i)
0 A

(i)
1 B

(i)
1 C

(i)
1 C

(i)
2 D

(i)
21 D(i)F (i)

]
(18)

and where N is the number of vertices. In other words:

Ω̄ =
N∑

i=1

Ω̄ifi,
N∑

i=1

fi = 1 , fi ≥ 0. (19)

We thus arrive to the following result in the uncertain case:

Theorem 1 Consider the system of (2) where the
system matrices lie within the polytope Ω̄ of (16). For a
prescribed scalar γ > 0 and two positive tuning scalars
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εb and ε, there exists a filter of the structure (3) that
achieves JF < 0, where JF is given in (6), for all nonzero
w ∈ l̃2([0,∞);Rq), n ∈ l̃2([0,∞);Rp), if there exist n× n

matrices X̄ > 0, Y > 0, 2n × 2n matrices R̃1 > 0
and Qm, n × n matrix FA, m × n matrix FB , r × n
matrix Cf and matrices Q̃i, i = 1, 2, ..N, where N is
the number of the vertices, that satisfy (14) and where
A0, A1, B1, C1, C2, D21, D and F are replaced by
A

(i)
0 A

(i)
1 B

(i)
1 C

(i)
1 C

(i)
2 D

(i)
21 D(i) and F (i), respectively.

The parameters of the filter should then be given by:
Af = N−T FT

A , BF = N−T FT
B and Cf .

Since the resulting transfer function matrix of the optimal
filter is given by:
H(z) = Cf (zI−N−T FT

A )−1N−T FT
B = Cf (zNT−FT

A )−1FT
B

we use the fact that NT = X̄−Y and find that the filter’s
transfer function matrix is:

H(z) = Cf (z(X̄ − Y )− FT
A )−1FT

B (20)

4. EXAMPLE

We consider the system of (2) with the following system
matrices:

A =
[

0.1 0.6± a
−1 −0.5

]
, D =

[
0 0.189
0 0

]
,

F =
[

0 0.01
0 0

]
, B1 =

[
−0.225
0.45

]
, D21 = 0.01,

C1 =
[
−0.5 0.4

0 0

]
, A1 =

[
0 0.1
0 0

]
,

and C2 = [ 0 1 ] . Taking a = 0 for the nominal case and
applying the result of (Gershon and Shaked (2013), see
Chapter 5), we obtain for a delay bound of h = 12, a
near minimum attenuation level of γ = 2.14 for εb =
0.001. Taking a ∈ [−0.3 0.3], and applying the result
of the robust quadratic solution (by assigning the same
Lyapunov function over all the uncertainty polytope),
we obtain for the latter delay bound a near minimum
attenuation level of γ = 23.56 for εb = 1e − 7. Applying
the result of the less conservative solution of Theory 1 we
obtain a near minimum attenuation level of γ = 20.1.

5. CONCLUSIONS

In this work, the solution of the H∞ filtering problem for
nominal retarded stochastic systems has been extended
to the robust vertex-dependant case resulting in a less
conservative solution compared to the quadratic solution
(where a single Lyapunov function is assigned overall
the uncertainty polytop). The improved vertex-dependent
solution is achieved by applying the Finsler lemma to
a modified solution of the nominal case, resulting in a
simple and tractable set of LMIs. We note that solution of
the nominal case and therefore the solution of the robust
uncertain case is based on the BRL solution, which in turn
is based on the application of the input-output approach.
The latter approach entails an over-design in the solution
method however, the vertex-dependant approach results

in a less conservative condition. The numerical example
demonstrates the less conservative nature of our solution
method compared to the quadratic solution.
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